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Despite recent advances in our understanding of the mechanisms underlying systemic

inflammatory response syndrome (SIRS) and sepsis, the current therapeutic approach to

these critically ill patients is centered around supportive care including fluid resuscitation,

vasopressors and source control. The incidence of SIRS and sepsis continues to

increase in the United States and patients die due to failure to respond to the traditional

therapies of nitric oxide blockade, adrenergic agonists, etc. Bacterial and mitochondrial

N-formyl peptides (NFPs) act as damage-associated molecular patterns and activate

the innate immune system through formyl peptide receptors (FPR) located in immune

and non-immune cells, including the vascular endothelium. The resulting inflammatory

response manifests as capillary leak, tissue hypoperfusion and vasoplegia, partially due

to endothelium barrier breakdown. Potential strategies to prevent this response include

decreasing NFP release, breakdown of NFPs, and blocking NFPs from binding FPR. We

propose the use of deformylase, the degrading enzyme for NFPs, as potential therapeutic

approach to prevent the deleterious effects of NFPs in SIRS and sepsis.
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INTRODUCTION

Systemic inflammatory response syndrome (SIRS) and sepsis are major causes of morbidity and
mortality in the United States. Sepsis and its related morbidity and mortality is considered
the most expensive condition treated in the United States by the Agency for Healthcare and
ResearchQuality, costing an approximate 20 billion dollars yearly (1–3). Despite advances in critical
care, few targeted therapies have been developed for patients with SIRS, sepsis and multi-system
organ dysfunction (MSOD) (4). While sepsis has been recently defined as life-threatening organ
dysfunction caused by a dysregulated host response to infection (5), SIRSmay reflect an appropriate
host response, which can be caused by various pathologic insults, including trauma and tissue injury
(5, 6). Trauma and tissue injury lead to a sepsis-like clinical picture, “microorganism-free sepsis,”
which clinically mimics sepsis, although no microbial pathogen is present.

SIRS and sepsis are complex inflammatory syndromes that involve activation and amplification
of the innate immune system through receptor interaction with “danger signals” or “target
molecular motifs.” In the case of traumatic tissue injury, this response can be attributed to
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endogenous molecules known as damage-associated molecular
patterns (DAMPs) (7). DAMPs are released when tissue injury
occurs and trigger an innate immune response similar to
that of pathogen-associated molecular patterns (PAMPs) (8–
10). PAMPs are conserved pathogenic structures such as
bacterial DNA, bacterial cell wall components and bacterial N-
Formyl peptides (fMLP). DAMPs are evolutionarily conserved
endogenous molecules not normally found in the circulation
such as mitochondrial DNA, mitochondrial N-Formyl peptides
(FMITs), basement membrane fragments, histones and heat
shock proteins. Innate immune system activation through
pattern recognition receptors (PRRs), such as formyl peptide
receptors (FPRs) and toll-like receptors (TLRs) (11), leads to the
production of high levels of proinflammatory cytokines (tumor
necrosis factor (TNF-α), interleukin (IL)-6, interferon gamma
(IFN-γ), etc.) causing systemic derangement and cardiovascular
collapse (12–14). The sharing of cellular pathways by which
DAMPs and PAMPs act may cause the downstream immune
responses to SIRS and sepsis to be indistinguishable from one
another. This may thus explain the similarity in clinical responses
to infective and non-infective challenges.

Increased circulating levels of mitochondrial DAMPs have
been associated with increased morbidity and mortality in
critically ill adult patients (7, 15, 16). Our laboratory has
recently demonstrated that trauma patients with SIRS have
increased levels of circulating mitochondrial NFPs compared
to control trauma patients without clinically diagnosed SIRS
(17). Furthermore, trauma patients who went on to develop
sepsis during their hospitalization where found to have even
higher levels of mitochondrial NFPs in their plasma, compared
to those of SIRS patients (17). In a rat model of hemorrhagic
shock, mitochondrial NFPs (N-formyl-Met-Met-Tyr-Ala-Leu-
Phe) induced severe hypotension, hyperthermia, lung injury,
microvascular thrombosis and vascular leakage (18).

Elevated DAMPs lead to inflammation and end-organ damage
in vitro and in vivo (7, 14, 17, 19). In amurinemodel of acute lung
injury with tracheal infusion of mitochondrial NFPs, we showed
a concentration-dependent contraction of the trachea, bronchi
and bronchioles, which was decreased with FPR-1 antagonist
administration (17). Nonetheless, the underlying mechanisms
by which NFPs affect non-immune cells and lead to SIRS after
traumatic injury are still being investigated. Similarly, targeted
degradation of mitochondrial DAMPs in vitro has offered a
potential therapeutic alternative for the treatment of these
devastating diseases, especially in patients that do not respond
to traditional therapies (20).

VASCULAR LEAKAGE AS A LINK
BETWEEN SIRS AND SEPSIS

SIRS and sepsis are different manifestations of an underlying
complex pathophysiology with many etiologies. Both SIRS
and sepsis can lead to multi-system organ dysfunction and
potentially death (21). One of the major characteristics of
these conditions is the breakdown of vascular endothelial
barrier function (4, 6, 22), which can result in hemodynamic

collapse and shock. An increase in vascular permeability
(or vascular leakage) leads to progressive subcutaneous and
body-cavity edema, clinically referred to as anasarca (4).
Whether endothelial barrier dysfunction is a cause or an effect
of the disease process underlying SIRS and sepsis has yet
to be determined. Nonetheless, understanding the molecular
mechanisms causing endothelial barrier breakdownmight lead to
new pharmacologic approaches for its prevention and ultimately
to an innovative treatment.

An increase in vascular endothelium permeability, secondary
to endothelial barrier dysfunction, has been previously associated
with pro-inflammatory factors such as reactive oxygen species,
TNF-α, IL-1, IL-2, and IL-6 (23), known to be elevated in
SIRS and sepsis. However, pharmacological interventions that
inhibit these molecules have not been successful at preventing or
reversing endothelial damage (22). Further, inhibition of TLR-
4 with the antagonists E5564 and TAK-242 showed no effects
on 28-days mortality reduction in sepsis (24, 25). Similarly,
polyclonal intravenous immune globulin administration has
shown variable results; however, randomized trials showed no
benefits when compared to placebo (26–28). Additionally, use of
a recombinant, non-glycosylated human IL-1 receptor antagonist
also showed no improvement in patients with severe sepsis and
septic shock (29, 30).

Due to the lack of understanding of the molecular
mechanisms underlying endothelial barrier dysfunction,
therapies targeting vascular leakage in SIRS and sepsis are
not currently available. Our aim is to better understand the
underlying mechanisms of how bacterial and mitochondrial
NFPs lead to vascular leakage, and to devise strategies which may
specifically target NFP pathways. With this knowledge we can
devise potential strategies which may target NFPs, breakdown of
circulating NFPs and/or preventing NFPs from binding its target
receptor, FPR-1.

The pro-inflammatory nature of NFPs and their critical role in
initiating pathogenic and sterile inflammatory responses makes
them an appealing therapeutic target. While activation of the
innate immune system is necessary for clearance of the offending
bacterial organism or injured tissue, it is unknown how much
NFP is needed to potentiate the inflammatory response and alter
this response from adaptive to maladaptive. Bacterial NFPs all
contain a conserved secondary structure, allowing for a large pool
of pathogens to activate FPR-1 with similar affinity and elicit a
similar response (31). FPR-1 activation by fMLP (a bacterial NFP)
triggers neutrophil chemotaxis, diapedesis, and degranulation
(32–34) and neutrophils deficient in FPR-1 display impaired
chemotaxis (35). As mentioned above, we have previously shown
that fMLP induce vascular leakage and exacerbate vasodilatation
in rat mesenteric resistance arteries, and that Cyclosporin-H
(CsH), an FPR-1 antagonist, inhibited this response (14).

FPR-1 SIGNALING AND INNATE IMMUNE
SYSTEM ACTIVATION

FPR-1 has differential expression in various immune cells (e.g.,
dendritic cells, neutrophils, mast cells) and non-immune cells
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(e.g., somatic cells of the cardiovascular system, including
the endothelium) (33). FPR-1 detects evolutionarily conserved
molecules found in bacteria and recognizes the bacterial origin of
mitochondria (7, 14, 36). FMIT exposure to vessels also induces
FPR-1-mediated vascular relaxation that is inhibited by CsH (14).

FPR belongs to G-protein coupled receptor (GPCR) family
and important components of the innate immune system (4).
FPRs were first discovered in neutrophils and are now known
to be comprised of 3 members in humans (FPR-1, FPR-2, and
FPR-3) and 8 in mice (37, 38). Each member of the FPR family
has differential expression and binding affinities, with FPR-2 and
FPR-3 having lower affinity and a greater number of ligands
(39, 40). FPR-1 activation by NFPs triggers immune reactions
in neutrophils, monocytes and macrophages (41). FPR-1 is a
high affinity binding site for the NFP sequence fMLP, with the
ability to recognize even small picomolar concentrations (42).
FPR-1 activation in phagocytic cells triggers degranulation, pro-
inflammatory cytokine and chemokine production and reactive
oxygen species generation (41). Contrary to FPR-1, FPR-2 can
bind a variety of ligands, although with lower affinity, including
select bacterial NFPs and non-formylated ligands like annexin-
1, resolvin D1 and lipoxin A4, among others (33, 42, 43). FPR-2
has been observed to prevent excessive inflammatory responses
in animal models of meningitis and Alzheimer’s disease (44,
45). FPR-3 function remains unclear, as it is not present in
hematopoietic cells and its ligands do not overlap with FPR-1 and
FPR-2 (46, 47). To our knowledge there are no data to suggest
FPR-3 involvement in endothelium integrity.

FPR-1 is also expressed in non-immune cells, suggesting that
FPR-1 serves other functions besides sensing targeted molecular
motifs (48). FPR-1 is essential for vascular homeostasis, as
shown in our recent work where FPR-1 was found to
be fundamental for myogenic vascular contraction under
physiological conditions (49). FPR-1 has been implicated in
cell growth and proliferation in tumorigenesis (50, 51). FPR-1
activation in immune and non-immune cells triggers intracellular
signal transduction pathways responsible for transcriptional
regulation, cytoskeletal reorganization, superoxide production,
and exocytosis of granules (34, 52, 53). Activation of FPR-1
signaling contributes to the physiological defense against danger
signals and makes FPR-1 an attractive therapeutic target.

The identification of selective FPR antagonists has allowed for
the continued discovery of this receptor family interactions and
potential implications in disease. Interestingly, some pathogens
produce FPR antagonists. For instance, the pertussis toxin from
Bordetella pertussis is a potent inhibitor of GPCR-mediated
leukocyte chemotaxis by inactivating the Gαi protein of FPR
(42). The most widely used FPR-1 antagonist Cyclosporin H
(CsH) is a high affinity inverse agonist, selective for FPR-
1, which “locks” FPR-1 into an inactive conformation (54,
55). Due to the intrinsic relationship between FPR-1, the
actin cytoskeleton and transcription regulation, antagonizing
this receptor is a problematic approach (37). In a model of
pneumococcal meningitis, FPR-1 deficient mice were found
to have increased bacterial burden, increased neutrophil
infiltration and elevated mortality rates (44). Oldekamp and
colleagues also showed that FPR-1 deficient microglial cells
have attenuated cell viability after bacterial exposure to S.

pneumoniae and N. meningitidis (44). FPR-1 deficient mice
also have increased susceptibility to Listeria monocytogenes as
evidenced by increased bacterial load in the spleen and liver
(56). Increased knowledge of the direct importance of FPR-
1 in physiological and pathophysiological conditions is still
needed. Challenges exist in targeting FPR-1 directly because
of its intrinsic functional properties and its ability to mediate
both pro-inflammatory and anti-inflammatory effects depending
on the activating ligand (57). Furthermore, since its absence
leads to an enhanced inflammatory response, other approaches
to targeting FPR-1 signaling must be considered for potential
therapeutic applications.

When FPR-1 is activated, it mediates chemotaxis (58),
signals intracellular cascades (59), induces cell cytoskeleton
rearrangement (48), and may act as a mechanosensor (49, 60).
In phagocytic cells, FPR-1 blockade in these cells impairs their
function, prevents their migration to sites of infection and
decreases bacterial clearance (35). FPR-1 activation in non-
immune cells may occur through neutrophil-dependent and/or
neutrophil-independent pathways (19). In accordance with prior
studies, we showed that FPR-1 is not only present in immune
cells but also on vascular endothelial and vascular smooth
muscle cells (18, 48, 61). FPR-1 expression in somatic vascular
cells is consistent with the theory that each tissue and cell
type can tailor its own immune response. FPR-1 mediated
generation of pro-inflammatory cytokines, chemokines, and
adhesion molecules has been extensively studied in immune
cells, specifically neutrophils. However, whether or not the same
signaling pathways and downstream effects of FPR-1 activation
occur in vascular endothelial cells has yet to be determined.

In the pathophysiologic states of SIRS and sepsis, disturbances
in the microcirculation are associated with worse clinical
outcomes, and this occurs independent of macrohemodynamic
changes. Factors proposed to contribute to this capillary leakage,
and disturbances in blood flow, include platelet aggregation,
endothelial cell injury, and increased microvascular permeability
with accompanying interstitial edema, among others (62).
Microvascular injury compromises capillary blood flow, leading
to capillary flow cessation and potentially causing further
hypoxic tissue injury. Endothelial cell activation, independent of
leukocyte activation, triggers a localized inflammatory response
and exacerbates microvascular leakage (62).

Vascular endothelium is one of the tissues most affected
by sepsis and traumatic injury, either by trauma itself
and/or the inflammatory reaction after trauma. An intact
vascular endothelium is necessary to maintain barrier function,
osmotic balance, solute transport, and to prevent pathogens
and molecules from reaching the sub-endothelial connective
tissue (22). The endothelial cell lining of the vasculature
constitutes a semi-permeable barrier between the intravascular
and the interstitial space. Under physiological conditions,
activation of FPR-1 in vascular endothelial cells is necessary
to allow neutrophil and monocyte migration to sites of
inflammation, allowing for reduction of bacterial burden (35).
However, an exacerbated inflammatory response may lead to
endothelial cell apoptosis and necrosis, detachment and loss
of endothelium barrier function (63). Increase in endothelium
permeability allows for immune cell infiltration, interstitial
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edema, and potentiation of end-organ damage. Breakdown of the
endothelium lining may hinder bacterial clearance as an intact
endothelial cytoskeleton is necessary for paracellular transport
and leukocyte transmigration (64). Disruption of this barrier
integritymanifests as hyper-permeability which is associated with
many systemic diseases, including SIRS and sepsis.

The integrity of vascular endothelium is influenced by
an intact endothelial cytoskeleton. FPR-1 activation leads
to cytoskeletal rearrangement resulting in endothelial
cell contraction via actin-myosin interaction and actin
polymerization (48). However, the intracellular molecular
mechanisms by which NFPs, from bacteria and mitochondria,
lead to vascular injury and endothelial barrier breakdown
remain incompletely understood. Our working hypothesis is
that NFPs, whether exogenous or endogenous, lead to increased
vascular endothelial cell permeability through FPR-1 activation,
causing downstream actin cytoskeletal rearrangement and
endothelial contraction.

DEFORMYLASE: A NEW
PHARMACOLOGICAL TOOL TO PREVENT
ENDOTHELIUM BARRIER DYSFUNCTION
IN SIRS AND SEPSIS?

There are still major gaps in our understanding of the underlying
pathophysiology of trauma-induced SIRS and sepsis. Particularly
how DAMPs and PAMPs interaction with PRRs give rise to
the multiple cytokines and chemokines produced during SIRS
and sepsis, and the subsequent physiological consequences. The
inability to treat or prevent trauma-induced SIRS and microbial
sepsis may be due to our limited understanding of the underlying
molecular mechanisms causing endothelial dysfunction and
vascular leakage (48). Given that loss of FPR-1 function could
affect appropriate innate immune system response, it should
be important to identify means for restoring or bypassing
deficiencies in FPR-1 signaling.

FPR-1 antagonists have the potential to inhibit the functional
intrinsic properties of this receptor in endothelial cells. However,
since FPR-1 ligands involved in eliciting innate immune response
can be discriminated, this may offer an opportunity to prevent
deleterious downstream FPR-1 signaling. Targeting DAMPs and
PAMPs and their receptors is a promising therapeutic strategy for
the management of inflammatory pathologies (65). For instance,
cell-free mitochondrial DNA is currently being studied as a
therapeutic target in myocardial infarction (66) with the use
of Endonuclease III, an enzyme that digests DNA. Additionally
DNase, another family of enzymes that digests DNA (67), has
shown the potential to degrade mitochondrial DNA in in vitro
studies (68). DNase has been shown to be elevated in the
systemic circulation following traumatic injury (69) and may
have potential targeting against mitochondrial DNA. However,
no enzymes with the potential to digest NFPs have been identified
to be present in the systemic circulation.

FIGURE 2 | FPR-1, formyl peptide receptor-1.

FIGURE 1 | N-Formyl peptide mediated pathophysiology of SIRS and sepsis. This figure shows the pathogenic effect of NFPs on the vascular endothelium via FPR-1

activation. FPR-1 activation results in dysfunction of the vascular barrier allowing infiltration of immune cells and molecules into the interstitial and extravascular space.

NFPs, bacterial and mitochondrial N-Formyl peptides; FPR-1, formyl peptide receptor-1; TNF-α, tumor necrosis factor alpha; ILF-1β, interleukin-1 beta; IFNγ,

Interferon gamma; ROS, reactive oxygen species.
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Peptide deformylase, a metalloenzyme, has the inherent
activity to degrade NFPs before they bind FPR-1, and may in
fact serve as a potential pharmacologic agent for the treatment
of trauma-induced SIRS and sepsis. Deformylase removes the
formyl group at the N terminus of nascent polypeptides in
bacteria and mitochondria (70). This enzyme, acting as a
monomer, binds a metal ion and catalyzes the reaction: N-
formyl-L-methionine + H2O = formate + methionyl peptide
(71). Deformylase is essential in prokaryotes and it was previously
thought that deformylase was unique to bacteria, hence it has
been a target for the creation of antibacterial agents against
its activity (70, 72). Deformylase was previously targeted by
antibacterial agents after the finding that its inhibition in E.
coli was bactericidal (73–75). These agents were found to
target both bacterial and human mitochondrial deformylase,
as it was later discovered that the three-dimensional structure
of deformylase is evolutionarily conserved (76). This led to
the identification of deformylase homologs in eukaryotes,
including human mitochondria (72, 77). To date, its function
in human mitochondria is not well-defined. What is known,
is that human mitochondrial deformylase is necessary for
translation initiation of respiratory complexes; therefore its
inhibition disrupts mitochondrial function (72). Some peptide
deformylase inhibitors with activity against bacterial peptide
deformylase have been isolated and studied in Phase I
clinical trials with variable but non-clinically significant adverse
effects (70, 72, 78). The deformylase inhibitors BB83698 and
LBM415 studied in phase I clinical trials in humans were
ultimately found to have poor selectivity (78). The first
deformylase inhibitor to be studied in a clinical trial was
LBM415 (Novartis Pharmaceuticals), its oral administration led
to the unexpected finding of methemoglobinemia in study
participants; these results were later confirmed with in vitro
and in vivo animal studies (79). Deformylase inhibitors impair
not only bacterial deformylase but also human mitochondrial
deformylase and prevent mitochondrial translation and oxidative
phosphorylation (80, 81).

The proteolytic effects of deformylase make it an attractive
target for drug development. To date peptide deformylase itself
has not been studied as a therapeutic option for the management
of SIRS or sepsis. Our group has investigated the links between
trauma, vascular collapse and sepsis (Figure 1), and our results
suggest that NFPs and FPR-1 may serve as that link (14, 17,
18, 48). We have recently found that deformylase is a potent
treatment for sepsis in a murine cecal ligation and puncture
model of intraperitoneal sepsis and an in vitro cell culture
model of SIRS (unpublished) (US Provisional Patent Application
62/790, 185 “Methods and Compositions of Treating Sepsis and
Systemic Inflammatory Response Syndrome”).

Based on previous findings, it is reasonable to speculate that
administration of deformylase, as the degrading enzyme for both
bacterial and mitochondrial NFPs, may serve a therapeutic role
in preventing FPR-1 activation and its subsequent endothelium
barrier dysfunction and vascular leakage (Figure 2). To assess the
potential therapeutic strategy of NFP degradation in SIRS and
sepsis, we still need to understand the settings in which activation
or inhibition of FPR-1 is beneficial or detrimental to injury

repair and pathogenic clearance. Furthermore, the quantity of
NFPs needed to potentiate an inflammatory response and tilt
the balance from an adaptive response to a maladaptive response
is unknown.

IMPLICATIONS

Despite advances in the care of critically ill patients, further
improvements in the field are limited by a lack of knowledge
of the underlying pathophysiology in SIRS and sepsis. Our
current therapeutic approach is centered around supportive care
including fluid resuscitation, vasopressors and source control
with antibiotics or surgical intervention. The endothelium
plays a central role in initiating, promoting and exacerbating
the overwhelming inflammatory response. The molecular
mechanisms involved in endothelium barrier dysfunction,
vascular leakage, and cardiovascular collapse are still being
discovered. Bacterial and mitochondrial NFPs, and their
activation of FPR-1 in immune and non-immune cells, may serve
as a link to the underlying pathophysiology of trauma-induced
SIRS and sepsis. The potent pro-inflammatory nature of NFPs
and their role in initiating sterile and infective inflammation
make them an attractive therapeutic target. The development
of therapeutic agents to neutralize the inflammatory effects of
NFPs promises to dramatically improve trauma management.
The potential use of deformylase itself holds translational value
for further pre-clinical and clinical testing considering that very
few, if any, targeted therapies are currently available for the
treatment of trauma-induced SIRS and sepsis.

Much is still yet to be determined about the consequences
of NFPs and FPR-1 receptor activation, especially in vascular
somatic cells. Major barriers still exist in the search for immune-
based interventions in trauma and sepsis: (1) understanding
the underlying molecular mechanisms triggering SIRS, (2)
identification of potential biomarkers that could serve as
therapeutic targets, (3) identification of meaningful pre-clinical
and clinical endpoints other than death, and (4) clinically,
establishment of early intervention and logistics for consent
waived trials. Our current work and hypotheses may have
implications in the management of SIRS and sepsis patients,
especially in those who are non-responders to traditional
vasopressors. FPR-1-NFP interaction may serve as the missing
link between host-derived danger signals, inflammation and
vascular dysfunction in SIRS and sepsis.
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