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Newly revealed links between inflammation, obesity, and cardiometabolic syndrome

have created opportunities to try previously unexplored therapeutic modalities in these

common and life-risking disorders. One potential modulator of these complex disorders

is the gut microbiome, which was described in recent years to be altered in patients

suffering from features of cardiometabolic syndrome and to transmit cardiometabolic

phenotypes upon transfer into germ-free mice. As a result, there is great interest in

developing new modalities targeting the altered commensal bacteria as a means of

treatment for cardiometabolic syndrome. Fecal microbiota transplantation (FMT) is one

such modality in which a disease-associated microbiome is replaced by a healthy

microbiome configuration. So far clinical use of FMT has been overwhelmingly successful

in recurrent Clostridium difficile infection and is being extensively studied in other

microbiome-associated pathologies such as cardiometabolic syndrome. This review will

focus on the rationale, promises and challenges in FMT utilization in human disease.

In particular, it will overview the role of the gut microbiota in cardiometabolic syndrome

and the rationale, experience, and prospects of utilizing FMT treatment as a potential

preventive and curative treatment of metabolic human disease.
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CARDIOMETABOLIC SYNDROME

Cardiometabolic syndrome (also termed “Metabolic syndrome”) consists of the co-occurrence of
a cluster of pathogenically-associated metabolic disorders including obesity, insulin resistance,
non-alcoholic fatty liver disease, hypertension, and hypercholesterolemia. When present, the
combined effect of these disorders significantly increases the risk of developing cardiovascular
disease and type 2 Diabetes Mellitus (TIIDM) (1). It is estimated that 22% of the adult population
in the US suffers from cardiometabolic syndrome and prevalence is on the rise, especially in
patients older than 60 years old where prevalence is 43.5% (2–4). The clinical implications
of cardiometabolic syndrome are predominantly related to the increased risk of developing
cardiovascular complications of atherosclerosis and micro- or macrovascular complications of
TIIDM. Several studies estimated that the relative risk (RR) for developing cardiovascular disease
is double than the general population (RR= 1.53–2.18) in patients suffering from cardiometabolic
syndrome (5–7), coupled with an increase in all-cause mortality (RR = 1.27–1.6). In addition, the
relative risk of developing TIIDM was significantly higher in patients suffering from other features
of cardiometabolic disease (RR= 3.53–5.17) as compared to the general population (8).
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In addition to the above metabolic and cardiovascular
complications, cardiometabolic syndrome is associated with
an aberrant inflammatory and coagulative response, including
increased levels of proinflammatory markers including C-
Reactive Protein, interleukin (IL)-6, and plasminogen activator
inhibitor (PAI)-1 (9–13). Although these inflammatory and
prothrombotic markers were shown to be associated with an
increased risk of cardiovascular disease and TIIDM, the exact
mechanisms by which they act to increase this risk remain
unclear. In recent years there is increasing evidence that these
inflammatory processes might be related to an imbalance in
the immunologic response of the host in relation to host
microbiota (14–16).

THE GUT MICROBIOTA

The commensal gut microbiota is a “signaling hub” in many
physiological functions of the mammalian host and especially
in host’s metabolism (17). A staggering amount of scientific
evidence was gathered on the potential role of the commensal
microbiota in influencing human health (18, 19) and a variety
of multi-factorial diseases like Inflammatory bowel disease
(IBD) (20, 21), Irritable bowel syndrome (IBS) (22, 23), and
gastrointestinal cancer (24–26). The gut microbiota was also
shown to have significance in non-gastrointestinal conditions
such as cardiometabolic (27, 28), neurologic (29), and even
psychiatric disorders (30–32).

There is great need to deepen the mechanistic understanding
of commensal microbiota along with their function, secreted
molecules repertoire, and their precise impacts on the host. An
approach which favors mechanisms over correlations is much
more likely to illuminate therapeutic targets for preventing or
treating microbiota-associated diseases by means of antibiotics,
prebiotics, probiotics, and fecal microbial transplants. While
antibacterial treatment (such as antibiotics) has profound effects
on the gut microbiota (33), it is non-specific and associated
with the emergence of resistant strains, which precludes it from
being a safe long-term microbiome intervention in chronic
disease. Some nutritional interventions are known to affect
cardiometabolic diseases including TIIDM and obesity by
targeting the gut microbiota (34–36). Examples of dietary
interventions include prebiotics, substances that include dietary
fibers and oligosaccharides, which were suggested to have a
potential beneficial effect on human health that is also correlated
with alternations in gut microbiota (37). Probiotics, available in
multiple food formulations, are aimed at modulating the host
and its microbiome. However, there is contradicting evidence
as to the beneficial effect that probiotics have on human health,
with large-scale, non-industry sponsored high-quality clinical
trials still missing for the majority of claimed indications
(38, 39). Other experimental microbiome interventions include
“postbiotic” treatment, utilizing microbiome-modulated
metabolites as means of treatment (40, 41). Phage therapy is
emerging as a promising pathobiont-eradicating therapeutic
modality (42–44). Although bacteriophages, i.e., viruses that
exclusively infect specific bacteria, are mostly studied in the

context of treating antibiotic-resistant infections (45–47), their
potential to specifically target bacterial strains may be harnessed
to manipulate the gut microbiota to a more metabolically healthy
composition (48, 49). Additionally, an intervention targeting the
host interface of the host-microbiome gut niche may diminish
some deleterious inflammatory consequences of obesity and
diabetes (50).

FECAL MICROBIOTA TRANSPLANTATION

Replacement of the indigenous microbiome of patients afflicted
with microbiota-associated diseases with a “healthy” microbial
configuration was termed “Fecal Microbiota Transplantation”
(FMT) and is emerging as a new therapeutic method for various
microbiota-associated pathological conditions. The process
involves the collection of filtered stools collected from either a
healthy donor or from the recipient himself (autologous FMT)
at a time point prior to initiation of disease and associated
dysbiosis and its instillation into the intestinal tract of a patient
suffering from a certain medical condition. In most of the below
review, we will refer to FMT performed by microbiome transfer
across different individuals. So far, the therapeutic efficacy of
FMT has been overwhelmingly significant in Clostridium difficile
infection and recently in some studies in Ulcerative Colitis,
but is proving to be much more challenging in other complex
human conditions.

The use of feces transferred from healthy donors in treating
patients suffering from diarrhea dates back to ancient Chinese
medicine, nearly 1700 years ago (51). Modern era use of
FMT was first described by Eiseman et al. (52) as an adjunct
treatment for patients with antibiotic-associated diarrhea and
was administrated to recipients via retention enemas (52).
Despite the empiric success of the treatment, the etiology of post-
antibiotic colitis (commonly termed today “pseudomembranous
colitis”) remained unknown for nearly 20 years following
that report when it was found that toxins from C. difficile,
an anaerobic commensal bacterium, were responsible for the
pathologic process (53, 54). Following these revelations a
plethora of evidence of varying quality demonstrated the clinical
effect that FMT has on pseudomembranous colitis, culminating
with a landmark randomized clinical trial demonstrating the
significant superiority that FMT has on recurrent C. difficile
infection over the standard antibiotic treatment (55). This
seminal study featured an overall 90% success rate of FMT as
treatment of recurrent C. difficile infection and was terminated
prematurely given these dramatic interim analysis results.

Figure 1 lists other medical conditions in which the efficacy
of FMT is currently being clinically investigated. Many of
the associated studies assessing these various indications are
rather preliminary, thereby tending to be very heterogeneous
in their design (i.e., inclusion criteria, treatment protocol, etc.).
For example, FMT for Ulcerative Colitis has been tested in a
few randomized controlled trials, some of which demonstrated
clinical efficacy (56–58) while other studies failed to document
such effect (59). FMT in Crohn’s disease was evaluated
mainly in small case series and has been proven to be more
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FIGURE 1 | Ongoing clinical trials to evaluate fecal microbial transplant. Data taken from www.clinicaltrial.gov. Search words: fecal microbial transplant/FMT.

challenging, potentially because of pathophysiological differences
from Ulcerative Colitis giving rise to technical difficulties (such
as retention enema not reaching the site of active inflammation
in small intestinal Crohn’s disease). One study of 30 patients
with refractory Crohn’s disease noted promising results of 86.7%
clinical remission in the first year following treatment and 76.7%
remission rate in the second year (60), however, another study
failed to reach such results (61).

Primary sclerosing cholangitis (PSC) is an auto-inflammatory
disorder of the bile ducts and is associated with IBD,
dysbiosis, and interrupted barrier function (62). A recent small
uncontrolled clinical study in 10 PSC patients, has demonstrated
FMT to improve bacterial diversity and Alkaline phosphatase
(a disease-severity surrogate marker) levels, however, no other
clinically meaningful disease parameters were reported to
improve (63). IBS was also suggested to improve after FMT
in a recent randomized controlled study including 90 patients,
demonstrating that 65% of patients had symptomatic relief with
FMT vs. 43% in the placebo group (p= 0.049) (64). Despite these
encouraging results, a smaller scale randomized trial reported
contradicting results favoring the placebo group (65), adding
to the controversy surrounding FMT as a therapeutic measure
in IBS. Considering these scarce evidence and in spite being
microbiome-associated diseases, FMT in Crohn’s disease, PSC,
and IBS remains investigational as of now.

FMT IN CARDIOMETABOLIC
SYNDROME—PRECLINICAL RESEARCH

Investigational use of FMT from mouse or human origin,
transferred into germ-free (GF) mice which are completely

devoid of a microbiome, has greatly advanced our understanding
of the gut microbiome’s causal roles in contributing and
regulating cardiometabolic syndrome (Table 1). GF mice suffer
of multiple metabolic alterations. Upon “conventionalizing” GF
mice by transplantation of microbiota from regular wild-type
mice they gain weight and their insulin sensitivity decreases
back to normal levels (73). When GF mice are colonized with
fecal microbiota from obese mice they gain even more weight
and develop features of cardiometabolic syndrome, probably
due to increased energy harvest from the diet (66, 72, 74).
Some reports suggest that GF mice are resilient to diet-induced
obesity by means of high-fat diet feeding (75–77), but others
dispute these claims (78–83). These conflicting reports may stem
from experimental differences in dietary macronutrients, namely
fat/protein/fibers source and content (77, 84, 85).

Another pre-clinical example of the potential utilization
of FMT in metabolic disease involves essential hypertension,
which is considered a common feature of cardiometabolic
syndrome spectrum. Metagenomic and metabolomic analyses of
stools from 99 individuals with hypertension in comparison to
samples from 56 subjects with pre-hypertension and 41 healthy
individuals revealed that the microbiome of pre-hypertension
subjects was more similar to that of hypertensive patients, and
was associated with decreased microbial diversity (71). When
hypertensive patients’ feces were transferred to GF mice, the
blood pressure of recipient mice had increased in comparison to
GF recipients of healthy donor microbiome. Elevation of blood
pressure following FMT was also reported in conventional mice
recipients (86). Altogether these results suggest an important role
of the gut microbiota in hypertension development, however, the
lack of human data and mechanistic explanations for such a role
necessitates additional investigation.
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TABLE 1 | Gut microbiota modulation in cardiometabolic syndrome.

Source Subjects Main findings Strengths Limitations

ADIPOSITY AND OBESITY

Turnbaugh et al. (66) Humans Mice Obesity is associated with a distinct

microbiome with a high capacity to

harvest energy from food.

Human microbiome functional analysis Pre-clinical

No mechanism proposed

Thaiss et al. (40) Mice A post-dieting associated microbiome that

persists during successful dieting,

contributes to post-dieting weight-regain

in a flavonoid-dependent manner.

Metabolomic analysis Human microbiome

functional analysis A mechanism

is proposed

Pre-clinical

Ridaura et al. (67) Humans Mice Obesity is transferrable upon FMT from

obese humans to mice. Co-housing

recipients of obese microbiome with

recipients of lean microbiome, prevented

weight gain, and microbiome of all

co-housed mice resembled “lean”

configuration.

Weight discordant twins as controls Pre-clinical

No mechanism proposed

Tremaroli et al. (68) Humans Mice Obese humans who underwent bariatric

surgery experienced long-term

weight-loss and reduction in TMAO levels

accompanied by microbiome composition

shift. FMT to GF mice resulted in reduced

adiposity.

Human samples Microbiome

functional analysis Bile acid analysis

No different in net weight gain

No insulin sensitivity assessment

GLUCOSE METABOLISM

Reijnders et al. (69) Humans A 7 days course of either Vancomycin or

Amoxicillin did not affect host metabolism

in overweight or obese adults, despite

altered microbial composition, after 8

weeks from treatment initiation.

Randomized placebo-controlled Double

blinded−8 weeks follow-up

Short antibiotic exposure

Small sample (N = 56)

Vrieze et al. (70) Humans A 7 days course of oral Vancomycin in

metabolic syndrome patients decreased

fecal microbial diversity and fecal

secondary bile acids, increased plasma

primary bile acids, and decreased insulin

sensitivity. A 7 day course of Amoxicillin

did not affect any of these parameters.

Randomized controlled trial Short antibiotic exposure

Single blinded

Short follow-up (1 week)

Modest effect size

Significance was marginal

Small sample (N = 20)

No placebo

No microbial functional analysis

Zeevi et al. (36) Humans Post-prandial glycemic response to

different foods is individual and can be

predicted based on clinical and microbial

parameters.

Human study Large sample size (N = 900)

Validation cohort

Use of stool samples

Focused on glycemic response

Microbiome contribution to

glycemic prediction isn’t clear

HYPERTENSION

Li et al. (71) Humans Mice The gut microbiome of hypertensive

patients is distinct, and hypertension is

transferable upon FMT.

Large human cohort (N = 196)

Metabolomic analysis

No mechanism proposed

METABOLIC SYNDROME

Vijay-Kumar et al. (72) Mice TLR5 KO leads to hyperlipidemia,

hypertension, insulin resistance

accompanied by microbial composition

shift and is transferrable to WT GF mice

upon FMT.

Wide metabolic assessment

The table depicts a representative number of studies demonstrating that cardiometabolic syndrome features may be affected by gut microbial modulation. Only the main and most

relevant findings, limitations, and strengths are presented.

Likewise, GF mice fecal transfer experiments also suggest
that the gut microbiome may modulate insulin sensitivity in
various contexts (87, 88), weight gain (40), and fatty liver
(40). Interestingly, this approach suggested a causal role of
the gut microbiota in modulating the activity of Metformin,
a medication used as first-line treatment for diabetes. In

spite of this drug’s extensive clinical use, the mechanism by
which it increases insulin sensitivity remained elusive. Who
et al. carried out a randomized placebo-controlled clinical
trial of 4 months of Metformin vs. placebo in 40 treatment-
naïve diabetic patients, to show that Metformin alters the
gut microbiota (89). They further showed that the transfer of
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Metformin-altered human microbiota to GF mice improved
recipients’ insulin sensitivity. In a subsequent study Sun et al.
utilized a metagenomic and metabolomic analysis to probe the
mechanism behind microbiome-dependent metformin activity.
They revealed that newly diagnosed diabetic patients who started
treatment with metformin, experienced a decrease in Bacteroides
fragilis abundance accompanied by an increase in a specific bile
acid (glycoursodeoxycholic acid, GUDCA) (90). These changes
were associated with inhibition of Farnesoid-X receptor (FXR)
signaling, a receptor known to have a large impact on metabolic
functions such as insulin sensitivity (Figure 2) (94). Both
B.fragilis colonization and FXR knock-out abrogatedMetformin’s
beneficial effect on insulin resistance. Finally, fecal microbial
transplant from diabetic patients receiving Metformin improved
insulin sensitivity in conventionally-raised antibiotic-treated
mice compared to transplant from treatment-naïve diabetic
patients. Altogether, these studies suggest that Metformin has a
prebiotic quality (89, 90).

FMT of human microbiome configurations into GF mice
was also used to show a causal role of the gut microbiome in
mediating the beneficial effect of bariatric surgeries, which were
originally designed to treat morbid obesity, but were also found
to be extremely effective in also treating other cardiometabolic
syndrome disorders such as insulin resistance and TIIDM (95–
97). Results from studies utilizing rodent models of bariatric
surgery have suggested a causal role of the gut microbiome in
the metabolic beneficial effects of bariatric surgery (98–103). In
one study, GF mice who were treated with fecal microbiome
from previously obese patients who underwent bariatric surgery
exhibited decreased adiposity compared with mice colonized
with the microbiota of obese patients. In two additional studies,
GF mice who received FMT from previously-obese rodents who
underwent bariatric surgery also demonstrated weight loss and
improved insulin sensitivity (100, 104), however, the observed
improvements were very mild. Although these findings suggest
a prebiotic mechanism of bariatric surgeries, the role of gut
microbiota in post-bariatric surgery metabolic improvement
warrants further inquiry. More importantly, revealing the
mechanisms governing it is of special interest as it may lead to
new therapeutic targets in cardiometabolic syndrome treatment
as an alternative to a risky invasive procedure.

An optimized controlled methodology that served to
disentangle genetic and environmental impacts on the
microbiome while highlighting its impact on metabolic
health involves characterization of the microbiome of siblings
including twins, and their FMT into GF mice. Twins, sharing
similar genetics and early-life environmental exposures, have
relatively similar microbiome compositions (105, 106). One
group performed FMT with microbiota from pairs of weight-
discordant twins into separate groups of GF mice and measured
their adiposity by quantitative magnetic resonance imaging
(67). GF mice recipients of obese-twin microbiome developed
increased adiposity independently of food intake. Interestingly,
a repeat of the same experiment while co-housing recipients
of microbiota from both lean and obese donors (in which
coprophagy leads to equilibration of microbiome configuration)
resulted in the loss of adiposity in both recipient groups, which

under this equilibration setting were found to harbor a “lean”
microbiome. These results of both transmissible adiposity
phenotype of weight-discordant twins and lean-microbiome
dominance upon co-housing were later confirmed by other
independent groups (67, 107).

Preclinical data from FMT experiments into none-GF
animals also support a significant role of the gut microbiome
in cardiometabolic disease. Microbiome depletion by means
of broad-spectrum antibiotics exposure improved insulin-
resistance in conventional mice fed obesogenic diet (108).
Rats fed with fructose-reach diet developed cardiometabolic
syndrome that was improved upon FMT from rats fed normal
chow (109). Resveratrol is a substance produced by plants in
response to stress and is believed to have beneficial effects in
cardiometabolic syndrome (110, 111). FMT from Resveratrol-
treated donor mice improved insulin resistance in recipient
mice (112). A recent study by the same group recapitulated
the same phenotype with respect to insulin resistance and also
showed improvement in hypertension in recipient mice (86).
Interestingly, this effect was also evident when obese recipient
mice were given heat-killed FMT, suggesting the presence of
metabolites, non-bacterial microbes that survived heat killing,
or non-viable bacterial components may mediate the beneficial
effect. Strikingly, FMT from Resveratrol-treated mice was even
more effective than direct Resveratrol supplementation.

With these encouraging preclinical data notwithstanding,
data from preclinical models should always be treated with “a
grain of salt” since very frequently preclinical evidence fails
to be translated into advancements in human clinical care.
Limitations in that regards include species specificity in the
colonization of some microbial strains, differences in sample
preparation and storage between studies, inherent physiological
differences betweenmice and humans with regard tomicrobiome
composition and function, bowel transit time, and other
gastrointestinal physiological features.

FMT IN CARDIOMETABOLIC
SYNDROME—CLINICAL RESEARCH

Data to support the role of FMT in humans suffering from
features of cardiometabolic syndrome is limited, but preliminary
studies who mainly focused on one feature of cardiometabolic
syndrome, insulin resistance, show promising preliminary results
suggesting that FMT may favorably impact some metabolic
features in humans. A landmark study randomly assigned
18 treatment-naïve male cardiometabolic syndrome patients
to receive a single duodenal infusion of either allogeneic-
FMT from a lean healthy donor or autologous-FMT, i.e.,
their own stool as placebo equivalent (14). Six weeks after
the infusion peripheral insulin sensitivity improved only in
recipients of healthy donor microbiota. This change was also
accompanied by an increase in bacterial diversity, a measure
of “microbiome quality,” and in butyrate-producing bacterial
species who are suggested to exert a beneficial metabolic effect
on mammalian hosts [Figure 2; (113, 114)]. The strengths
of the study were the randomized double-blind design, the
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FIGURE 2 | Mechanisms of Gut Microbiota involvement in Cardiometabolic Syndrome. ANGPLT4–Angiopoietin-like 4, FIAF–Fast Induced Adipose Factor,

FXR–Farnesoid-X Receptor, GLP1–Glucagon-like Peptide 1, LPL–Lipoprotein Lipase, LPS–Lipopolysaccharide, PPARγ-Peroxisome proliferator-activated receptor γ,

PYY–Peptide YY, SCFA–Short Chain Fatty Acid, TMA–Trimethylamine, TMAO–Trimethylamine-N Oxidase, WAT–White Adipose Tissue (36, 40, 91–93).

evaluation of microbial parameters before and after treatment,
and the evaluation of these parameters in the small intestine
which is often overlooked owing to technical difficulties. The
main limitations of the study were the modest effect size of
the investigated intervention, its small samples size and short-
term follow-up, the inclusion of males only, the non-anaerobic
preparation of donor’s fecal samples which may have impaired
their quality, and the use of a relatively shallow characterization
of microbial composition without a functional metagenomic
analysis. Nonetheless, this was the first randomized study in
humans suggesting that the gut microbiome may improve
insulin sensitivity.

In a sequel trial, the same group of investigators subsequently
randomized 38 obese male patients with cardiometabolic
syndrome to receive either allogeneic-FMT from lean donors
(n = 26) or autologous-FMT [n = 12; (115)]. At 6 weeks
following FMT, they observed a significant shift in both fecal
and duodenal microbial composition, which was accompanied
by an improvement in peripheral insulin sensitivity. Importantly,
these changes were observed in only half of the treatment
group while the other half did not exhibit either microbial
shift or change in insulin sensitivity. Interestingly, at 18 weeks
following FMT the recipients’ fecal and duodenal microbial
composition returned to baseline and so did their insulin
sensitivity. This transient effect of FMT on insulin sensitivity
supports a role of the gut microbiome in human insulin
sensitivity. Further analysis revealed that response to lean-
FMT was largely dependent on recipients’ and not donors’
baseline characteristics, and more specifically the recipients’

initial microbiome diversity. Of note, the study featured a longer
follow up of four and a half months, larger sample size and
the comparison of single vs. double FMT administrations (no
difference was found between them). This study highlights
the complex issue of “colonization resistance” and raises the
issue of whether it is driven by the endogenous microbiome
(116) or the host’s immune system (117), as well as the issue
of donor selection which comprise a major hurdle in FMT-
based therapy.

A third trial assessed the impact of FMT on atherosclerosis.
Trimethylamine-N-oxide (TMAO) is a microbiome-related
metabolite that was shown to be associated with atherosclerosis
and increased cardiovascular risk (118–120). Red meat contains
high amounts of L-carnitine which is converted by members
of the gut microbiome to TMA, which after its absorption in
the intestine is converted in the liver to TMAO (Figure 2).
Interestingly, a vegan diet selects for bacteria with low capacity
to metabolize L-carnitine, resulting in vegans having a lower
amount of circulating TMAO (119). In a small randomized
double-blind pilot trial carried out by the same group of
investigators, TMAO production and vascular inflammation
were evaluated, in 20 obese male patients suffering from
cardiometabolic syndrome who received either allogeneic-
FMT (n = 10) from a vegan donor or autologous-FMT
[n = 10; (121)]. Although vegan-donor FMT induced a
shift toward vegan-like gut microbiome in some but not
all recipients, this shift was not translated into beneficial
effects on surrogate markers of arterial inflammation and
atherogenicity. Further clinical trials to evaluate the efficacy
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of FMT in improving insulin resistance and obesity are
currently underway.

CHALLENGES AND LIMITATIONS IN FMT
IMPLEMENTATION

This apparent lack of comprehensive reproducible evidence
to the efficacy of FMT in most indications, including
cardiometabolic disease, may stem from several conceptual
and methodological reasons.

Donor Selection and Preparation
Donor selection and preparation results from multiple studies
suggest that responsiveness to FMT is, to a large extent,
dependent on the donor, highlighting the importance of donor
selection (Box 1). Selecting donors is a difficult task both
because the gut microbiota is a complex entity making its
quality-control challenging, and because infectious screening
to prevent the transfer of communicable diseases from donor
to recipient is costly, limited and debatable (122–125). Inter-
individual differences in microbiome composition are vast
and the interaction between the donor’s microbial strains and
metabolites and the recipient’s endogenous microbiome and
immune system remain elusive and may prevent effective
colonization, stabilization, and function in an unpredictable
manner. Monitoring the co-existence of donor and recipient
strains following FMT recently revealed that new donor-derived
strains are less likely to colonize the recipient’s gut than strains
that already exist in the recipient, shifting the focus from “donor-
selection” to proper “donor-recipient matching” (117). In the
very early days of modern FMT, recruited donors were mostly
among family relatives of recipients, based on the hypothesis
that shared environment and genetics promote similar microbial
configuration which will facilitate colonization and thus improve
treatment efficacy (126). However, although early reports favored
family-relative donors (127, 128), more recent studies aimed
directly to compare between related and unrelated healthy donor
volunteers, showed no advantage to any group over the other
(129–133). Since diet is known to be a major environmental
influence on the gut microbiome, some investigators used a
donor selecting strategy based on their diet (121).

Box 1 | “Super donors.”

There is growing evidence that FMT therapeutic success depends on the

microbial diversity and composition of the stool donor, leading to the concept

of “super-donors”—a term suggested to describe donors whose stool is

therapeutically significantly more effective when compared to other donors

treatment outcomes (134). Currently, there is little but promising clinical

evidence for the existence of super-donors, including one randomized clinical

trial (56) investigating the efficacy of FMT for inducing clinical remission in

patients with Ulcerative Colitis, where out of nine patients treated with FMT

who achieved clinical remission, seven patients received stool from the same

donor. This finding was seen in an additional randomized control trial by

Paramsothy et al. when FMT that contained stool from one donor exhibited

a higher remission rate compared with patients treated without the samples

from the super-donor.

Sample Handling
Donated sample handling from collection to administration
is an additional process that predisposes to methodological
and outcome differences (Figure 3). After their collation
samples are generally resuspended and diluted in isotonic
fluids, filtered from solids, all the while being in an anaerobic
condition. The samples are then either transplanted or stored
frozen in a stool bank (Box 2) for later use to provide
an on-demand availability. It remains unknown whether
a dietary or antibiotic “pre-conditioning” of the donor
enhances FMT’s efficacy. Likewise, it remains unknown
whether freezing compromises sample’s quality (137). One
remarkable small human study transplanted bacterial-free FMT,
by filtering fecal samples prior to their transplantation,
to successfully treat C. difficile infection, underscoring
the importance of fecal metabolites and non-bacterial
microbiome in FMT’s efficacy, which necessitates further
exploration (138, 139).

Box 2 | Stool banking.

Since related FMT donors failed to show any benefit over unrelated donor

FMT, healthy donor FMT became more available as unrelated donor FMT

was more easily accessible and led to the establishment of stool banks

(140). These banks aid treating physicians to initiate treatment instantly when

needed, as FMT donors are recruited, evaluated, and screened for infectious

disease in advance (141). So far, such banks exit only in several countries

worldwide (142).

Mode of Administration
Additional pending obstacles to broader utilization of FMT
are the appropriate doses and route of administration [e.g.,
oral capsules, gastroduodenoscopy, colonoscopy, or enema;
(143–146)]. The gut microbiome composition changes
spatially throughout the length of the gastrointestinal
tract (116, 147). It is generally assumed that the disease-
associated portion of the gastrointestinal tract is the source
of dysbiosis, and therefore should come in contact with
donor’s fecal material. For instance, trials for FMT in
Ulcerative Colitis most often utilize colonoscopies and
enemas (148), while trials looking at FMT for cardiometabolic
syndrome, known to be affected by incretin secretion
from the proximal gastrointestinal tract utilize duodenal
infusions (14, 115, 121). However, it is possible and currently
unexplored that combining more than one administration
route is superior to a single administration route. In
addition, repeated administrations might be needed to
enable primary colonization or maintaining it in medical
conditions that are chronic in nature (56, 59, 149). Indeed,
an initial administration by colonoscopy followed by two
subsequent enemas were successful at inducing remission in
Ulcerative Colitis patients (57). These important methodological
considerations may greatly impact clinical results of FMT and
merit further consideration.
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FIGURE 3 | Challenges in fecal microbial transplant. Methodological uncertainties are present in almost every step of fecal microbial transplant. There is no single ideal

protocol for FMT, rather different indications for FMT require appropriate methodology. Bullet points represent areas of uncertainty (135, 136).

Colonization Resistance
Many of the pre-clinical FMT models fail to translate into
clinical practice (131, 150–154) while those that do mainly
involve small-scale short-term clinical trials (57, 155–158).
One potential caveat leading to FMT failure, which is often
under-studied, includes colonization resistance of the recipient’s
gut to the transplanted ecosystem, which may differ between
transplanted individuals. Such resistance has been recently
demonstrated toward exogenous probiotics (116) and may
involve intrinsic features of the indigenous microbiome, or
of the host innate and adaptive immune responses. However,
these donor-recipient-specific features may potentially enable to
predict colonization success ahead of FMT, thereby suggesting
that future personalized FMT optimization and personalized
tailoring may be feasible (116).

Adverse Effects
Although reported to be fairly safe in most clinical trials, FMT
is not free of adverse effects, and mild temporary adverse effects
are quite common. These include mild diarrhea (reported in
up to 94% of cases in some series), abdominal pain (31%),
abdominal bloating, nausea, headaches, and fatigue (159).
Although most patients’ complaints resolve within a few hours
from treatment administration, some patients suffer from
prolonged symptomatology. Some reports linked FMT with
IBD worsening (160). A case report described new-onset obesity
following FMT from an overweight donor in a previously
lean patient treated for C. difficile (161). Furthermore, one
study with a fairly long follow up examined whether patients
developed new conditions following FMT and found that 5.1% of
patients developed immunologic diseases, including peripheral
neuropathy, Sjogren’s disease, idiopathic thrombocytopenic

purpura, and rheumatoid arthritis (162). Whether these
are directly caused by transferred fecal elements or are
coincidental findings remain unknown. One patient has died due
to aspiration during sedation for FMT via colonoscopy,
and another patient died during duodenal infusion of
FMT (163).

Additionally, as stool contains thousands of bacterial strains,

viruses, fungi, parasites, and a vast array of metabolites, FMT

poses a constant risk of microbial transfer to donors that
may harmfully impact them. Pathogenic screening of donor

samples is often very limited and includes common transmissible
pathogens (e.g., Cytomegalovirus, Epstein-Barr virus, Hepatitis A,
B, C, and E, Norovirus, Rotavirus, Syphilis, Entamoeba histolytica,
Strongyloides stercoralis, Giardia lamblia, Cryptosporidium
parvum, Blastocystis hominis, Helicobacter pylori, Salmonella,
Shigella, Yersinia, E. coli O157:H7, Vancomycin-resistant
Enterococcus, methicillin-resistant Staphylococcus aureus, C.
difficile, Campylobacter, Vibrio cholera, Listeria monocytogenes),
while overlooking unknown transmissible pathogens or
commensals that may impact recipient physiology in the
short or long-term period (163). Indeed, several cases have
emerged in which FMT was suggested to contribute to
unrelated diseases in recipients (161, 164, 165). Albeit unproven,
these potentials highlight the non-specific and undefined
nature of the transferred microbial configuration. To this
end, the use of rationally-defined bacterial consortia (166–
168) and autologous microbiota transplantation (Box 3)
are holding great promise as possible future refinements of
FMT toward safer therapeutic options. Consideration and
understanding of the scope of adverse effects of FMT are greatly
needed, in assessing risk vs. benefit and ensuring a safe and
efficacious procedure.
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Box 3 | Autologous FMT.

Although often used as placebo-equivalent in allogeneic-FMT clinical trials,

autologous FMT might have a beneficial value in certain clinical situations.

Autologous-FMT involves using stool taken from patients at an earlier time

point while in a disease-free state or before a critical procedure (169, 170).

In this context, the recipient serves as his/her own donor. Treating a patient

with his own stool taken during a healthier, relatively homeostatic-state, aims

at replenishing his original “healthy” microbiota, and by that restoring some

aspects of his normal physiologic state. This strategy lacks many of the

disadvantages that allogeneic-FMT has such as donor selection, colonization

resistance, and unrelated pathogenesis. Interestingly, a single infusion of

autologous-FMT was shown to not only rapidly and effectively reconstruct

patients’ original microbiota composition to its baseline, but also to restore the

human epithelial transcriptome throughout the entirety of their gastrointestinal

tract, following antibiotic perturbations (171, 172). Although microbiome

parameters and host’s global gut gene expression profile were shown to

be swiftly reconstituted by autologous-FMT following antibiotics exposure,

clinical benefits of this approach merit further studies (171, 173). Examples of

currently ongoing clinical trials utilizing autologous-FMT include trials testing

its efficacy in treating acute graft-vs.-host disease and as prevention of C.

difficile infection following hematopoietic stem-cell transplantation which is

often associated with high risk for C. difficile infection due to exposure to

multiple courses of antibiotics.

Cost Effectiveness
In addition to the therapeutic value of FMT, several cost-
effectiveness analyses assessed the cost-effectiveness of FMT in
recurrent C. difficile infection. The first demonstrated a clear
advantage to FMT delivered by colonoscopy as compared to
other treatment strategies in patients with recurrent C. difficile
infection (174), but only included a single FMT infusion. The
second demonstrated a cost-effectiveness advantage of FMT
in the third C. difficile colitis recurrence (175). The third
compared oral vancomycin to two methods of FMT deliverance
(nasoduodenal and colonoscopy) of FMT, showing that both
methods are superior to oral antibiotics (176). Other studies
that analyzed the cost-effectiveness of FMT for the treatment of
initial C. difficile infection, failed to demonstrate that FMT has an
advantage over oral metronidazole (177, 178).

Cardiometabolic Syndrome-Specific
Limitations in FMT Utilization
On top of the above inherent limitations and challenges of FMT
in general (Figure 3), there are a few barriers to the utilization
of FMT in treating cardiometabolic syndrome. First, despite
robust preclinical evidence, human evidence to support FMT in
cardiometabolic syndrome is fairly scarce and weak. All three
clinical trials were carried out by the same group of researchers
and demonstrated modest, transient effect in a limited selection
of patients, with considerable variability in response to
treatment. Second, different professional organizations define
cardiometabolic syndrome using different sets of criteria, with
no single universal set of diagnostic criteria accepted by all
(1, 179, 180). Moreover, all definitions require patients to
only partially fulfill the list of criteria, therefore patients have
different metabolic aberrations of variable severity, resulting in a
very heterogeneous patients’ population. Last, cardiometabolic

syndrome is a chronic disorder that may necessitate multiple
fecal transfers, in avoiding a transient effect. This repeated
regimen is expected to lower its cost-effectiveness and
patients’ compliance.

PROSPECTS AND CONCLUSIONS

While FMT has emerged as an important therapy for
defined indications such as C. difficile colitis, it faces major
barriers and challenges in being adopted as an intervention
in cardiometabolic disease. With that said, a variety of
challenges may be tackled in optimizing FMT for chronic
metabolic indications. Issues such as donor selection, sample
handling, predicting recipient compatibility to a given donor
microbiome, and standardization of therapeutic FMT protocol
may result in improved outcomes of these interventions and
in higher reproducibility between studies. Moreover, a better
understanding of causative vs. “passenger” bacteria, and of the
contribution of non-bacterial components of the gut microbiome
such as the virome and fungome may enable to formulate a
defined microbial signature that would optimize efficacy while
improving the safety of the procedure and its long-term effects on
the recipients.

Utilizing autologous-FMT as means of “rejuvenating” a
person’s microbiome toward a pre-disease configuration may
offer an attractive opportunity to optimize colonization, ensure
safety, and avoid inter-individual incompatibilities. It may prove
clinically useful in treating some complications of dysbiosis-
inducing elective medical interventions such as chemotherapy
(181), hematopoietic stem-cell transplantation (171, 182),
surgery (183) or exposure to wide-spectrum antibiotics (172, 184,
185). In the context of cardiometabolic syndrome it may help to
reverse microbiome contributions toward obesity, TIIDM, and
NAFLD while resetting the host toward a healthier metabolic
state (40).

While a deeper mechanistic understanding of discrete
commensal functions and their modulatory activities on
bioactive metabolites may enable the development of more
precise microbiome-associated treatments, the advantage of
patient supplementation with an intact bacterial ecosystem with
its intricate and cross-supportive interaction networks may
enhance the clinical efficacy of such treatment over mono-
inoculation with a commensal or its metabolic product. However,
adverse effects associated with the unknown components
of the transferred ecosystem into a foreign host need to
be extensively studied and taken into consideration when
assessing the risk vs. benefit of FMT for metabolic and
other indications.
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