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NK cells are capable of an array of functions that range widely from their classic

anti-tumor and anti-viral cytotoxic effector functions, to their critical regulatory roles in

controlling inflammatory immune responses and promoting tissue growth. However,

the mechanisms that polarize NK cells to these distinct and opposing functions are

incompletely understood. NK cell functional subsets are primarily identified and studied

based on phenotype, which has served as an accessible means for profiling NK cells

and does offer information on NK cell activation state. However, inconsistencies have

emerged in using classic phenotypes to inform function, which raise the questions: Can

phenotype in fact define NK cell functional fate? What factors do profile and drive NK

cell fate? In other immune cells, cell metabolism has been shown to critically determine

subset polarization. There is a growing body of evidence that cell metabolism is integral

to NK cell effector functions. Glucose-driven glycolysis and oxidative metabolism have

been shown to drive classic NK cell anti-tumor and anti-viral effector functions. Recent

studies have uncovered a critical role for metabolism in NK cell development, education,

andmemory generation. In this review, we will draw on the evidence to date to investigate

the relationship between NK cell phenotype, metabolism, and functional fate. We explore

a paradigm in which the differential activity of metabolic pathways within NK cells produce

distinct metabolic fingerprints that comprehensively distinguish and drive the range of NK

cell functional abilities. We will discuss future areas of study that are needed to develop

and test this paradigm and suggest strategies to efficiently profile NK cells based on

metabolism. Given the emerging role of metabolism in driving NK cell fates, profiling and

modulating NK cell metabolism holds profound therapeutic potential to tune inflammatory

and regulatory NK cell responses to treat disease.
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INTRODUCTION

Natural Killer (NK) immune cells are capable of an array of functions that range widely from their
classic innate anti-tumor and anti-viral effector functions, to their regulatory roles in modulating
other immune cells and promoting tissue growth (1). These distinct functions play critical yet
paradoxical roles in a host of diseases. Cytotoxic NK cells are known to have an imperative role in
the clearance of virally-infected andmalignant cells (2); however, signals in the tumor environment
polarize NK cells to regulatory subsets that support tumor progression and suppress other cytotoxic
immune cells (3–5). While pathogenic in the context of cancer, regulatory NK cells have critical
homeostatic roles in tissue growth and immune tolerance in contexts such as placental development
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and fetal tolerance in pregnancy (6–8), and regulating fibrosis
and immune cells in the liver (9–11). Despite the critical
importance of mounting the appropriate NK cell response
in different disease contexts, the mechanisms that polarize
NK cells to these distinct and opposing functional fates are
incompletely understood.

To date, NK cell functional subsets have been primarily
identified and studied based on phenotypic markers. In
their most classic definition, human NK cells are broadly
dichotomized into CD56brightCD16− regulatory NK cells with
greater cytokine-producing capabilities, and CD56dimCD16+

anti-tumor/anti-viral NK cells with greater cytotoxic functions
(12, 13). Additional receptor families function to tune NK
cell activation and effector responses; these include activating
Natural Cytotoxicity Receptors (NKp30, NKp44, and NKp46),
activating and inhibitory CD94/NKG2 receptors that recognize
non-classical MHC, and inhibitory KIR receptors that recognize
classical MHC. The differential expression of these receptors is
used to further specify NK cell developmental stages, effector
subsets, and memory populations (14). Although phenotype
is an accessible means by which to profile NK cells and
provides information on NK cell activation state, reports are
increasingly emerging that highlight discrepancies between NK
cell phenotypic classification and their effector functions. These
discrepancies present the questions: Can phenotype in fact define
NK cell functional fate? What factors do define and drive NK
cell fate?

A cell’s ability to generate energy through metabolism enables
its functional capacities. Indeed, there is a growing body of
evidence that cell metabolism is integral to NK cell effector
functions. It has been established that glucose-driven glycolysis
and oxidative metabolism are required for classic NK cell anti-
tumor and anti-viral effector functions (15–18). Recent studies
have also emerged that point to critical roles of metabolism in
NK cell development, education, andmemory responses (19–23).
In other immune cell subsets including T cells and macrophages,
cell metabolism critically determines subset polarization. Up-
regulation of glycolytic metabolism drives the polarization of
pro-inflammatory T cells and macrophages (24–27). In contrast,
a shift to respiration-derived ATP drives the polarization and
functions of regulatory macrophages and T cells (24–26, 28).
The generation of memory in T cells is marked by an increase
in mitochondrial respiratory capacity, which enables a more
rapid and robust secondary immune response (29, 30). Even
within a terminally polarized subset, the activation of different
metabolic pathways leads to distinct functional outcomes (31).
While metabolism has been shown to regulate certain NK cell
effector functions, the role of metabolism in broadly determining
and defining different NK cell functional fates remains to be
fully characterized.

Herein, we explore the relationship between NK cell
phenotype, metabolism, and functional fate. Drawing on
the evidence to date, we investigate the utility and roles
of NK cell phenotype and metabolic activity in identifying
and determining NK cell effector fate. We propose that
differential activity in NK cell metabolic pathways, but not
phenotype, produces distinct and subset-defining fingerprints

that comprehensively distinguish and drive the range of possible
NK cell functional abilities.

NK CELL FATE BASED ON PHENOTYPE:
CAN WE JUDGE A BOOK BY ITS COVER?

For decades, NK cell phenotype has been integrally conflated
with effector function and used as the principle means of
classifying NK cells into distinct subsets. For instance, the stages
of NK cell maturation are demarcated by the expression of
specific phenotypic markers. Less mature human peripheral
blood (pb)NK cells are defined as CD56brightCD16− and express
CD94 and the NKG2A inhibitory receptor (32, 33). As NK cells
mature, they down-regulate CD56 expression and up-regulate
CD16, becoming CD56dimCD16+ (34). These lose expression of
NKG2A and acquire expression of KIR inhibitory receptors. A
final step of NK cell maturation is marked by the acquisition of
CD57. CD56dimCD57+ NK cells are considered to be the most
mature and terminally differentiated subset (32).

Contrary to this classic maturation paradigm, it is now
understood that CD56dim NK cells can in fact up-regulate CD56
expression upon cytokine activation and become CD56bright (35).
Thus, high CD56 expression does not necessarily differentiate
less mature from mature NK cells, as it can also indicate mature,
activated NK cells. Other recent studies provided evidence
that CD57+ NK cells are not terminally differentiated. It was
found that upon single cell expansion with K562 feeder cells,
some clones derived from originally CD56dimCD57+ NK cells
had lost CD57 expression. Moreover, clones from NKG2A−

populations were capable of reacquiring NKG2A expression
(36). Following autologous stem cell transplant in patients
with lymphoma or myeloma, a unique CD56bright NK cell
population was found to be the predominant NK cell subset
following leukocyte regeneration. These young CD56bright NK
cells had high expression of CD57 and KIRs and potent
degranulation (37). These studies demonstrate that unless NK
cells are capable of regressing throughmaturation, classic NK cell
development markers cannot definitively specify the stage of NK
cell maturation.

Recent studies have also introduced discrepancies in the
CD56bright/CD56dim phenotypic dichotomization of regulatory
and cytotoxic NK cells.Wagner et al. demonstrated that following
priming with IL-15, CD56bright pbNK cells not only had greater
cytokine production compared to CD56dim pbNK cells, but also
displayed greater degranulation and killing in response to tumor
cell targets. Importantly, they negated the possibility that this
was due to up-regulation of CD56 on CD56dim NK cells, as they
observed this effect even with pre-sorted CD56bright NK cells
(38). In addition, evidence has emerged to suggest that CD56bright

does not unanimously define NK cells with the strongest
cytokine-producing capabilities. The hepatic NK cell population
is highly enriched in CD56bright cells compared to pbNK cells;
yet, these have recently been shown to have reduced IFN-γ
and TNFα production in response to stimulation compared to
pbNK cells, despite the majority of pbNK cells being CD56dim

(39). Building further on this phenomenon, CD56superbright
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NK cells are considered highly immunoregulatory. Notably,
CD56superbrightCD16− uterine NK cells are instrumental in
promoting angiogenesis and tissue remodeling required for
healthy placental development in pregnancy. These regulatory
functions lend themselves as well to enhancing, rather than
inhibiting, tumor progression (7). However, in stark contrast
to their characteristic regulatory functions, highly cytotoxic
CD56superbright NK cells produced following NK cell expansion
with K562-based feeder cells were recently described. These
CD56superbright expanded NK cells eliminated large ovarian
tumors in xenograft models. What’s more, within the expanded
NK cell population, degranulation, cytotoxicity, and IFN-γ,
increased with increasing CD56 brightness (40). Together,
these studies indicate that CD56 expression cannot distinguish
regulatory from cytotoxic NK cells. Indeed, CD56bright NK cells
can be any combination of mature or less mature, and cytotoxic
or regulatory.

Since CD56bright NK cells can be either cytotoxic or regulatory,
the question that pursuantly arises is whether another phenotypic
marker may better define these functional subsets. CD16
expression is classically used in conjunction with CD56, with
CD16+ NK cells considered cytotoxic and CD16− NK cells
categorized as regulatory (13). It has been demonstrated that
upon activation, CD56dimCD16+ NK cells up-regulate CD56,
culminating in a CD56brightCD16+ cytotoxic NK cell population
(35). Thus, it could be postulated that CD16 expression
distinguishes CD56bright cytotoxic and regulatory NK cells.
However, highly cytotoxic IL-15-primed CD56bright NK cells
remained predominantly CD16− (38). Moreover, Siewiera et al.
have demonstrated regulatory capacities in CD16+ NK cells.
They reported that following culture in TGF-β/IL15/IL18, pbNK
cells acquired regulatory functions, as they produced high levels
of VEGF, and had reduced cytotoxicity and production of IFN-
γ and TNFα, but retained high expression of CD16 (41). These
studies call into question the relevance of CD16 for determining
cytotoxic and regulatory NK cell subsets.

Turning to other NK cell markers does not seem to address
the above discrepancies. Both regulatory and cytotoxic NK
cells can express high levels of activating receptors including
NKG2D, NKp30, NKp44, and NKp46, but stimulation through
these receptors instigates distinct functions in regulatory and
cytotoxic NK cells (7, 41, 42). While it has been reported
that expression of different splice variants in these receptors
partly contributes to determining downstream function (41), the
fundamental mechanisms that determine the receptor isoform
expressed remain unknown. Inhibitory receptor expression is
equally uninformative, as both regulatory and cytotoxic NK cells
can express high or low levels of NKG2A and/or KIRs (32, 38,
40, 43, 44). In all, a specific combination of NK cell phenotypic
markers that consistently distinguishes regulatory from cytotoxic
NK cells remains elusive (Figure 1).

A similar challenge arises in phenotypically defining memory
NK cells. MemoryNK cells are generated in response to a number
of stimuli, including hapten-induced contact hypersensitivity,
infections, cytokine activation, and pregnancy (6, 45–47).
Secondary responses of memory NK cells are variegated and
depend on the sensitizing stimulus. Some memory NK cells have

adaptive-like antigen-specific secondary responses, while others
have an innate-like non-antigen-specific recall response (46, 47).
What’s more, memory responses have now been identified in
both cytotoxic and regulatory NK cells (6, 45). However, what
does remain consistent and broadly defines memory subsets is
their functional capacity to have a rapid and enhanced response
upon re-stimulation.

Studies have largely used phenotypic markers to define
memory NK cells. Extensively studied memory NK cells
include those generated in response to cytomegalovirus (CMV)
infection. In humans, these have been predominantly defined
as CD56dimNKG2C+ NK cells, which preferentially expand in
response to acute infection. These NKG2C+ NK cells undergo
contraction following acute infection, but persist long-term and
specifically increase in response to human CMV (HCMV) re-
activation and produce high levels of IFN-γ (48). Certainly,
NKG2C plays a direct role in shaping HCMV adaptive NK
cell responses. NKG2C on HCMV-adaptive NK cells has been
shown to display fine peptide specificity through differential
recognition of polymorphic UL40-encoded peptides. These
UL40 polymorphisms enabled selective recognition of distinct
strains of HCMV and selective activation, proliferation, and
differentiation of NKG2C+ adaptive NK cells (49). HCMV
memory NK cells are considered to have a mature phenotype,
as they lack NKG2A, have lower levels of NKp30 and NKp46,
and have high KIR and CD57 expression (22, 48, 50). Although
NKG2C is principally used to identify HCMV-memory NK cells,
recent studies have challenged the requirement for NKG2C in
generating HCMV-memory NK cells. Memory NK cell responses
to HCMV have been reported in NKG2C-deficient humans
and upon HCMV re-activation in patients transplanted with
NKG2C-deficient cord blood (51, 52). Therefore, expression of
NKG2C is not necessary to define HCMV-memory NK cells.

In addition, memory NK cells do not unanimously express
a classically mature phenotype. Cytokine-induced memory-
like (CIML) NK cells generated by IL-12/IL-15/IL-18 pre-
activation are primarily CD56dim, but express CD25, NKG2A,
CD94, and CD69, and lack expression of KIRs and CD57
(53, 54). Memory NK cells are also not limited to the
CD56dim compartment. Frequencies of long-lived BCG-reactive
CD56bright and CD56dim NK cells were shown to be elevated
for up to 1 year after BCG re-vaccination in adults and
were predominantly KIR2DL2/DL3− and CD57−. BCG re-
vaccination induced greater IFN-γ expression in both CD56bright

and CD56dim NK cells for up to 1 year compared to NK cells
prior to BCG re-vaccination. Furthermore, perforin expression
was also enhanced upon BCG stimulation in CD56bright NK cells
1 year following BCG-revaccination, compared to CD56bright NK
cells pre-BCG-revaccination (55). Recently, memory NK cells
have been described in the context of pregnancy. Pregnancy-
trained memory uterine NK cells (PTuNKs) were reported
in the deciduae of multigravid women. PTuNK cells have
enhanced regulatory function including VEGF production,
relative to uNK cells from primigravid deciduae, which supported
enhanced vascularization and tissue growth. Given their tissue-
residency, it is perhaps not surprising that PTuNK cells have
a unique phenotype relative to other memory subsets, as they
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FIGURE 1 | Same covers, different stories: phenotype does not distinguish NK cell functional fates. To date, phenotype has been used as a principal means of

studying and classifying NK cell functional subsets. However, there is mounting evidence that demonstrates significant discrepancies in the classic phenotype

definition of NK cell subsets. For instance, while cytotoxic NK cells are classically defined as CD56dimCD16+, recent studies have demonstrated that CD56bright NK

cells in fact hold the greatest cytotoxic potential. It has now been shown that regulatory NK cells, classically defined as CD56brightCD16−, can also in fact express

CD16. Memory NK cells also present as either CD56bright or CD56dim and CD16+ or CD16−. Other phenotypic markers do not further distinguish NK cell subsets:

cytotoxic, regulatory, and memory NK cells can all express either high, low, or absent levels of Natural Cytotoxicity Receptors (NCRs), NKG2A, NKG2C, KIRs, and

CD57. Thus, not only can NK cells with the same functional fate express a range of possible phenotypes, but NK cells with opposing functions can express the same

phenotype. Indeed, the range of classic NK cell phenotypic profiles are expressed across NK cell fates and are thus insufficient to distinguish NK cell functional

subsets. Red denotes receptors classically associated with cytotoxic NK cells; green denotes receptors classically associated with regulatory NK cells; blue denotes

receptors classically associated with memory NK cells.

were predominantly CD56brightCD16−, expressed high levels of
NKG2C, but unchanged levels of NKp30 and NKp46 (6). It is
possible that certain phenotypic traits may distinguish antigen-
specific from non-specific memory NK cells. Nevertheless, there
remains no unifying phenotype to identify NK cells with memory
capacity (Figure 1). Furthermore, the mechanisms within NK
cells that ultimately drive and identify the capacity for an
enhanced secondary response are not fully elucidated.

If phenotype is unable to consistently identify NK cell subsets
and functional fate (Figures 1, 2A), what other factors might
achievably distinguish NK cell fate? Such identifying features
likely lie at the heart of mechanisms that drive NK cell function.

IF AN NK CELL CANNOT BE DEFINED BY
HOW IT LOOKS, COULD IT BE DEFINED
BY HOW IT IS FUELED?

As highly plastic innate responders, NK cell effector fate is
molded by its environment. NK cells integrate a number of
environmental cues which determine downstream function. In
the absence of activating signals, naïve NK cells remain in a
resting quiescent state. In response to inflammatory signals,
cytotoxic effector NK cell responses are marked by robust
proliferation and synthesis of proinflammatory cytokines and
cytotoxic machinery. Upon resolution of inflammation, NK
cells curb their response, returning to a quiescent state. It
is noteworthy that this shifting functional profile represents
a profound shift in energy dynamics from a low-energy
quiescent state to one with substantial energetic and biosynthetic
requirements. Further, NK cells exert distinct functions across

different tissue sites that vary greatly in nutrient types and
availability. From these factors arises a parallel between NK cell
energetics and functional fates.

Indeed, the capacity of a cell to generate energy through
metabolism has emerged as an important factor in enabling
immune cell effector functions. The burgeoning field of NK cell
metabolism has uncovered the involvement of cell metabolism
throughout different steps of NK cell fate determination,
including development, cytotoxic effector responses, and
generation of long-lived memory populations. Thus, could
distinct metabolic profiles comprehensively identify and drive
NK cell functional fates?

At Their Inception, NK Cell Development Is
Enabled by Metabolic Signals
NK cell development is an energy-intensive process as it requires
high levels of proliferation of NK cells in the bone marrow. As
NK cells progress through development, their proliferation slows
and they progress to state of quiescence in the periphery (56, 57).
In line with this, gene expression analysis has demonstrated that
metabolic pathways associated with cell growth are up-regulated
in developing NK cells whereas gene signatures associated with
metabolic quiescence, such as fatty acid catabolism and aerobic
metabolism, are predominant in resting NK cells in the periphery
(56). While studies have yet to comprehensively measure the
metabolic activity of NK cells at different stages of development,
key metabolic regulators have emerged as pivotal drivers of NK
cell maturation.

The mechanistic target of rapamycin (mTOR) is a major
energy sensor in the cell that integrates signals for nutrient
availability, growth, and activation. In response to such signals,
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mTOR up-regulates glycolytic metabolism and biosynthetic
processes (58). A seminal study by Marçais et al. revealed the
critical role for mTOR in murine NK cell development. They
found that mice with an NK cell-specific deletion of mTOR had
normal levels of developing NK cells in the bone marrow, but
only trace levels of NK cells in the periphery (56). Other studies
have further demonstrated that mTOR signaling is required
for the early stages of NK cell development (19, 20). The
protein E4BP4 plays an indispensible role in the commitment
to the NK cell lineage by promoting the transcription of Eomes
(59). Downstream of IL-15 signaling, mTOR activation by the
kinase PDK1 was found to be required for E4BP4 expression
in bone marrow NK cells. Indeed, knock-out of PDK1 in NK
cells arrested NK cell development in early stages by inhibiting
mTOR activation and reducing expression of the transferrin
receptor CD71 and the amino acid transporter CD98 (20). Tight
regulation of mTOR activity is critical for NK cell development,
as the expression of Tsc1, a repressor of mTOR, is required to
prevent deregulated proliferation and resulting exhaustion in
response to IL-15 in developing NK cells (19). Together, these
studies present mTOR-mediated metabolic signaling as a central
node in NK cell development.

The evidence to date has demonstrated the requirement
for metabolic regulators in NK cell development and that
a shifting metabolic expression profile parallels development.
These studies portray a baseline energy-intensive, biosynthetic
metabolic fingerprint for developing NK cells in the bone
marrow, which shifts to a more energy-conservative fingerprint
as NK cells progress to the periphery. Further developing and
characterizing the metabolic fingerprints of NK cells throughout
development may more broadly define the maturation stages of
NK cells, particularly for later stages in which phenotype fails
to do so and for NK cells at different tissue sites. Assessing the
baseline metabolic fingerprint in such instances holds potential
to more comprehensively define the degree of NK cell maturity.

Greater Glucose-Driven Metabolic Fitness
Identifies NK Cells With the Greatest
Cytotoxic Capacity
Although metabolically quiescent at baseline, mature cytotoxic
NK cells up-regulate the rate of glucose-driven glycolysis and
oxidative phosphorylation (OxPhos) upon stimulation (15–17,
60, 61). Increases in these metabolic pathways are accompanied
by increased expression of the nutrient receptors Glut1, CD71,
and CD98 (16, 56, 60). Activated cytotoxic NK cells primarily rely
on glucose to fuel mitochondrial ATP production, as inhibition
of glycolysis via the competitive inhibitor 2-deoxyglucose (2DG)
impaired ATP production comparably to direct inhibition of
OxPhos by the ATP synthase inhibitor oligomycin (61). The
activation-induced increase in NK cell glucose metabolism
has been shown to be regulated by mTOR, glutamine, and
transcription factors cMyc and Srebp. mTOR activity is highly
up-regulated in NK cells in response to stimulation (16, 56,
60, 62). In murine NK cells, knock-out or inhibition of mTOR
has been shown to prevent the increases in glycolysis, glycolytic
enzymes, and nutrient receptor expression upon activation (16,

56, 63). Similarly in human NK cells, the up-regulation of
glycolysis in response to IL-15 and IL-2 is dependent upon
mTOR, although independent from mTOR in response to IL-
15/IL-12 stimulation (60). cMyc is another key driver of glucose
metabolism in immune cells (64). In response to IL-2/IL-12
stimulation, glutamine uptake by NK cells was found to drive the
expression of cMyc which in turn was required for the activation-
induced increase in glycolysis and OxPhos by up-regulating
glycolytic machinery and mitochondrial biogenesis (17). Srebp
transcription factors promote the catabolism of glucose to
cytosolic citrate in NK cells by supporting the activity of the
citrate-malate shuttle which shuttles glucose-derived citrate from
the mitochondria to the cytosol. Activity of the shuttle in turn
produces mitochondrial NADH which fuels elevated OxPhos in
NK cells (15).

This up-regulation in glucose-driven glycolysis and OxPhos
is critical for NK cell cytotoxicity and IFN-γ production. Direct
inhibition of glycolysis in murine NK cells, by 2DG or by
substituting glucose with galactose in culture, inhibited IFN-
γ and granzyme B expression in response various modes of
stimulation including TLR-, cytokine-, or activation receptor-
mediated stimulation (16, 61). In line with the evidence that
glucose is the primary fuel driving OxPhos in cytotoxic NK cells,
inhibition of OxPhos by glucose-depleted media or the ATP
synthase inhibitor oligomycin also potently inhibited receptor-
mediated IFN-γ production (61). Mah et al. demonstrated
the pivotal role for NK cell glucose metabolism in the
defense against infection: inhibition of glycolysis with 2DG
impaired NK cell clearance of MCMV-infected cells in mice
and compromised control of viremia and resulting survival
of the mice (18). Arrest of NK cell glucose metabolism has
also been shown to play a critical role in obesity-induced
NK cell dysfunction. The increased presence of fatty acids in
obesity led to lipid accumulation in NK cells, resulting in
a PPAR-mediated increase in NK cell lipid metabolism and
abrogation of glycolysis and OxPhos. These metabolic changes
impaired polarization of cytotoxic machinery and resulting
anti-tumor NK cell functions (65). Consistent with its effects
on glucose metabolism, mTOR inhibition broadly impaired
cytotoxic NK cell functions, including IFN-γ, perforin, and
granzyme B expression and degranulation and cytotoxicity in
response to tumor cell targets (56, 63). Moreover, inhibition
of either cMyc expression, Srebp activity, or the citrate-malate
shuttle all critically impaired NK cell IFN-γ production and
cytotoxicity (15, 17). In human NK cells, elevated OxPhos
is essential for NK cell cytotoxicity and IFN-γ production
in response to IL-2 and IL-15/IL-12 stimulation. Heightened
glycolysis was also shown to be required for NK cell cytotoxicity
following 24 h IL-15 stimulation and for a robust IFN-γ
response to IL-15/IL-12, particularly in CD56bright NK cells
(18, 60). Keating et al. demonstrated metabolic differences
between CD56bright and CD56dim human pbNK cells (60). In
line with their greater cytotoxic functions following cytokine
priming, CD56bright pbNK cells had enhanced mTOR-mediated
expression of nutrient receptors and glucose uptake in response
to cytokine stimulation as compared to CD56dim pbNK cells.
Thus, up-regulation of glucose-driven glycolysis and OxPhos
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characterizes and enables the activation of cytotoxic NK
cell functions.

Accumulating evidence is demonstrating that the most highly
cytotoxic NK cells are endowed with greater glucose-driven
metabolic fitness. Extended pre-activation of NK cells for 3–5
days with IL-15 induces greater IFN-γ production in response to
receptor-mediated activation as compared to short-term (4–24 h)
IL-15 pre-activation (56, 61). During extended IL-15 stimulation,
NK cells undergo profound metabolic reprogramming as
compared to short-term stimulation, as they greatly increase both
their rate and overall capacity for glycolysis and OxPhos (56,
61). Following such metabolic reprogramming, NK cell IFN-γ
production was no longer susceptible to the inhibition of OxPhos
alone; rather, aggressive inhibition of both glycolysis and OxPhos
by treating NK cells with oligomycin in glucose-free media was
required to suppress IFN-γ (61). Such metabolic reprogramming
has demonstrated improved outcomes in the context of infection.
Pre-treatment of mice with the IL-15 super-agonist complex
ALT-803 for 3 days prior to MCMV infection increased basal
and maximal glycolytic and oxidative metabolism and rescued
impaired viral clearance in response to 2-DG treatment (18).
Similar metabolic reprogramming also underpins the enhanced
cytotoxic functions of licensed NK cells. The process of licensing
during NK cell development requires that inhibitory KIRs
expressed by the NK cell recognize self-MHC, the result of
which lowers the threshold required for activation and enables
greater effector potential in licensed NK cells compared to their
unlicensed counterparts (66). Schafer et al. demonstrated that
glycolytic metabolism is a critical regulator of NK cell licensing
(21). In NK cells expanded with IL-21-expressing K562 feeder
cells, highly functional licensed NK cells had greater glycolysis
and glycolytic reserve compared to less functional unlicensed
NK cells. Despite this increased conversion of glucose to lactate,
expanded licensed NK cells sustained comparable levels of
mitochondrial respiration as unlicensed NK cells, indicating a
greater net level of glucose-derived energy production. While
unlicensed NK cell cytotoxicity was highly sensitive to inhibition
of OxPhos with oligomycin, the cytotoxicity of licensed NK
cells was more resistant to metabolic inhibition. Similar to
following extended IL-15 stimulation, the cytotoxicity of licensed
NK cells was only inhibited upon aggressive abrogation of
glucose metabolism by overnight incubation in glucose-free
media, 2DG and oligomycin (21). Together, these findings
demonstrate that a greater capacity for glucose-fueled energy
production identifies NK cells with enhanced cytotoxic functions
(Figure 2B). Moreover, greater metabolic fitness in these highly
functional NK cells imparts greater flexibility in using either
glycolysis or OxPhos to fuel their cytotoxic functions, rendering
them more resistant to metabolic stressors.

A parallel emerges when considering the phenotype and
metabolism of highly cytotoxic NK cells. It is known that
upon extended cytokine stimulation including IL-15, in addition
to increasing their capacity for glucose metabolism, NK cells
also up-regulate CD56 expression and become predominantly
CD56bright (35). Indeed, evidence has separately demonstrated
that 1) CD56bright pbNK cells have a greater propensity for
glucose metabolism compared to CD56dim NK cells (67),

and 2) CD56bright pbNK cells have superior cytotoxicity and
IFN-γ production compared to CD56dim NK cells following
priming with IL-15 (38). Moreover, a recent report suggests
that highly functional licensed expanded NK cells have
greater CD56 expression than their less functional unlicensed
counterparts. Following the same feeder cell expansion with
IL-21-expressing K562 cells, expanded NK cell degranulation
and IFN-γ production increased with CD56 expression: the
most cytotoxic and thus licensed NK cells were CD56superbright

whereas the least cytotoxic were CD56dim (40). Together these
studies expose an inextricable tie between heightened cytotoxic
potential, capacity for glucose metabolism, and degree of CD56
expression. Thus, in the context of cytotoxic NK cells, both CD56
expression and heightened glucose metabolism are indicative of
subsets with the greatest functional capacity. However, highly
functional regulatory NK cells are also CD56bright, which raises
the question: can distinct metabolic programs differentiate highly
cytotoxic CD56bright NK cells from highly regulatory CD56bright

NK cells?

Glucose Metabolism—The Weight That
Tips the Balance Between Cytotoxic and
Regulatory NK Cells?
Research on NK cell metabolism has largely focused on the
metabolic pathways that generate anti-viral and anti-tumor
effector NK cells and it is clear that enhanced glucose metabolism
is critical for such functions. On the other hand, while regulatory
NK cells have critical homeostatic anti-inflammatory roles in the
body, there is a dearth of knowledge about the role of metabolism
in driving regulatory NK cell polarization and functions. In
order to more fully understand the role of metabolism in the
polarization of NK cell functions, it will be critical for future
studies to investigate the metabolic profile of regulatory NK cells.
For instance, is the metabolism of highly functional NK cells
similar irrespective of whether the downstream functions are
cytotoxic or regulatory? Or do regulatory NK cells predominantly
utilize distinct, non-glucose-driven metabolic pathways which
determine their regulatory functional fate?

The metabolism of a cell is largely dictated by its
microenvironment, including factors such as nutrient and
oxygen availability. Thus, in considering the above questions,
it is worthwhile to examine microenvironments that favor
regulatory NK cell polarization, such as the uterus, tumors, and
the liver, and the metabolic profile these may shape:

Following implantation in the uterine endometrium, the early
growth of the embryo occurs in hypoxic conditions in the uterus
(68). Hypoxia in turn stimulates the secretion of VEGF and other
angiogenic factors from uNK cells to support the demands for
increased vascularization (69, 70). In addition, TGFβ plays an
important role in inducing regulatory uNK cell functions (41, 69–
71). Many parallels are evident between regulatory uNK cells
and tumor-associated (TA-)NK cells. As a result of rapid tumor
cell proliferation, tumors have aberrant vascularization resulting
in large pockets of hypoxia (72, 73). In addition, high levels
of anti-inflammatory cytokines such as TGFβ are produced by
other tumor-associated immune cells and are known to impair
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FIGURE 2 | Distinct metabolic fingerprints, but not phenotype, underpin NK cell functional fates. (A) Though widely used to define NK cell subsets, classic NK cell

phenotypic markers are proving insufficient to comprehensively identify NK cell fates. The range of archetypal NK cell phenotypes are in fact expressed across NK

cells with different functional fates. In the absence of distinguishable phenotypes to reliably determine NK cell fate and functional potential, determining what drives

and identifies NK cell fate will be instrumental. (B–D) Studies so far have demonstrated that distinct metabolic profiles drive NK cell functions. (B) Cytotoxic NK cells

are fueled primarily by glucose. Upon activation, cytotoxic NK cells increase rates of glucose-driven glycolysis and OxPhos which in turn drive cytotoxic functions. A

greater capacity for glucose metabolism through glycolysis and OxPhos identifies NK cells with the greatest cytotoxic abilities. (C) NK cells are polarized to a

regulatory fate under hypoxic and glycolysis-limiting conditions. Thus, regulatory functions are promoted under low levels of glycolysis and OxPhos and may rely on

fuels other than glucose, such as fatty acids or amino acids. (D) Memory NK cells exhibit enhanced mitochondrial fitness. During the contraction phase of an immune

response, NK cells undergo autophagy to clear dysfunctional mitochondria, which is required for the generation of a memory NK cell pool. Memory NK cells exhibit an

increased spare respiratory capacity (SRC) and membrane potential (1ψm) and reduced levels of reactive oxygen species (ROS). While memory NK cells maintain an

enhanced capacity for glucose metabolism, they also up-regulate genes involved in lipid metabolism. Such a diversification in fuels in memory NK cells may provide

metabolic adaptability to support longevity and the greater energy demands for enhanced function upon re-activation. Taken together, a paradigm in which distinct

metabolic fingerprints comprehensively distinguish and drive the range of NK cell functional fates warrants further exploration.

NK cell anti-tumor functions (67). Similar to uterine NK cells,
TA-NK cells in a number of cancers have been shown to have
poor cytotoxicity, but secrete the angiogenic factors VEGF and
PlGF and, through amechanism involving TGFβ, acquire a uNK-
like CD56brightCD16− phenotype (4, 5, 74). The liver is another
site enriched in regulatory NK cells and anti-inflammatory
cytokines including TGFβ and IL-10 (75, 76). Liver-resident
NK cells have been shown to suppress the proliferation of
T cells and B cells through their secretion of IL-10, and to
inhibit the anti-viral activity of T cells through PD1/PDL1
engagement (77, 78). Moreover, the liver is predominantly
hypoxic, with oxygen levels dipping as low as 1.3% in the
healthy liver, which can be further exacerbated by infection and
fibrosis (79–82). Hypoxia has been shown to be an important
factor in limiting the anti-viral activity of NK cells in HCV+

patients, but does not affect their regulatory activity against liver
fibrosis (82).

Hypoxia and anti-inflammatory cytokines stand out as
hallmarks across environments that foster regulatory NK cell
functions. The critical role of hypoxia and TGFβ in directly
polarizing NK cells to a regulatory state was highlighted by a
study that demonstrated that in vitro culture of cytotoxic pbNK
cells in TGFβ+IL-15 under hypoxic conditions was sufficient
to convert pbNK cells to regulatory NK cells that secreted high
levels of VEGF and had poor cytotoxicity (69). The induction
of regulatory NK cells by hypoxia and TGFβ suggests that there
are vastly different metabolic requirements for regulatory NK
cell functions compared to the glucose-driven glycolytic and
respiratory requirements for cytotoxic functions. In contrast
to the ability of regulatory NK cells to thrive in hypoxic
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conditions and in line with the reliance of cytotoxic NK cells
on glucose-driven OxPhos, hypoxia suppresses NK cell anti-
tumor and anti-viral effector functions (82, 83). Studies have also
demonstrated that TGFβ inhibits NK cell cytotoxic functions
by suppressing glucose-driven glycolysis and OxPhos (63, 84).
It follows then, that regulatory NK cell functions induced by
TGFβ are not reliant on, and perhaps even inhibited by, elevated
glucose metabolism. Further supporting this notion is a recent
study which demonstrated that the tumor environment directly
limits glycolysis in NK cells. The lung tumor microenvironment
increased NK cell expression of fructose-1,6-bisphosphatase
(FBP1), a rate-limiting enzyme in gluconeogenesis, which
reduced glucose flux through glycolysis (85); thus, regulatory
functions such as VEGF and PlGF production by TA-NK
cells are unlikely to rely on elevated glucose metabolism.
Another recent study demonstrated that in response to cytokine
stimulation, regulatory liver-resident CD56bright NK cells had
lower expression of the glucose transporter Glut1, but higher
expression of the amino acid transporter CD98 and the CD71
transferrin receptor compared to pbNK cells (86). These findings
support a model in which regulatory NK cells are less reliant on
glucose metabolism compared to cytotoxic NK cells, and may
utilize other fuels, such as amino acids and/or fatty acids, to
support their functions (Figure 2C).

Indeed, the evidence to date indicates that dependence on
glucose-driven glycolysis and OxPhos may be a central node in
tipping the balance between cytotoxic and regulatory NK cell
fate. If this proves true, these distinct metabolic fingerprints
would consistently distinguish cytotoxic from regulatory NK
cells, addressing the drawbacks encountered in phenotypically
defining these subsets. Future studies investigating the metabolic
parameters that govern regulatory NK cell functions will be
imperative to establishing this paradigm.

Deep Breaths Bring
Longevity—Mitochondrial Respiration at
the Core of NK Cell Memory
The generation of memory NK cells requires a shift from
the energy-intensive effector phase of the immune response
to a contraction phase, characterized by a curtailment in
proliferation and effector functions, resulting in the generation
of resting long-lived memory NK cells. The ability of memory
NK cells to mount a more robust and rapid effector response
upon re-stimulation compared to naïve activated NK cells
suggests an enhanced ability to draw upon energy reserves
upon re-activation. Given the fundamental shifts between energy
expenditure and quiescence between effector, contraction, and
recall phases of an immune response, it is perhaps not surprising
that metabolic changes have been found to be both necessary and
sufficient to drive the formation and enhanced recall responses of
other memory immune cells (29, 30, 87, 88).

In NK cells, restoring mitochondrial function following
an effector response has been shown to be critical in the
generation of memory NK cells during murine CMV infection.
O’Sullivan et al. demonstrated that during the peak of the
effector phase in response to MCMV, virus-specific NK cells

developed reduced mitochondrial fitness, marked by a decrease
in mitochondrial membrane potential and increase in ROS
production. In contrast, the contraction phase was marked
by the clearance of dysfunctional mitochondria in NK cells
through autophagy, resulting in the restoration of mitochondrial
membrane potential and reduced ROS. The clearance of
dysfunctional mitochondria through autophagy was required
for the generation and survival of MCMV-memory NK cells,
as the inhibition of autophagy impaired the formation of
the memory NK cell pool, while treatment with an ROS
scavenger restored memory formation. Further, enhancement of
autophagic activity through the inhibition of mTOR or activation
of the metabolic regulator AMPK enriched the memory-NK cell
population (23).

Enhanced mitochondrial fitness has emerged as a
defining characteristic of HCMV-adaptive NK cells in
humans (Figure 2D). NK cells from HCMV-seropositive
donors had greater levels of maximal respiration, but not
glycolysis, compared to NK cells from seronegative donors.
Further, sorted CD56dimNKG2C+ HCMV-adaptive NK
cells had comparable basal levels of glycolysis and OxPhos,
but an increased capacity for these pathways, compared
to donor-matched CD56dimNKG2C− canonical NK cells.
These findings indicate that adaptive NK cells have a
greater ability to up-regulate glycolysis and OxPhos upon
activation. The enhanced respiratory capacity of adaptive
compared to canonical NK cells was supported by greater
mitochondrial membrane potential and expression of genes
involved in the electron-transport chain. The increased
mitochondrial fitness of adaptive NK cells was found to
be regulated by the chromatin-modifying protein ARID5B,
and necessary for enhanced NK cell survival and effector
function (22).

A question that remains to be addressed is which metabolic
fuel(s) is/are primarily used by adaptive NK cells. The greater
glycolytic capacity in HCMV-adaptive NK cells points to greater
glucose metabolism. However, gene expression analysis of
HCMV-adaptive NK cells also revealed an increase in genes
involved in lipid catabolism (22). Interestingly, autophagy is a
key regulator of lipid catabolism (89); thus, it is plausible that
a diversification and flexibility in fuel sources contributes to the
resilient longevity and recall effector response inHCMV-adaptive
NK cells (Figure 2D).

Although the above studies have demonstrated a metabolic
basis for the generation and function of memory NK cells,
these have been limited to assessing adaptive NK cells in
the context of CMV infection. While phenotypic variations
span different memory NK cell subsets, the memory-traits of
extended survival and enhanced recall effector responses, for
which the metabolic adaptations are necessary in the context
of CMV, are traits that remain consistent across memory NK
cells. Thus it is likely that across memory NK cell subsets,
increased mitochondrial fitness and fuel flexibility are broadly
required to support longevity and that an enhanced respiratory
capacity is necessary to derive the energy required for enhanced
function upon re-activation. An important area of future
study will be to verify that similar metabolic reprogramming
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broadly drives the formation and function of other memory-
NK cell subsets, including cytokine-induced memory-like NK
cells, BCG-memory NK cells, and pregnancy-trained uterine
NK cells.

CONCLUDING REMARKS

Research on NK cell biology is continuing to evolve and
uncover a wider scope of NK cell functional fates. However,
as knowledge on the complexity and plasticity of NK cells
has grown, so too have incongruities in the classic phenotypic
definitions of NK cell subsets. Classic NK cell phenotypes
have undoubtedly served as an accessible measure for profiling
NK cells and provide indications on NK cell activation state.
Nevertheless, in many instances phenotype in fact confounds
functional fates, as NK cells that express the same phenotype can
have divergent functions, and NK cells with similar functional
potential can express a range of phenotypic possibilities. Indeed,
identifiable phenotypes that are sufficient to profile NK cell
functional fates are lacking (Figure 2A). The shortcomings of
phenotype in informing function expose a need to further
search for what identifies NK cell fate and develop strategies
to efficiently profile NK cells by these factors. Turning to a
central hub that governs NK cell fate holds promise to address
these drawbacks.

Metabolism has emerged as an intriguing factor to distinguish
NK cell functional fates. The field of NK cell metabolism
is still in early stages, but studies so far point to distinct
metabolic profiles as drivers of NK cell functional potential
which may thus serve as reliable fingerprints to identify
functional fates (Figures 2B–D). A heightened capacity for
glucose metabolism through glycolysis and OxPhos identifies
NK cells with the greatest cytotoxic capacity. In contrast,
regulatory NK cells thrive in hypoxic and glycolysis-limiting
conditions, suggesting that regulatory functions can be effected
with minimal levels of OxPhos and glycolysis. Longevity
in its essence requires adaptability and endurance—memory
NK cells are marked by enhanced mitochondrial fitness,
achieved by the clearance of dysfunctional mitochondria,
increased mitochondrial respiratory capacity and membrane
potential, and reduced levels of damaging reactive oxygen
species. Collectively, the evidence to date suggests a paradigm
in which distinct metabolic fingerprints, but not phenotype,
comprehensively distinguish and drive the range of NK cell
functional fates (Figure 2).

Certainly, significant questions remain to fully delineate and
validate this paradigm. For instance, what metabolic fuels and
pathways are principally used by regulatory NK cells? Are low
levels of glucose metabolism sufficient to support regulatory
functions or do regulatory NK cells use an alternate fuel, such as
fatty acids, as a more efficient means of energy generation in low
oxygen conditions? Does enhancedmitochondrial fitness span all
memoryNK cell types? Are theremetabolic pathways that further
distinguish memory cytotoxic frommemory regulatory NK cells?

Are other factors, such as transcription markers and epigenetic
modifications, required in conjunction with metabolism to
determine NK cell fate? Such questions present exciting avenues
for future research and will provide a more comprehensive
understanding of the mechanisms and role of metabolism in
tuning the spectrum of NK cell functions.

While metabolism is a promising means by which to
identify NK cell fates, another critical question is whether
it is achievable to efficiently profile NK cells based on
metabolism. In this regard, similar to assessing classic phenotypic
markers, a number of metabolic measures are frequently
assessed via cytometry or microscopy, allowing for multiplex
analyses that comprehensively measure a number of metabolic
features. These include functional mitochondrial measures, such
as mitochondrial mass, structure, membrane potential, ROS
production, and oxidative stress (22, 29). Further, the relative
activity of major metabolic regulators such as mTOR and AMPK
are routinely measured by the phosphorylation status of these
and their downstream targets (16, 56, 60, 90). Although not
a direct measure of metabolic activity, the expression of cell
surface nutrient receptors such as Glut1, CD71, and CD98
have been shown to reflect certain metabolic states in NK
cells (16, 60). Finally, measuring the activities of key metabolic
enzymes through cytometry has shown to be a valid and
reliable means of assessing the metabolic configurations of
immune cells and can additionally be accomplished in situ
(91). With these applicable and efficient methods at hand, it
will be imperative that future work characterize and validate
combinations of metabolic measures that comprehensively
indicate and discern the metabolic fingerprints of NK
cell fates.

Given the critical and distinct roles that NK cells play
in a host of diseases, therapeutically modulating NK cell
function is garnering increasing attention. With distinct
metabolic fingerprints at the heart of NK cell functional
fates, profiling and modulating metabolism hold promise as
powerful therapeutic strategies to predict and control NK
cell fate.
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