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Type I interferon (IFN-I) is induced during innate immune response and is required for

initiating antiviral activity, growth inhibition, and immunomodulation. STAT1, STAT2, and

STAT3 are activated in response to IFN-I stimulation. STAT1, STAT2, and IRF9 form

ISGF3 complex which transactivates downstream IFN-stimulated genes and mediates

antiviral response. However, the role of STAT3 remains to be characterized. Here, we

review the multiple actions of STAT3 on suppressing IFN-I responses, including blocking

IFN-I signaling, downregulating the expression of ISGF3 components, and antagonizing

the transcriptional activity of ISGF3. Finally, we discuss the evolution of the suppressive

activity of STAT3 and the therapeutic potential of STAT3 inhibitors in host defense against

viral infections and IFN-I-associated diseases.
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STAT3, AN OVERLOOKED SIGNAL MEDIATOR OF IFN-I

STAT3 was originally identified as acute-phase response factor (APRF) that is activated by IL-6
and binds to the promoters of acute-phase protein genes in hepatocytes to regulate inflammatory
responses (1–4). It is now known that STAT3 is widely expressed in different cells and is activated by
an array of cytokines and growth factors to mediate various activities (5–8). Total body ablation of
STAT3 results in embryonic lethality (9, 10), whereas tissue-specific knockout of STAT3 reveals
multiple functions in immune system, including regulation of homeostasis of immune cells,
such as B-cells (11) and granulocytes (12), survival and/or proliferation of thymocytes (13), and
differentiation of plasma cells (14), Th2 (15), Treg (16), and follicular helper T (Tfh) cells (17).
Although STAT3 controls RORγt expression and Th17 development (18, 19), it, however, is not
required for generation of type 3 innate lymphoid cells (ILC3) whose master regulator is also
RORγt (20).

Like other STAT proteins, the activity of STAT3 is also regulated by acetylation, methylation
and other post-translational modification such as SUMOylation in addition to phosphorylation
(21, 22). STAT3 is activated primarily by tyrosine phosphorylation at Y705. In addition,
serine phosphorylation at S727 is required for full transactivation ability of STAT3. However,
unphosphorylated STAT3 can still form dimers through its N-terminal domain (NTD) and induce
transcription (23). Moreover, acetylation of STAT3 plays a positive role in STAT3 transcription
ability. Mutation of STAT3 at lysine residue K685, a p300-acetylation site, inhibits dimerization of
STAT3 (24, 25). In addition to K685, K49, and K87 at NTD of STAT3 can be acetylated by p300 in
response to IL-6, which affects STAT3 downstream gene expression (26). Other than acetylation,
K140 and K49 of STAT3 can be methylated and negatively and positively modulate STAT3-
mediated transcription, respectively (27, 28). Furthermore, removal of sumoylation of STAT3 at
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K451 enhances its transcriptional activity by enhancing
phosphorylation states (29). Together, these results suggest that
multiple post-translational modifications of STAT3 modulate its
activation and gene transcription.

Engagement of IFN-I to IFN receptor complex leads
to activation of STAT1, STAT2, and STAT3 by tyrosine
phosphorylation. STAT1 and STAT2 are considered to be the
primordial signal mediators of IFN-I, as genetic ablation (30–
33), hypomorphic mutation (33–35) or functional inactivation
(35–38) of either molecule severely impairs the induction of IFN-
stimulated genes (ISG) and IFN-I-mediated antiviral response in
mice and humans. Nevertheless, STAT2 has also been reported
to negatively regulate IFN-I response, either by constitutive
phosphorylation at T387 to block ISGF3 formation and its DNA
binding (39) or by IFN-I-induced phosphorylation at S287 (40)
or S734 (41) with mechanisms yet to be defined. Moreover,
STAT2 can serve as an adaptor to bridge the interaction
between USP18 and IFNAR2, which inhibits ligand binding to
the receptor, resulting in decreased receptor dimerization and
signaling (42). These results suggest an emerging role of IFN-
I signaling mediators in negative feedback regulation of IFN-
I response.

While STAT3 is activated by IFN-I stimulation in various
cell types in addition to STAT1 and STAT2 (43–47), the
actual functions and biological significance of STAT3 in IFN-I
response are less appreciated, probably due to relatively transient
activation compared to STAT1 (3, 48, 49), impaired IFN-I-
mediated, STAT3-dependent transcriptional activity (50, 51) or
a dispensable role in some IFN-I-mediated activities (52–54).
For example, IFN-I-induced growth stimulatory activity in the
absence of either STAT1 or STAT2 is independent of STAT3
(52). STAT3 is non-essential and cannot compensate the loss
of STAT1 for IFN-I- or IFN-II-induced antiviral response in
U3A, a human epithelial cell line (53). Moreover, during Tfh
differentiation, STAT3 is not involved in IFN-I-induced, STAT1-
mediated upregulation of the key transcription factor Bcl6 in
CD4T cells (54). In fact, it has also been shown that low or
no IFN-I-activated STAT3 is found in CD4T cells of patients
with relapsing remitting multiple sclerosis (55) and in normal
melanocytes or melanoma cells from patients (56). However, it
is still unclear why STAT3 is selectively activated by IFN-I in
different cell types.

However, it becomes clear that STAT3 is not just activated
by IFN-I, it also regulates IFN activity. In fact, emerging
evidence suggests that STAT3 may function to fine-tune IFN-
I response (57–60). Gain- and loss-of-function analyses suggest
that STAT3 negatively regulates IFN-α-induced ISG expression
and antiviral activity (60). STAT3KOTfh cells displays amarkedly
elevated levels of a number of ISGs in addition to T-bet
expression, resembling a Th1-like effector phenotype, which
leads to impaired germinal center (GC) formation and antibody
production during LCMV infection (61). Blockade of IFN-I
signaling rescues the defect in LCMV-infected mice, suggesting a
requirement of STAT3 for Tfh cell and a fine balance in signaling
pathways following acute viral infection. Similarly, knockdown of
STAT3 in highly STAT3 activated diffuse large B cell lymphoma
(DLBCL) cells results in increased expression of several ISGs

(58). Inhibition of STAT3 synergizes with lenalidomide, an IFN-
I inducing agent, in suppressing the growth of DLBCL by
augmenting IFN-I-induced cytotoxicity. In addition to ISGs,
STAT3 deficiency also upregulates IFN-I production, which may
contribute to enhanced antiviral response (60) and improved
chemotherapeutic activity in tumors (62). Interestingly, STAT1
deficiency in murine macrophage results in a sustained activation
of STAT3 in response to combined stimulation of TLR and IFN,
leading to repressed production of cytokines like TNF and IL-
12 (63). STAT3 depletion restores TLR-dependent inflammatory
response in the absence of STAT1, suggesting a functional cross-
regulation of STAT1 and STAT3 and an anti-inflammatory role of
STAT3 in IFN and TLR response. Together, these studies suggest
that STAT3 may function as one of the key regulatory molecules
for IFN response.

Several potential mechanisms have been described to illustrate
the direct and indirect actions of STAT3 to suppress IFN-I
response. For example, STAT3 may sequester STAT1 and prevent
it from forming functional homodimers, STAT3 can cooperate
with repressors to inhibit ISGF3 binding to DNA, and STAT3 can
directly reduce the expression of ISGF3 components. STAT3 can
also induce a suppressor to attenuate IFN-I signaling or a miRNA
to reduce the expression of ISGF3 components to indirectly block
IFN-I response. These mechanisms will be elaborated further in
the following section.

MECHANISMS OF NEGATIVE
REGULATION OF IFN-I BY STAT3

Sequestration of STAT1
Engagement of IFN-I to IFN receptor triggers the activation
of STAT1, STAT2, and STAT3 and the formation of ISGF3
heterotrimer, consisting of STAT1, STAT2, and IRF9, and
homodimers of STAT1:STAT1 or STAT3:STAT3 and heterodimer
of STAT1:STAT3. It is conceivable that increased amounts
of activated STAT3 can compete for binding with STAT1 to
prevent the formation of STAT1:STAT1 homodimer. Indeed,
overexpression of IFN-α-activated STAT3 inhibits STAT1-
dependent gene expression, thereby downregulating the
induction of proinflammatory cytokines, including CXCL9
and CXCL10 and a transcription factor IRF1, probably by
sequestering activated STAT1 into STAT1:STAT3 heterodimers
and reducing DNA binding of STAT1:STAT1 homodimers (57).
Interestingly, increased amounts of activated STAT3 does not
reduce ISGF3-driven expression of OAS and Mx2 genes. Instead,
STAT3 seems to positively regulate their expression. Conversely,
inmouse embryonic fibroblast cells lacking STAT3, IL-6mediates
IFNγ-like response with increased expression of MHC class II
and antiviral state by inducing prolonged STAT1 activation and
shifting homodimers of STAT1 or STAST3 and heterodimer
of STAT1:STAT3 toward STAT1 homodimer only (64). Under
physiological conditions, prolonged IFN-α treatment also affects
STAT3-dependent IL-6 signaling by promoting formation
of STAT1:STAT3 and STAT1:STAT1 complex, resulting in
downregulation of STAT3 targets such as Bcl-XL, Mcl-1, and
survivin and increased apoptosis (65). Likewise, IFN-α priming
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results in acquisition of pro-inflammatory function of IL-10,
leading to expression of IFN-γ-inducible, STAT1-depedent genes
(66). Therefore, IFN-I signaling can be antagonized by STAT3,
at least, in two ways: to compete for STAT1 association and for
DNA binding (Figure 1A).

Cooperation With Repressors
STAT3 is reported to interact with many nuclear proteins
to either activate or suppress the functions of STAT3 in
transactivation ability and signaling pathways (67). For example,
PDZ and LIMdomain 2 (PDLIM2), a nuclear E3 ligase, which can
interact with STAT3 and terminate its transcription by promoting
degradation of STAT3 (68). HDAC1/2 forms a complex with
SIN3 transcription regulator homolog A (Sin3a) to suppress
the transcriptional activity of STAT3:STAT3 dimers through
deacetylation (69, 70). In addition, DAXX directly interacts
with STAT3 in the nucleus, leading to suppressing STAT3-
mediated transactivation, probably through recruitment of a
DNA methyltransferase (71, 72). STAT3 activation is therefore
tightly regulated at multiple levels to prevent hyperactivation
of STAT3-mediated pathologies, including cancers, autoimmune
and inflammatory disorders (73).

However, these proteins are mainly limited to the control
of the functions of STAT3 per se. Recently, we found that
STAT3 interacts and cooperates with phospholipid scramblase 2
(PLSCR2) to negatively regulate IFN-I response (59). PLSCR2 is
also an ISG and is predominantly located to the nucleus. PLSCR2
does not affect IFN-I-dependent phosphorylation of STAT1 and
STAT2, nuclear translocation of activated STATs, or assembly
of ISGF3 complex. Instead, PLSCR2 suppresses the recruitment
of ISGF3 to ISRE of ISGs, in a STAT3-dependent manner, to
fine-tune IFN-I response (Figure 1B). PLSCR2 deficiency results
in increased ISG expression and antiviral activity. Mutations in
palmitoylationmotif of PLSCR2 impairs the interactions between
PLSCR2 and STAT3, leading to blockade of the suppressive
activity. Interestingly, expression profile analysis reveals that in
addition to ISGs, genes involved in inflammatory response are
also highly enriched in PLSCR2KO cells in response to IFN-I
stimulation (59). This is consistent with enhanced inflammatory
response upon TLR stimulation (74, 75) and in bowl diseases in
the absence of STAT3 due to incapability of inducing SOCS3, a
negative regulator of cytokine signaling (76–78) and the lack of
signaling through the receptor of an anti-inflammatory cytokine
such as IL-10 (79).

Reduction of ISGF3 Components
Constitutive STAT3 activation by autocrine production of IL-
6 and IL-10 is found in activated B cell-like (ABC) diffused
large B cell lymphoma cell lines (DLBCL) (80, 81). Genome-
wide analysis has identified ∼2,200 STAT3 direct target genes
which control different aspects of B cells, including activation,
survival, proliferation, differentiation, andmigration (58). STAT3
also regulates multiple oncogenic signaling pathways, including
NF-κB, a cell-cycle checkpoint, PI3K/AKT/mTORC1, and STAT3
itself. Interestingly, constitutive STAT3 activation also suppresses
the expression of ISGF3 components, such as IRF9, STAT1 and
STAT2, and IRF7, a transcription factor for IFN-I production,

through direct binding to the promoters of the genes (58).
Therefore, STAT3 is able to directly reduce the levels of
critical components in signaling pathway to weaken IFN-I
response (Figure 1C).

MicroRNAs (miRs) are known to regulate IFN signaling
pathways (82, 83). IFN-γ-activated STAT1 binds directly to
the promoter of miR155 and induces its expression (84).
Moreover, virus infection-induced miR155 also targets SOCS1
to feedback promote IFN-I-mediated antiviral activity (85).
Therefore, STAT1 activation positively regulates its function by
up-regulating miR-155 and down-regulating a STAT inhibitory
factor SOCS1. STAT3, on other hand, stimulates miR-221/222
expression, which in turn targets PDLIM2 to stabilize and
increase STAT3 levels (86). Knockdown of miR-221/222
results in upregulation of members of the IFN-α signaling
pathway, including STAT1, STAT2, IRF9, and several ISGs
in a human glioma cell line (87). Virus infection-induced
upregulation of miR221 in peritoneal macrophages negatively
regulates innate antiviral response against VSV (88). Therefore,
STAT3-dependent transcription of miR-221/222 may function
to downregulate STAT1 and STAT2 expression indirectly to
antagonize IFN-I response (Figure 2A).

Induction of Negative Regulators
Suppressors of cytokine signaling (SOCS) family proteins are
ISGs that feedback regulate cytokine signaling through various
ways, including blocking receptor docking by activated STATs,
inhibiting JAK kinase activity, and promoting degradation of
activated JAKs and receptors (89, 90). IFN-I induces SOCS1 and
SOCS3 expression in a STAT1- and STAT3-dependent manner,
respectively (91). In addition to feedback regulation, the signaling
pathways of STAT1 and STAT3 can cross-regulate by the induced
SOCS1 and SOCS3 reciprocally (92, 93). Constitutive expression
of SOCS3 inhibits IFN-α-induced STAT1 phosphorylation, ISG
expression and anti-proliferative activity (94). HSV-1 (95) or IAV
(96) infection-induced SOCS3 is responsible for the suppression
of signaling and production of IFN-I and impaired antiviral
response. Moreover, hepatic SOCS3 expression is also strongly
associated with non-responsiveness to IFN-I therapy in HCV
patients (97). Therefore, STAT3 can indirectly cross-regulate
STAT1-mediated signaling and ISG expression at multiple layers
of feedback control through induced SOCS3 (Figure 2B).

VIRAL STRATEGIES TO EXPLOIT STAT3

Given that STAT3 can exert negative effects on IFN-I response,
it is conceivable that viruses may exploit STAT3 to evade IFN-
I-mediated antiviral immunity to facilitate their replication.
Indeed, porcine epidemic diarrhea virus is shown to trigger
STAT3 activation via stimulated EGFR signaling to enhance virus
replication in an intestinal epithelial cell line (98). Inhibitors or
siRNA to EGFR result in augmented expression of IFN-I and ISG
genes and decreased viral yield. Similar results are also observed
using the same approaches to block STAT3 activation, suggesting
that attenuation of antiviral activity by EGFR activation requires
STAT3 signaling pathway. EGFR- and IFN-signaling crosstalk
is also known to play a role in regulating HCV replication
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FIGURE 1 | Direct regulatory mechanisms of STAT3 for IFN-I response. (A) Activated STAT3 sequesters activated STAT1 to form heterodimers and prevents STAT1

from forming functional homodimers to transactivate downstream genes. (B) STAT3 cooperates with other repressors, such as PLSCR2 to prevent ISGF3 from

binding to DNA. (C) STAT3 binds directly to the promoters of ISGF3 components, including STAT1, STAT2, and IRF9 and suppress their expression.

(99). Erlotinib, an EGFR inhibitor, and IFN-α synergize to
inhibit HCV infection in a hepatoma cell line (100). While
STAT3 silencing or inhibition suppresses HCV infection, SOCS
silencing impairs the synergistic antiviral activity of IFN-α and
erlotinib. Therefore, EGFR may impair IFN antiviral response by
suppressing SOCS3 expression, which relieves SOCS3-mediated
antagonism of STAT3, thereby promoting virus replication (100).

Although virus targeting and inhibiting STAT3 seems to
be counterintuitive because of its negative role in IFN-I
response (57–60), several viruses are reported to degrade STAT3
protein or suppress its functions. For example, the V protein
of Mumps virus (MuV) catalyzes proteasomal degradation
of STAT1 and STAT3, resulting in blockade of IFN-I, IFN-
II, and prevention of the responses to interleukin-6 and v-
Src signals and induction of apoptosis in STAT3-dependent
multiple myeloma cells and transformed murine fibroblasts
(101). Hepatitis E virus (HEV) viral ORF3 protein (pORF3)
blocks the nuclear translocation of p-STAT3, probably by
impeding endocytosis of EGFR, resulting in downregulation
of STAT3-stimulated acute-phase gene-driven reporter activity
(102). While, the absence of STAT3 during MuV infection may

reduce pro-inflammatory activity of IL-6 and IFN-γ, functional
blockade of STAT3 by HEV may result in downregulation of the
acute-phase response, a major determinant of inflammation in
the host.

In fact, several viruses also boost or attenuate STAT3 functions
to perturb immune response, alter cell architecture and tissue
organization, prevent apoptosis or trigger cellular transformation
to facilitate their replication, which have been thoroughly
reviewed elsewhere (103, 104) and will not be discussed further.

EVOLUTIONARILY CONSERVED
FEEDBACK REGULATION BY STAT

The cytokine receptor (CytoR)-JAK-STAT is a highly conserved
signaling pathway, which expands extensively in bilateria
during early vertebrate evolution and is concurrent with the
development of adaptive immune system (105, 106). In early
jawed vertebrates, the regulation of IFN has been established
through two rounds of whole-genome duplication that occurs
between invertebrates and vertebrates to provide expanded
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FIGURE 2 | Indirect regulatory mechanisms of STAT3 for IFN-I responses. (A) STAT3 induces microRNA miR-221/222 to target ISGF3 components, including STAT1,

STAT2, and IRF9 to reduce their de novo protein synthesis. (B) STAT3 induces a negative regulator, such as SOCS3 to block IFN-I signaling.

signaling molecules, such as positive regulators, JAKs, STATs and
IRFs, and negative regulators, protein inhibitor of activated STAT
(PIAS) and SOCS (107).

There is only one STAT protein in Drosophila that is
stat92E which is required for normal development of several
tissues, including embryonic segmentation, imaginal discs, blood
cells, and germ cells (108). A crustacean Pm-STAT is also
identified from giant tiger prawn (Penaeus monodon) and the
phosphorylated form of Pm-STAT is increased in lymphoid
organ of the shrimp following white spot syndrome virus (WSSV)
infection (109). RNA silencing of Lv-STAT in whiteleg shrimp
(Litopenaeus vannamei) significantly reduces the copy number
of WSSV and the mortality caused by WSSV infection (110).
Moreover, treatment of a specific inhibitor of STAT3 (S3I-201)
in hematopoietic tissue of crayfish (Cherax quadricarinatus)
also decreases WSSV titers, suggesting a proviral role of the
invertebrate STAT protein (110).

In addition to shrimp, an Ec-STAT3 identified from orange-
spotted grouper (Epinephelus coioides) is activated and induced to
translocate into nucleus following Singapore grouper iridovirus
(SGIV) infection. Inhibition of Ec-STAT3 by RNA silencing
or a small molecule inhibitor decreases SGIV replication and
induces cell cycle arrest and downregulates the expression
of prosurvival genes, such as Bcl-2, Bcl-xL, and Bax. Ec-
STAT3 is also activated in fish by red-spotted grouper nervous
necrosis virus (RGNNV). While inhibition of Ec-STAT3 does not
affect RGNNV replication, virus infection-induced vacuolation
and autophagy are significantly increased (111). Moreover, the
expression of several proinflammatory factors, including TNFα,
IL-1β, and IL-8, is also mediated by Ec-STAT3 during infection.

Therefore, these results suggest that microbial infection-
triggered STAT signaling pathway is well conserved from
invertebrates to vertebrates and that proviral and prosurvial
role of STAT3 are probably also preserved from shrimp, fish to
mammals, although the feedback regulation of IFN-I response by
STAT3 in shrimp and fish remains unclear.

IS STAT3 DRUGGABLE OR
UNDRUGGABLE?

As an oncogene and is activated in a wide range of malignant
cells, STAT3 is considered to be one of the most important
therapeutic targets, particularly, for cancers (112). However,
there are still lack of clinically available STAT3 inhibitors
due to insufficient potency and/or selectivity (113, 114).
Currently, the STAT3 inhibitors under development include
three categories: small molecule compounds, peptide-based
molecules, and double-stranded oligodeoxynucleotide decoy
(ODN-decoy) (115). Usually, small molecule compounds and
peptide-based inhibitors are designed in a way to effectively
reduce tyrosine phosphorylation and/or dimerization of STAT3
and block STAT3-mediated transcriptional activity. For example,
SH2 domain of STAT3 is the main target of STAT3 inhibitors
which are known to occupy or dock to pY-Tyr705-binding
pocket. However, it is also highly homologous to SH2 domain
of STAT1. Likewise, the DBD of STAT3 is also highly similar
to that of STAT1. Therefore, the chances of cross-reacting and
simultaneous suppression of the activity of STAT1 and STAT3 by
an inhibitor are high. Indeed, inhibitors like Stattic and S3I-201
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that target STAT3 SH2 domain are also reported to inhibit STAT1
phosphorylation and nuclear translocation (116, 117).

Since both STAT3 and STAT1 can recognize the same GAS
element of some genes, it comes as no surprise that STAT3
DBD-targeting decoy ODN also binds STAT1 and reduces
STAT1-dependent IFNγ-induced cell death (118). Therefore, the
inhibitors targeting to either SH2 or DBD domain of STAT3
are likely to suppress STAT1-mediated signaling. In addition,
targeting upstream of STAT3, such as JAKs, is also likely to exert
a board spectrum of inhibitory effect on different STAT proteins.
For example, AG490, AZD1480, and Sorafenib are also able to
potently suppress STAT1 phosphorylation in addition to STAT3
phosphorylation (119–121).

When STAT3 inhibitors are used to boost antiviral responses,
it is anticipated that STAT1-mediated antiviral responses
will also be attenuated due to cross-reactivity. Nevertheless,
several STAT3 inhibitors have been shown to enhance antiviral
response in vitro or in vivo and display some therapeutic
potential. For example, pretreatment of S3I-201 can reduce
viral replication in human cytomegalovirus (HCMV), varicella-
zoster virus, SGIV, or vesicular stomatitis virus (122–126).
Moreover, Stattic can also reduce HCMV replication (126).
Although these studies usually attribute the reduced viral
replication to the proviral role of STAT3, it is also likely that
reduced SOCS3 expression derepresses STAT1 to contribute to
antiviral responses.

Despite the concerns raised in many literatures about the
potential problems in developing STAT3 inhibitors, some of them
are already in clinical trials, including 3 inhibitors targeting
to SH2 of STAT3 and 1 inhibitor as an antisense ODN (127).
Therefore, there is no definitely answer yet as STAT3 is druggable
or not. Nevertheless, different approaches may need to be
implanted to provide viable solutions for developing drugs that
can selectively block the activity of STAT3.

CONCLUSIONS AND PERSPECTIVES

While accumulating evidence suggests that STAT3 is a negative
regulator of the IFN-I response, it only represents one
of many other regulatory mechanisms for IFN-I signaling

(128), suggesting the importance of balancing the pluripotent
activities of IFN-I. In fact, this notion becomes evident with
the emerging type I interferonopathies of autoinflammatory
diseases, which are Mendelian disorders associated with an up-
regulation of IFN-I signaling as a novel type of human inborn
errors of immunity, including Aicardi-Goutières syndromes
(AGS), familial chilblain lupus (FCL), bilateral striatal necrosis
(BSN), STING-associated vasculopathy with onset in infancy
(SAVI). . . etc. (129). Mutations in STAT3 is known to cause
many diseases in humans, including loss-of-function-induced
autosomal dominant hyper IgE syndrome (AD-HIES), gain-
of-function-induced malignancies and autoimmunity (73).
However, it remains to be determined if functional deficiency of
STAT3 will lead to type I interferonopathies.

Targeting STAT3 as a therapeutic approach for cancers
and other diseases must take the multifaceted functions of
STAT3 into consideration. As shown in this review that STAT3
not just possesses proviral and prosurvival activities, it also
exhibits seemingly paradoxical roles in inflammation (130) and
immune modulation (5, 131, 132). Moreover, due to sequence
conservation between STAT1 and STAT3, developing highly
selective drugs for STAT3 without affecting STAT1 is desirable,
which is also the challenge for precision medicine to deal with
these diseases.
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