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Despite the availability of yearly vaccinations, influenza continues to cause seasonal,

and pandemic rises in illness and death. An error prone replication mechanism results

in antigenic drift and viral escape from immune pressure, and recombination results

in antigenic shift that can rapidly move through populations that lack immunity to

newly emergent strains. The development of a “universal” vaccine is a high priority

and many strategies have been proposed, but our current understanding of influenza

immunity is incomplete making the development of better influenza vaccines challenging.

Influenza immunity has traditionally been measured by neutralization of virions and

hemagglutination inhibition, but in recent years there has been a growing appreciation of

other responses that can contribute to protection such as antibody-dependent cellular

cytotoxicity (ADCC) that can kill influenza-infected cells. ADCC has been shown to

provide cross-strain protection and to assist in viral clearance, making it an attractive

target for “universal” vaccine designs. Here we provide a brief overview of the current

state of influenza research that leverages “the other end of the antibody.”

Keywords: ADCC—antibody dependent cellular cytotoxicity, influenza, antibodies, animalmodels, vaccine targets,
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INTRODUCTION

Influenza causes 3–5 million cases of severe illness and 290,000–650,000 deaths annually (1).
Influenza is caused by orthomyxoviruses that have a segmented, negative-strand RNA genome that
encodes its own RNA-dependent RNA polymerase that results in ∼1 error per replicated genome
(2–4). Accumulating errors cause small changes over time that allow viral escape (5, 6), a process
called antigenic drift. Reassorting of the segmented influenza genome can produce novel influenza
strains to which there is no preexisting immunity in the human population, a process called
antigenic shift, and it is thought this mechanism produced the 1918, 1957, and 1968 pandemics (7).

The primary means of combatting both seasonal and pandemic influenza are quarantine and
isolation (8), strict hygiene (9), and vaccination (10–12). Influenza vaccines were developed starting
in the 1940s (13–16), and seasonal vaccines now include multiple antigens either as inactivated or
live-attenuated products (17–20). Selection of representative influenza strains requires the ongoing
worldwide analysis of circulating influenza (21), leading to potential mismatch with low vaccine
efficacy (22). Public health leaders have called for the development of “universal” influenza vaccines
(23), but at this time it is not clear what kinds of immunity such a vaccine should elicit.

Vaccines can prevent symptomatic disease, reduce disease duration, and reduce viral shedding,
and infectivity to other persons. To accomplish these, a vaccine can elicit responses that inhibit
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influenza virions and/or enhance the clearance of influenza-
infected cells. The influenza virion has three virally-encoded
surface antigens (Figure 1A): a trimeric glycoprotein
hemagglutinin (HA) that binds to sialic acid on cell surface
receptors promoting virion endocytosis followed by fusion of
viral and host cell membranes, a tetrameric neuraminidase (NA)
that cleaves sialic acid to release virions from infected cells,
and enhance passage through respiratory mucins, and a proton
channel (M2 matrix) that helps the release of the viral genome
after acidification in endocytic vacuoles. These proteins are
present in most split-virus vaccine products (24), but the exact
contribution of each of these, or of other influenza proteins that
are not surface expressed, to vaccine efficacy is unclear.

ADCC ACTIVITY AGAINST INFLUENZA

Antibody specificity is mediated by binding of Fab (fragment
antigen binding) domains to their antigenic target, while
the other end of the antibody is a constant region, the Fc
(fragment crystallizable) domain, that provides a link between
antibody recognition of infected cells and effector cells. NK cells,
monocytes/macrophages, and neutrophils all have Fc-receptors
(FcRs) on their surface, and the combination of both activating
and inhibitory signals direct the immune response (25). In
humans, NK cells are generally thought of as the primary effector
for ADCC, but ADCC of influenza-infected cells has been
demonstrated using neutrophils, monocytes, lymphocytes, and
cord blood cells (26–28).

An increasing body of literature has demonstrated the possible
protective role of non-neutralizing antibodies for pathogens
as diverse as HIV-1 (29, 30), herpes simplex virus (31–33),
Ebola (34, 35), and influenza (36–38). Influenza-infected cells
can be recognized by antibodies that bind to proteins that
play important roles within the viral life cycle. As noted
above, HA initiates the viral life cycle by binding sialic acid
and mediating viral entry into cells via fusion after receptor-
mediated endocytosis (2). During this process, M2 matrix
channels promote pH equilibration, a critical step in the release
of the viral genome from the endosome (39). After influenza
genome replication and protein synthesis, viral components are
transferred to the plasma membrane where viral budding occurs.
NA removes sialic acid from glycoproteins allowing the release
of newly assembled virions from the surface of infected cells
and preventing aggregation (2). HA has been the focus of most
vaccine designs because HA evolves more rapidly than other
antigens (40), but more conserved antigens like NA, M2, and
nucleoprotein (NP) have also been considered attractive targets
for vaccine designs. Antibodies against these other antigens do
not appear to directly prevent infection but can target infected
cells (19), and antibodies against all of these proteins have
mediated killing of infected cells in vitro (Figure 1B).

Antibody-dependent cellular cytotoxicity (ADCC) against
influenza was described by Greenberg et al. (26) and ADCC
activity can be mediated by multiple cell types (27, 28, 41) and
arises after infection or vaccination (41–43). Most early work
suggested that ADCC was primarily directed against HA (44),

although the contribution of other antigens to ADCC could
not be ruled out (43). Study of influenza-specific monoclonal
antibodies (mAbs) have shown that antibodies directed against
the globular head often lack breadth while those directed against
the more conserved HA stem can recognize multiple strains and
subtypes of HA (4). Both specificities of HA antibodies have
mediated ADCC (Figure 1B) but antibodies with neutralization
and hemagglutination inhibition (HAI) activity tend to be
directed against the HA head domain (Figure 1A).

ADCC-mediating antibodies also target other proteins on the
virus surface (Figure 1B). Murine mAbs against influenza B NA
mediated ADCC and provided protection in mouse challenge
(45), but whether this activity contributes significantly to human
protection is not known. NA antibody titers have correlated
with protection against influenza infection in humans (46–50),
but NA responses have not been studied at the same level of
molecular detail as HA responses (51). NA antibodies are thought
to act by decorating infected cells thus making them targets for
complement fixation and ADCC, and by inhibiting enzymatic
activity and preventing virions from escaping respiratory mucins
(19). NA is present in most vaccines derived from influenza
virions (24), but few vaccine candidates focus onNA antigens and
their relative contribution to protection is not well-quantified.
There is growing interest in NA as a component vaccine-
mediated protection, and the recent formation of the NAction!
working group (51) is focused on filling key knowledge gaps.

M2 is a highly conserved antigen necessary for the virus life
cycle (39) and a number of studies showed antibodies to M2
mediated ADCC and protected in mouse studies (36, 52, 53).
M2 is present at low copy number on virions and may be
occluded by the larger HA and NA proteins (19) (Figure 1A),
and while vaccine candidates based on M2 have advanced to
human clinical trials (54, 55), it is not yet known whether these
approaches will provide broad cross-protection when tested in
human efficacy trials.

Curiously, a protein that might not be expected on the
surface of either virions or virus-infected cells has been shown
to mediate ADCC in vitro. Influenza nucleoprotein (NP) is
involved in replication and packaging of virus RNA segments
into virions (56), but studies have shown that NP is surface
expressed on infected cells (57, 58). Humans given seasonal
vaccine demonstrated H7N9 cross-reactive ADCC activity that
correlated with binding to NP (59). Antibodies against both
NP and the internal RNA-binding and structural matrix 1 (M1)
protein did not mediate ADCC against target cells expressing
those specific antigens, but immune complexes of those proteins
primed natural killer (NK) cells to secrete cytokines (60)
(Figure 1C); the authors suggested such activity could contribute
to an anti-viral environment. Whether these kinds of activities
play an important role in cross-protection against human
infection is not yet known.

ADCC IN MOUSE MODELS

The receptors and cell types important for human immune
response may not have the same effect or use the same pathways
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FIGURE 1 | Targets for protective influenza responses. (A) Influenza virion showing the tight packing of viral hemagglutinin (HA), neuraminidase (NA), and matrix 2 (M2)

ion channels on the surface. Inside the virion are the 8 genomic segments, nucleoprotein (NP), and the structural matrix 1 (M1) protein. (B) The surface of an infected

cell shows the same antigens spread out on the surface, providing access for ADCC-mediating antibodies directed at the HA head and stem, along with greater

access to the M2 ion channel. Antibodies against NP have also shown ADCC activity. (C) Immune complexes of NP and M1 have been shown to prime NK cells to

secrete cytokines.

in animal models. In fact, there are numerous differences among
antibody isotypes and subclasses (61) in animal models typically
used for immune studies, as well as in FcR sequences and cellular
distributions (62), and such differences may result in species-
specific mechanisms of ADCC activity against influenza.

With that caveat, mouse models have provided suggestive
evidence for the kinds of immunity that might be protective in
humans. DiLillo et al. administered human mAbs to transgenic
mice that expressed human FcRs, and demonstrated that for
both HA stem-directed antibodies (37) and HA head-directed
antibodies (63) that Fc-FcR interactions were required for
protection against lethal challenge. Interestingly, transgenic mice
receiving neutralizing anti-HA and anti-NA antibodies were only
protected against challenge if they were matched for Fc-Fc?R
binding while strain specific anti-HA and anti-NA antibodies
protected regardless of Fc-FcR matching (63). Similar studies of
antibodies against M2 have also shown Fc-FcR dependence, with

IgG1 M2-directed antibodies requiring matching FcRs to protect
against lethal challenge (52, 53).

Wild-type mice have also demonstrated ADCC-mediating
antibody protection. For example, murine antibodies generated
against H7N9 influenza were protective, but ADCC-mediating
antibodies required efficient Fc-FcR interaction to protect (64).
Vaccination against H5N1 that elicited ADCC activity protected
against lethal H5N8 challenge in mice (65), and protection
against H7 influenza challenge also correlated with ADCC
activity (66). Passive transfer of HA stem-specific human sera
demonstrated protection against lethal challenge in a manner
highly correlated with ADCC activity (67). Protection is not
limited to HA-directed antibodies, as antibodies against influenza
B NA also mediate ADCC and protect against lethal virus
challenge (45).

However, not all mouse studies have suggested a protective
effect of ADCC. Evaluation of candidate vaccines that targeted
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specific epitopes on the HA head domain were capable of
eliciting potent ADCC responses in vitro, but mice given these
immunogens were more sensitive to lethal challenge (68, 69),
and examination of lung tissue suggested damage caused by the
immune response. Whether this kind of damage could occur in
humans is not known.

OTHER NON-PRIMATE MODELS

Swine are susceptible to influenza and they are thought to be
a key species in development of new strains by antigenic shift
(70). Because of the major economic impact of swine influenza
disease, vaccination is common and new vaccine candidates are
tested in swine (71). Experimental infection models have been
used to test swine for protection against challenge following
vaccination (72) and as a model of enhanced influenza disease
(73). Studies in this latter model have suggested that a lack of
neutralizing activity against the challenge strain combined with
ADCC-mediating antibodies can produce enhanced disease in
swine (73, 74), suggesting that caution may be appropriate in the
development of vaccines that do not elicit traditional correlates
of influenza protection (75). Furthermore, differences between
swine and human FcRs make direct measures of ADCC in
swine challenging, and have confounded passive infusion studies
of human antibodies (76). The swine model is important for
improving our understanding of influenza pathogenesis, but it
remains to be seen whether success or failure in the swine model
will directly translate to human trials.

The ferret model may also provide insights into influenza
immunity, although direct measures of ADCC activity in ferrets
is also challenging. For example, immunization of ferrets to
elicit HA stem-directed antibodies showed that ADCC in a
reporter assay correlated with protection, though the assay
used human FcRs due to the lack of ferret-specific reagents
(77). Passive transfer of immune sera directed against the
HA stem (78), infusion of ADCC-mediating mAbs (79), and
immunization to induce ADCC-mediating antibodies (65) have
all protected ferrets against heterologous influenza challenges.
Unfortunately, the lack of ferret-specific reagents limits the depth
of investigation possible at this time, and as with swine, it is not
clear whether these studies will translate directly to human trials.

NON-HUMAN PRIMATE STUDIES

Non-human primate models have not traditionally been used
for influenza research due to high cost and the low level of
symptoms following experimental infection (80), but recently
a number of studies have evaluated the protective capacity of
ADCC in non-human primates. For example, protection was
observed in rhesus macaques infected with a pre-pandemic
H1N1 A/Kawasaki/173/2001 who were subsequently challenged
with H1N1 A/California/04/2009; in this study ADCC activity
correlated with control of the second H1N1 infection (81).
Protection was also observed in a study of H5 immunization of
rhesus macaques challenged with pandemic H1N1, and ADCC
activity correlated with reduced viral shedding after infection

(82). In cynomolgus macaques, vaccines that elicit ADCC-
mediating antibodies have been shown to decrease shedding
of influenza (83), and passive infusion of a human ADCC-
mediating mAb protected against infection (84). However, given
the differences between human and non-human primate Fc-FcR
biology (85), it is not clear if non-human primate studies will be
predictive of human study outcomes.

HUMAN STUDIES

Human studies have focused on examining people after natural
infection, vaccination, and/or the isolation of humanmonoclonal
antibodies. Natural infection studies have shown that influenza
can imprint the immune system in a manner that provides
protection against heterologous influenza exposure. For example,
healthy adults and children in the US were found to have
ADCC-mediating antibodies against H5N1 and H7N9 strains
(86), despite the fact that those strains have not circulated
in the US. Intravenous immune globulin, a product derived
from plasma donation, contained ADCC-mediating antibodies
that cross-reacted with multiple influenza strains; e.g., immune
globulin collected from donors prior to the emergence of the 2009
pandemic strain was active against the newly emergent strain
(87). During the last influenza pandemic a number of studies
suggested that older adults were less likely to be infected by
the newly emergent strain, and older persons were more likely
to have ADCC-mediating antibodies against the 2009 H1N1
pandemic strain (88), suggesting that these responses may have
contributed to the relative protection observed. However, such
antibodies were not well correlated with protection in children
(89, 90), indicating that in vitro activity alone may not provide an
accurate correlate of efficacy.

ADCC-mediating antibodies that arise during severe infection
may also correlate with outcomes. A study of seasonal and H7N9
human infections demonstrated that persons who did not survive
infection were more likely to have low ADCC activity (91). It is
not known whether ADCC-mediating antibodies being present
prior to infection would have been protective.

Vaccine studies have examined the ability of different
constructs to elicit cross-reactive ADCC-mediating antibodies.
For example, seasonal vaccination of older adults indicated
that they had strong boosting of ADCC activity, including
activity against H5 and H7 strains (92). Similarly, a study of H7
vaccination found ADCC activity against many group 2 influenza
strains (93), and H5 vaccination induced ADCC responses to
multiple strains (94).

Testing of many of human-derived antibodies showed
protection in mouse studies as described above and have helped
define vaccine design targets. For example, antibodies against
the vestigial esterase domain of H3 HA (95) or influenza B (96)
mediate ADCC and block other viral activities, but whether such
antibodies can be easily elicited by vaccination and protect is not
known. Others have examined why HA head-directed antibodies
are less efficient at mediating ADCC (97) or why antibodies
that bind at or near the sialic acid receptor binding site of
HA lack ADCC activity (98, 99). Data suggested that ADCC
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activity against influenza-infected cells requires that sialic acid
on NK cells must also bind HA. Several studies have identified
possible vaccine targets on HA, including a pH-sensitive epitope
on H7 HA (100), receptor binding site antibodies for influenza
B (79), and the influenza B HA stem (101). Furthermore,
recently isolated human antibodies against epitopes in the HA
trimer interface provided protection in an Fc-dependent manner
(38, 102), and such antibodies were elicited in animal models
by vaccination (103). These studies suggest that probing the
human immune system could identify additional targets for
vaccine design.

Most human studies measure responses to influenza
infection or vaccination, and some correlate those responses
with epidemiologic data, but far fewer perform experimental
infectious challenge to correlate a response with protection. In
2016, Jegaskanda et al. reported that high levels of pre-existing
ADCC-mediating antibodies protected against experimental
infection (104), suggesting that if ADCC activity is present prior
to infection it can protect. However, it is not clear whether
ADCC activity alone is protective, and as of this writing, there
do not appear to be any reports of human challenge studies
investigating the protective capacity of passively administered
ADCC-mediating influenza antibodies. Essentially all humans
over the age of 6 years have evidence of prior influenza
infection (105), meaning that vaccination or passive infusion
studies of ADCC-based protection in humans have to be
interpreted in the light of prior immunity. Despite this, the

studies described in this review and other work are leading
to new vaccine designs, and it is hoped that one or more of
these new designs will provide long-lasting protection to all
people worldwide.

CONCLUSIONS

Influenza remains an important cause of human disease that
often resists effective control by current vaccination strategies
and there is a current push for the development of “universal
vaccine” candidates. Antibody binding to Fc receptors with
effector cell activation has been shown to protect in numerous
animal models and harnessing this activity could be an
important component of universal vaccine designs. ADCC and
other activities based on the “other end of the antibody,”
in combination with traditional activities like neutralization,
might be harnessed to contribute to protection from this ever-
changing pathogen.
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