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Glucocorticoids (GCs) are steroid hormones widely used for the treatment of

inflammation, autoimmune diseases, and cancer. To exert their broad physiological and

therapeutic effects, GCs bind to the GC receptor (GR) which belongs to the nuclear

receptor superfamily of transcription factors. Despite their success, GCs are hindered

by the occurrence of side effects and glucocorticoid resistance (GCR). Increased

knowledge on GC and GR biology together with a better understanding of the molecular

mechanisms underlying the GC side effects and GCR are necessary for improved GC

therapy development. We here provide a general overview on the current insights in

GC biology with a focus on GC synthesis, regulation and physiology, role in inflammation

inhibition, and on GR function and plasticity. Furthermore, novel and selective therapeutic

strategies are proposed based on recently recognized distinct molecular mechanisms of

the GR. We will explain the SEDIGRAM concept, which was launched based on our

research results.
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DISCOVERY OF GLUCOCORTICOIDS AND THE
GLUCOCORTICOID RECEPTOR

The first steps leading to the discovery of glucocorticoids (GCs) took place in the 19th century when
the physician Thomas Addison described that patients suffering from (chronic) fatigue, muscular
degeneration, weight loss, and a strange darkening of the skin could obtain beneficial effects from
adrenal extracts (1). This disease is now known as Addison’s disease, which is a form of adrenal
insufficiency. In 1946, Edward Calvin Kendall isolated four steroidal compounds from adrenal
extracts, which he named compounds A, B, E, and F (2). Compound E, would become known as
cortisol and was synthesized later that year by Sarett (3). The therapeutic potential was discovered
by rheumatologist Philip Hench in a patient suffering from rheumatoid arthritis (4). Hench and
Kendall were awarded the Nobel prize for Medicine and Physiology in 1950 together with Tadeus
Reichstein who succeeded in isolating several steroid hormones from the adrenals, eventually
leading to the discovery of cortisol. Since the discovery of their anti-inflammatory potential GCs
were hailed as wonder drugs to treat various inflammatory diseases and became part of the group
of most used and cost-effective anti-inflammatory drugs.

GCs bind the GC receptor (GR), a member of the nuclear receptor (NR) family of intracellular
receptors, which also contains the estrogen receptor (ER), progesterone receptor (PR), androgen
receptor (AR), and mineralocorticoid receptor (MR) as well as several orphan receptors (with no
known ligand) (5, 6). In 1966, the GR was identified as the principal receptor responsible for the
physiological and pharmacological effects of GCs (7). It would take almost two more decades for
the human GR-coding gene, NR3C1 to be cloned (8, 9). The GR is very closely related to the MR
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and these receptors exhibit some cross-reactivity, more
specifically the MR is activated both by its own ligands,
mineralocorticoids (MCs) and by GCs, but GR is activated only
by GCs (10). NRs are involved in many aspects of mammalian
biology, including various metabolic functions, cardiac function,
reproduction and (embryonic) development, and the immune
system (11).

GLUCOCORTICOID SYNTHESIS,
REGULATION AND BIOLOGICAL
AVAILABILITY

GCs are steroid hormones that are essential for the daily
functioning of mammals. They are involved in several
physiological processes, namely in metabolism (12), water and
electrolyte balance (13), the immune response (14, 15), growth
(16), cardiovascular function (17, 18), mood and cognitive
functions (19–21), reproduction (22), and development (23).
GCs are mainly synthesized in the cortex of the adrenal gland
together with aldosterone (a MC) and dehydro-epi-androsterone
(DHEA). The latter is the precursor of testosterone and estrogen.
Aldosterone, GCs, and DHEA are synthesized by different
steroidogenic enzymes in the mitochondria of, respectively, the
zona glomerulosa, the zona fasciculate, and the zona reticularis
of the adrenal cortex. They are however all synthesized from
the same precursor, namely cholesterol (24). Extra-adrenal GC
production in the thymus, vasculature, brain, and epithelial
barriers has also been observed (25–30). These locally produced
GCs are thought to predominantly exert local effects and
contribute only minimally to the systemically circulating pool
of GCs allowing a high spatial specificity of steroid actions,
which are also independent of the circadian and stress induced
regulation of endogenous GCs.

Adrenal GC production is regulated by the hypothalamic-
pituitary-adrenal (HPA) axis (Figure 1). Under basal, unstressed
conditions GCs are released from the adrenal glands in the
bloodstream in a circadian and ultradian rhythm characterized
by peak levels during the active phase which is in the
morning in humans and in the beginning of nighttime in
nocturnal animals such as mice. The activity of the HPA
axis is further increased upon physiological (e.g., activated
immune response) and emotional stress. When the HPA-
axis is stimulated, corticotropin-releasing hormone (CRH), and
arginine vasopressin (AVP) are released from the hypothalamic
paraventricular nucleus (PVN). Subsequently, CRH and AVP
bind their receptor CRH-R1 and V1B in the anterior pituitary
inducing the release of adrenocorticotrophic hormone (ACTH)
in the circulation. ACTH will in turn stimulate the adrenal
gland to synthetize and secrete GC hormones (cortisol) in the
circulation (31).

The HPA axis is subject to a negative feedback inhibition
by GCs, both in a genomic and a non-genomic way. The
genomic feedback regulation is mediated through binding of
GCs to the GR both at the level of the PVN and the pituitary
gland, thereby repressing the CRH, CRH-R1, and the POMC
gene (Figure 1). POMC codes for the proopiomelanocortin

prohormone which is the precursor of ACTH. CRH, CRH-R1,
and POMC gene expression are repressed by the binding of GR
to negative glucocorticoid responsive elements (nGREs) (32–
34). Next to this, GR is also able to physically interact with the
Nur77 protein which also binds in the POMC promoter, thereby
preventing it from performing its transcription function (35,
36). Non-genomically, GCs regulate the HPA axis for example
via the release of endocannabinoid from CRH neurons thereby
suppressing the release of glutamate from presynaptic excitatory
synapses (37), or via γ-aminobutyric acid (GABA) release at the
inhibitory synapses of CRH neurons (38).

Once secreted in the bloodstream GCs are bound to and
transported by plasma proteins which keep the GCs inactive.
Corticosteroid-binding globulin (CBG) is the main GC-binding
protein in the plasma, with about 80–90% of the GCs bound to
it (39). Several proteases target CBG, such as neutrophil elastase
at sites of infection (40), causing the release of bound GCs.
Approximately 10% of the GCs are bound to albumin that binds
GCs with less affinity than CBG (39).

Due to their lipophilic nature, free GCs diffuse through the
cell membrane to exert their function. However, the actual
bioavailability of GCs in the cytoplasm is regulated by the balance
between active and inactive forms of GCs. Two enzymes are
responsible for the conversion between inactive cortisone (or 11-
dehydrocorticosterone in mice) on the one hand and the active
cortisol (or corticosterone, in mice) on the other hand. While
11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) catalyzes the
conversion of cortisone to cortisol, 11β-HSD2 carries out the
opposite reaction (Figure 2). 11β-HSD2 is highly expressed in
tissues with high MR expression, such as the kidneys, to prevent
GC-induced MR activation which is known to cause salt and
water dyshomeostasis (41, 42). Biologically active GCs will bind
their receptor in the cytoplasm which exerts their physiological
effects. This mechanism also confers a tight spatial regulation of
GC actions, as the levels of these enzymes may be tissue or even
cell specifically regulated and will directly determine the balance
between the inactive and active form of GCs and thus the strength
of the effect.

Under physiological conditions the role of endogenous GCs is
not simply anti-inflammatory or immunosuppressive and shows
more immunomodulation. It has been shown that GCs can also
work pro-inflammatory (14). This occurs mainly in conditions
of acute stress and is related to the concentration of GCs present
(14, 43). Such pro-inflammatory actions were shown to include:
elevation of pro-inflammatory cytokine levels (IL-1β) (44) or an
exacerbation of the peripheral immune response in delayed type
hypersensitivity (45).

Next to the endogenous GCs, various synthetic GCs (e.g.,
Prednisolone, Methylprednisolone, Fluticasone, Budesonide, and
Dexamethasone) have been developed by the pharmaceutical
industry that serve as treatments for various diseases. All
these synthetic GCs were developed based on the structure
of endogenous GCs (cortisol/hydrocortisone) (46). Experiments
with structural modifications, mainly replacing side chains,
resulted in synthetic GCs with optimized characteristics for
medical use (pharmacokinetics, bioavailability, cross-reactivity
with the MR). The most obvious differences between synthetic

Frontiers in Immunology | www.frontiersin.org 2 July 2019 | Volume 10 | Article 1545

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Timmermans et al. A General Introduction to Glucocorticoid Biology

FIGURE 1 | Hypothalamic-pituitary-adrenal axis. The hypothalamic-pituitary-adrenal (HPA) axis activity is controlled by the circadian rhythm and can be induced by

physiological and emotional stress. When activated, corticotrophin-releasing hormone (CRH), and arginine vasopressin (AVP) are released from the hypothalamic

paraventricular nucleus (PVN). This induces the release of adrenocorticotrophic hormone (ACTH) from the pituitary gland into the systemic circulation. ACTH will

activate cortisol synthesis in the cortex of the adrenal gland. Cortisol negatively regulates the HPA-axis activity, e.g., by repressing the transcription of CRH and POMC

by binding to negative glucocorticoid responsive elements (nGRE) or by binding to the transcription factor Nur77 involved in the POMC expression.

FIGURE 2 | Conversion of inactive GCs to active GCs. Inactive Cortisone (human) and 11-dehydrocorticosterone (mouse) are activated to active cortisol and

corticosterone by 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1), and inactivated again by 11β-HSD2.

and endogenous GCs are (i) potency, as the synthetic variants
are usually much better activators of the receptor than cortisol
(4x−80x more) (47). (ii) Specificity, since endogenous GCs
activate both GR and MR, but many synthetic GCs (e.g.,
dexamethasone, methylprednisolone) act (almost) exclusively
on the GR. And (iii) synthetic GCs may (prednisolone) or

may not (dexamethasone) be subject to processing by 11β-
HSD1/2 which has a major impact on their bioavailability, as
some synthetic GCs may (not) need to be activated by these
enzymes or cannot be changed into an inactive form by them.
Also, most synthetic GCs also do not bind the carrier proteins
such as CBG (48–50). These facts are important to keep in
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mind when giving GC treatment or performing research using
synthetic GCs.

THE GLUCOCORTICOID RECEPTOR

The GR mediates the actions of GCs in cells. It belongs to
the nuclear receptor superfamily of transcription factors (TFs)
and is a 97 kDa protein that is constitutively and ubiquitously
expressed throughout the body (51). Nevertheless, GCs exert
cellular and tissue-specific effects due to the existence of different
GR isoforms on the one hand and cell- and context-specific
allosteric signals influencing GR function on the other hand
(52–54). The GR functions by regulating the expression of GC
responsive genes in a positive or negative manner. It is estimated
that there are between 1,000 and 2,000 genes that are subject to
GRmediated regulation, with some studies stating that up to 20%
of all genes are responsive to the GR in some way (55).

GR Gene and Protein
The human gene encoding the GR is the “nuclear receptor
subfamily 3 group c member 1” (NR3C1) gene localized on
chromosome 5 (5q31.3). The mouse Nr3c1 gene is localized on
chromosome 18. The hGR gene consists of 9 exons of which exon
1 forms the 5′ untranslated region (UTR) and exons 2–9 encode
the GR protein (52).

The 5′ UTR of the hGR is GC-rich, but does not contain TATA
or CAT boxes (56). Thus, far 13 hGR exon 1 variants differing in
upstream promoter regions have been identified (A1–3, B, C1–3,
D–F, H–J) (Figure 3). Differential use of these promoters, located
about 5 kb upstream of the transcription start site, causes varying
expression levels of GR protein isoforms between cells and tissues
(57–60). These promoters contain multiple binding sites for
several TFs such as AP-1 (61) and Interferon Regulatory Factor
(IRF) (62), but also for GR itself, thereby enabling the regulation
of its own expression (63). Furthermore, these exon-1 variants are
subject to epigenetic regulation. Several epigenetic modifications,
such as DNA methylation and histone acetylation/methylation
are known to occur in this region (or in other regions). The
presence or absence of such modifications has been related to
GR gene expression levels, GC resistance in certain cancers,
promotion of cancer development, and mental health (64–69).

The hGR protein (Figure 3) is a modular protein that, like
other NR family proteins, is built up out of an amino-terminal
domain (NTD), a DNA-binding domain (DBD), a hinge region,
and a C-terminal ligand-binding domain (LBD) (52). The NTD
is encoded by exon 2 and is the least conserved region of the
NR family. It is inherently unstructured, vulnerable to proteases
and only becomes structured when the protein binds DNA and
forms dimers (70). In the NTD the ligand independent activation
function 1 (AF1) is located. This AF1 binds cofactors, chromatin
modulators, and the transcription machinery (71–73). The GR
DBD is encoded by exons 3 and 4 and is important for DNA
binding and GR dimerization. It is characterized by two highly
conserved subdomains each containing a Cys4-type zinc finger.
In the first subdomain the GR’s proximal box (P box) is contained
which is important for site specific GR DNA binding. The second
subdomain contains the distal box (D box) which is important for

GR dimerization (74). Exons 5–9 of the NR3C1 gene encode the
GR’s hinge region and LBD. The former provides both flexibility
between the DBD and LBD as well as a regulatory interface.
The hinge region can be acetylated (lysine residues) and is a
target of CLOCK/BMAL acetylation and the presence of acetyl
moieties in this area reduces GR activity. Research has also shown
that the interaction between the GR and CLOCK/BMAL can be
uncoupled, such as by chronic stress or night shift work, which
may cause hypercortisolism related pathologies (75, 76). The
latter contains a ligand binding pocket, which is formed by 12
α-helices and 4 β-sheets, and the ligand-dependent AF-2 domain.
The LBD has also been found important in GR dimerization (77).
Further, nuclear localization (NLS), nuclear export (NES), and
nuclear retention signals (NRS) have been identified in the GR
protein and these are important for the subcellular distribution of
the GR. Two NLS have been identified, one in the DBD and one
in the LBD (78). A NES is located between the 2 zinc fingers (79)
and a NRS delaying GR nuclear export overlaps with NLS1 (80).

Not a single, but multiple GR protein isoforms are identified.
This is the result from alternative splicing and the use of 8
different translation initiation start sites (81). Alternative splicing
at exon 9 results in two different GR splice variants, namely
the classical 777 AA-long GRα or the 742 AA-containing GRβ

(8). Both isoforms are identical up to AA 727, but contain non-
homologous AA thereafter. Hence, GRβ has a shortened LBD
lacking helix 12 and therefore it cannot bind GCs (82). Despite
this, GRβ is constitutively found in the nucleus where performs
several functions. It was believed and later also shown to be
an antagonist to the GRα isoform. Several mechanisms have
been proposed for the dominant negative action of GRβ, such
as competing with GRα for GR-binding sites and co-regulators
and the formation of inactive GRα/β heterodimers (82–84).
The role of the GRβ is more extensive than being a simple
antagonist. Other studies have shown that the GRβ regulates
gene transcription of non-GRα target genes in an GRα and
GC independent manner (85). Furthermore, while GRβ cannot
bind endogenous GCs, it was show to bind the GR antagonist
RU-468, and is modulated by it (86). Perhaps some synthetic
GR agonists could also bind to this isoform. The GRβ isoform
plays a role in GC resistance (insensitivity to GC treatment) in
patients for several diseases. This resistance can be caused by
its GRα antagonism as well as by the transcriptome changes
its presence causes. A recent study showed that overexpression
of GRβ in colonocytes causes dysregulation of many genes
also found back in IBD patients (87). Next to GRα and GRβ,
GRγ, GR-A, and GR-B splice variants have also been identified
(illustrated in Figure 3). All splice-isoforms show diminished
activity compared to GRα (88–90). Besides splicing, GR mRNA
is further regulated post-transcriptionally via adenine uridylate-
rich elements (ARE) in the 3′ UTR of the GR mRNA which
mediate GR destabilization (91). Next to this, GRmRNA stability
is also regulated by microRNAs (for example: miR-124) which
bind to their binding motifs, mostly in the 3′ UTR (92, 93).

Eight GRα translation initiation variants have been identified
(GRα-A, -B, -C1, -C2, -C3, -D1, D2, and D3) which is the
result from the existence of 8 highly conserved AUG start
codons in exon 2 (Figure 3) (94). The AUG start codons
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FIGURE 3 | Glucocorticoid receptor gene and protein. (A) Genomic structure of the glucocorticoid receptor (GR) gene. (B) Alternative splice and translation-initiation

variants of the GR protein. (C) Structure of the GR protein consisting of an N-terminal domain (NTD), DNA-binding domain (DBD), a hinge region (H), and a

ligand-binding domain (LBD), with a focus on the two zinc-fingers of the DBD and the GRDim mutation (A458T in human, A465T in mouse). Identified

post-translational modifications of the GR are indicated in the black circles. Regions important in GR function are indicated below the protein. AF, Activation function;

NES, Nuclear Export Signal; NLS, Nuclear Localization Signal; NRS, Nuclear Retention Signal; P, phosphorylation; S, sumoylation; U, ubiquitination; N, nitrosylation;

O, oxidation; A, acetylation.

are differently selected due to ribosomal leaky scanning and
ribosomal shunting mechanisms (94). Because the same AUG
start sites are also present in the GR splice-variants, all the
translation-initiation isoforms are expected to occur in each of

the splice-variants (95). The GR translation variants all have
a similar GC and glucocorticoid responsive element (GRE)-
binding affinity, but they differ in the length of their N-termini
and their transcriptional activity. They show different subcellular
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FIGURE 4 | Glucocorticoid receptor chaperone complex and maturation. (A) After glucocorticoid receptor (GR) translation an Hsp70-Hsp40-GR complex is formed in

the cytoplasm. (B) A subsequent ADP-dependent Hsp70 change induces the binding of Hop. (C) Hop induces the binding of Hsp90. (D) After Hsp90 binding to Hop,

Hsp70, and Hsp40 are released from the chaperone complex and replaced by p23 and FKPB51. The GR has now matured into a high affinity complex. (E) After

binding of glucocorticoids FKBP51 is replaced by FKBP52, which is necessary for the transport of the GR to the nucleus.

localization, regulate distinct sets of genes and their relative levels
vary between and within cells (94). The mechanism of regulation
of alternative translation start sites and alternative splicing in
response to physiological, pathological, and cell-specific signals
is still poorly understood. In vitro work proved that these
isoforms do have the capability to regulate distinct transcriptional
programs (96). A later study showed that the different isoforms
can regulate apoptosis with the GRα-C3 being pro-apoptotic and
the GRα-D3 anti-apoptotic (97).

GR Activation and Nuclear Translocation
In the absence of intracellular bioactive GCs, the GR finds
itself as a monomer in the cytoplasm where it resides in a
multiprotein complex. This chaperone complex is important for
GRmaturation, ligand binding, nuclear transport, and activation.
The composition of the chaperone complex changes during the
different GR maturation/activation states (Figure 4) (98). After
GR translation the GR is bound by Hsp70, an interaction that is
accelerated by the Hsp40 co-chaperone. Once the folding process
is complete GR is transferred from Hsp40/Hsp70 to Hsp90,
a transfer that is mediated by Hop (99–101). Recruitment of
p23 (102) and FKBP51 to the multiprotein complex leads to
maturation of GR-chaperone complex into a conformation that
has very high affinity for GR ligands. After GC-binding the GR-
chaperone complex again reorganizes (FKBP51 is replaced by
FKBP52) and a GR conformational change is induced, leading
to the exposure of the GR’s 2 nuclear localization signals (103).
These are subsequently bound by nucleoporin and importins
that carry the GR through the nuclear pore complex into
the nucleus (104, 105). Initially it was believed that the GR
disassociates from the cytoplasmic chaperone complex upon
ligand binding. However, recent research has shown that the
chaperone complex is required for efficient nuclear translocation
of the receptor (106).

Once inside the nucleus, the activated GR can go on to exert
its function or it can be transported back to the cytoplasm,
inhibiting the GR’s transcriptional activity. Nuclear export of GR
is regulated by exportins and calreticulin (CRT) which binds to
the GR NES, thereby disrupting the GR-DNA binding (107, 108).

The balance between nuclear import and export determines
the proportion of GR protein in the nucleus and has a direct
influence on the strength of GR’s transcriptional activities. In
the nucleus, the GR acts as a TF that can activate (trans-
activation) or inhibit (trans-repression) genes as well as modulate
the function of other TFs (tethering). Most of the GR functions
are restricted to the nucleus, but some non-nuclear actions of GR
are also known.

GR Function
In the nucleus, the GR is able to transcriptionally activate
(transactivate (TA)) or transcriptionally repress (transrepress
(TR)) gene-expression, both as a monomer and as a dimer,
and usually via direct contact with DNA. Recently it was
discovered that the GR can also bind to the DNA as a tetramer
(Figure 5) (109, 110). The importance of this GR tetramer
in transcriptional regulation is not well-understood and needs
further investigation.

The GR associates with specific genomic loci and orchestrates
the assembly of TF regulatory complexes containing the GR,
other TFs and co-regulators that modulate the activity of the
RNA polymerase II (RNApolII). Different modes of genomic GR
transcriptional regulation are described (Figure 5).

The simplest form of GR-DNA interaction is the binding of
GR to genomic glucocorticoid binding sites (GBS) containing a
GRE. Classically, the GR exerts its transactivation function by
binding to GREs, which are 15 bp long sequence motifs of 2
imperfect inverted palindromic repeats of 6 bp separated by a
3 bp spacer. The generally accepted GRE consensus sequence is
AGAACAnnnTGTTCT. However, this may be better represented
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FIGURE 5 | Glucocorticoid receptor activation and function. Lipophilic glucocorticoids (GCs) diffuse through the cell membrane and bind the glucocorticoid receptor

(GR) in the cytoplasm. This induces a change in the chaperone complex bound to GR, after which it translocates to the nucleus to transactivate (+) or transrepress (-)

gene transcription as a monomer or a dimer. The GR can transactivate genes by binding to glucocorticoid responsive elements (GRE) as a dimer, but also as a

monomer by binding to other transcription factors (TF) through tethering or by binding to composite-elements. The GR can further transrepress gene-expression by

binding to inverted repeat GR-binding sequences (IR-GBS), by tethering, by composite-elements, by competing for DNA binding-sites (BS), by sequestrating TFs and

by competing for cofactors with other TFs. GR might also function as a tetramer, but its function is not known.

as a sequence logo (Figure 6), which illustrates that some
positions are much more variable than others. The GR binds
to the GRE as a homodimer and each GR DBD makes contact
with about 3 nucleotides in each of the half site hexamers. The
two GR molecules bind the GRE in a head-to-tail fashion and
5 AA within the D box of the second GR zinc finger provide
critical protein-protein contacts between the two GR partners
important for stabilization of the GR DBD on the DNA. In
this D box a hydrogen bond is formed between Ala458 of one
dimer partner and Ile483 of the other partner (74, 111). A second

interface important for dimerization (Ile628) has been identified
in the LBD (77, 112). Recent research proposes that the LBD
may have other dimerization interfaces related to another dimer
structure (113).

GREs contain relatively few highly conserved residues and
because GREs are rather short, they are abundantly present in
the genome. ChIP-seq experiments with antibodies against GR
showed however that only a small fraction of GRE sites are in fact
occupied by the GR (114). Why this is the case is still a topic of
research, but it has been shown that the chromatin structure plays
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FIGURE 6 | Sequence logo of the human glucocorticoid responsive element to which the GR binds to. See text for more details.

a big role in determining which sites are accessible to GR under
certain conditions (115, 116). It has also been shown that many
GR binding sites can be found very far from a (known) gene or
transcriptionally active sites, indicating that GR often occupies
enhancer regions and/or chromatin looping is involved in GR
transcriptional regulation (114).

Evidence has been found for a 2nd mode of GR-DNA
interaction where GR, as a monomer, binds to half sites with
an AGAACA (or the reverse complement TGTTCT) consensus
sequence (117). If a binding site for another TF is nearby the
GRE-half site, both elements may act as a composite site where
there is an interaction (positive or negative) between the GR
(monomer) and the other TF (118) (Figure 5). An analysis in
mouse liver showed that under endogenous corticosterone levels
(i.e., low concentrations) GR binding to half sites as a monomer
is more prevalent than binding of full GRE sites by homodimers.
In response to exogenous GCs (i.e., high concentration) the GR
dimers assemble on full length GRE near known induced genes
and this happens in concert with monomer removal of sites near
repressed genes (119).

A third class of GR-DNA interactions involves inverted-
repeat GBS (Figure 5). Binding to such an element leads to
inhibition of gene expression. These IR-nGREs have a consensus
CTCC(N)0−2GGAGA sequence and structural analysis showed
that at these sites 2 GR monomers bind on the opposite sides
of the DNA, in a head-to-tail orientation and with negative
co-operativity with each other (120, 121).

Lastly, there are the indirect binding, or tethering, sites
where GR is recruited to a TF complex through protein-protein
interactions with heterologous DNA-bound TFs (Figure 5).
These GBSs lack a GRE, IR-nGRE, or a GRE half site. Several
TFs are known to recruit ligand boundGR via tethering including
members from the AP1, STAT, and NF-κB families of TFs. These
interactions directly alter the capacity of the directly DNA-bound
TF to bind DNA, recruit cofactors, and activate/repress gene
transcription (122, 123).

The GR can also TR gene-expression by competing with
other TFs for binding to overlapping DNA-binding sequences.

Indeed, recently GR half-sites were even found embedded in
AP-1 response elements (124). Finally, the GR can TR gene-
expression by competing with other TFs for the binding of
cofactors (125–127) or by sequestrating TFs, thereby obstructing
them to bind to the DNA (128) (Figure 5).

GR Plasticity
The GR operates in a cell- and context-specific manner. This is
not only due to a different expression of GR protein isoforms
but is also the cause of different signals that modulate the GR’s
activity at specific GBSs. Four signals are described to influence
the GR’s function.

A first signal that modulates GR activity is the DNA, which
acts as an allosteric regulator of the GR. GRE sequences differing
by only one single base pair were namely shown to affect GR
conformation and regulatory activity (129). Moreover, allosteric
changes provoked by one half site can be transduced via the
GR lever arm (located between the P and D box, see Figure 3)
and the receptor’s D box to the dimer partner, affecting the GR’s
transcriptional activity (130, 131).

A second signal influencing the GR transcriptional output
obviously comes from the ligand that binds to the LBD. After
ligand-binding helix 12 is exposed and cofactors are recruited
to the AF2 in the LBD. Depending on the ligand, the LBD will
adopt another conformation and attract other cofactors thereby
influencing the GR’s transcriptional outcome (132, 133). The
latter forms the basis of the research for “Selective GR Agonists
and Modulators” (SEGRAM).

Third, the GR is heavily modified by potential post-
translational modifications (PTMs). Several phosphorylation
(134–140), ubiquitination (141), sumoylation (142), acetylation
(76), and nitrosylation sites (143) as depicted in Figure 3

have been identified influencing GR-localization, stability, DNA
binding, ligand response, and regulatory activity.

Last, the GR’s transcriptional output is influenced by
its interaction partners. These include other TFs that bind
direct or indirect to GR and cofactors which are recruited
to GR and are involved in functions such as chromatin
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regulation and regulation of the transcriptional machinery
function (53, 144). The composition of the cofactor complex
recruited to the GR depends on the cell specific expression of
cofactors, the cell context and the integration of the previous
described signals (DNA, ligand, and PTMs) that influence the
GR’s conformation (145). This cofactor complex eventually
determines the transcriptional output of the GR.

Non-genomic GC and GR Actions
The GR is not only able to function by genomic actions, but
also through non-genomic actions. Non-genomic GC/GR actions
are fast and do not require transcription or protein synthesis.
Limited knowledge is however available on non-genomic GC/GR
actions. These include GC-mediated effects on membrane
lipids, changing their physicochemical properties (146). Further,
GCs have also been seen to act on a membrane-bound GR
which is related to the classical GR and probably the result
from differential splicing, alternative transcription initiation and
PTMs (146, 147). Another membrane receptor, unrelated to
the classical GR, probably also binds GCs. This protein is
probably a G-coupled receptor that signals through cAMP and
that binds endogenous GCs with high affinity. However, it does
not bind most GC analogs such as dexamethasone (148). Other
non-genomic actions, e.g., modulation of the MAPK signaling
cascade, might result from components that are released from the
GR chaperone complex upon the binding of GCs to the GR or
from membrane bound GR (149, 150).

A final type of non-genomic action of the GR is its effect
on mitochondrial function. It was show that the GR can
translocate to and reside in mitochondria (151, 152). This
mitochondrial GR is capable of regulating gene transcription
from the mitochondrial chromosome by binding to GRE like
elements alone or in complex with other factors. This was
demonstrated in vitro, using a hepatoma cell line and in brain
cell of mice and rats (153–155). A recent study showed that a
GR isoform, GR?, is located in the mitochondria and plays a
role in regulating cell energy metabolism in a ligand independent
manner (156).

GC THERAPY: DRAWBACKS AND
OPTIMIZATION

GCs are therapeutically mainly used for their anti-inflammatory
and immunosuppressive effects. These are a.o. the result of the
transcriptional induction of several anti-inflammatory protein-
coding genes such as TSC22D3 (coding for glucocorticoid-
induced leucine zipper, GILZ) and DUSP1 (coding for Map
Kinase Phosphatase 1, MKP1) and from the repression of pro-
inflammatory TFs such as NF-κB and AP-1. GCs are used to
treat inflammatory disorders such as asthma (157), skin rashes
(158), rheumatoid arthritis (RA) (159), multiple sclerosis (160),
and systemic lupus erythematosus (SLE) (161). In most cases,
synthetic glucocorticoids are used but hydrocortisone is also a
popular option.

Despite its strong anti-inflammatory capacity, GC therapy is
limited by two major drawbacks. First, GCs are well-known to
be associated with adverse effects, particularly when given in

high doses for long time periods. Figure 7 graphically presents
GC-associated side effects, with osteoporosis, hyperglycemia,
cardiovascular diseases, and infections as the four most
worrisome adverse effects for clinicians (162). These side effect
may be severe enough to affect the therapy or cause an increased
risk to other negative effects. A recent study in RA patients
showed a clearly increased risk of bone fractures correlated with
the administration of GCs (osteoporosis) (163). Second, some
patients are refractory to the therapy and are GC resistant (GCR).
GCR can either be inherited, mostly via mutations in the NR3C1
gene (52, 164), or acquired (165). The latter can be caused by
ligand induced homologous downregulation of the GR, caused
chronical GC treatment (166, 167), or by pathophysiological
processes accompanying the inflammatory disease states [e.g.,
chronic obstructive pulmonary disease (COPD) (168), SLE
(169)]. The pathophysiological processes provoking GCR are
very heterogeneous, e.g., oxidative stress and inflammatory
cytokines are known triggers of GCR and have multiple effects
on GR biology (170–176). GCR occurs in 4–10% of the asthma
patients, 30% of the RA patients and in almost all of the sepsis
and COPD patients (177–179).

To achieve a positive benefit-to-risk ratio when using GCs,
guideline recommendations regarding optimal dosing must be
followed and potential adverse effects must be monitored,
prevented and managed (180–183). Next to this, much research
effort is put in developing innovative GCs or GR ligands that
improve the therapeutic balance (184–186).

Currently available GCs in the clinic activate all GR activities.
During the past 20 years intensive research for SEGRAMs, which
promote a GR conformation favoring TR over TA, has been
performed. This search for SEGRAMs is based on the central
dogma in GR biology which states that GR monomer-mediated
TR is sufficient to counteract inflammation, while GR dimer-
mediated TA is responsible for most of the adverse effects of GCs,
e.g., by the induction of genes encoding glucose-6-phosphatase
(G6P) and phosphoenolpyruvate carboxykinase (PCK1). This
long accepted dogma in GR biology originates from initial work
with the GRDim mutant (187). This GRDim mutant carries a
A465T mutation in the D-loop of the second zinc finger of
the GR-DBD.

This D-loop is one of the primary dimerization interfaces,
consequently this mutant shows impaired homodimerization
and reduced functionality. Initial observation on the GRDim

mutant showed a strongly impaired transactivation and retained
capability to transcriptionally repress genes, particularly as a
monomer (111). Follow-up work on the GRDim found that there
was still transactivation of certain genes possible by these mutant
receptors (129, 131). This raised the question again if the GRDim

was still capable of some dimerization and or DNA binding. An
in vivo imaging study with labeled GR showed that the GRDim is
still capable of dimerization with endogenous and synthetic GCs,
but with a lower efficiency than WT for endogenous GCs (188).
The ability of the GRDim mutant to bind to the DNA has been
a point of controversy since there is evidence against (111, 189)
and pro DNA binding (131, 190, 191). Current evidence seems
to suggest that the DNA binding capacity of the mutant is at
least partially preserved. A second GR mutant was generated
with an additional point mutation in the LBD of the receptor.
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FIGURE 7 | Overview of glucocorticoid-associated side effects.

This mutation is believed to disrupt a secondary dimerization
interface present in the LBD, leading to even poorer dimerization
and function than the GRDim mutant (188). In addition, under
normal physiological conditions, GRDim mice are healthy and
show no obvious phenotypes, except that they express interferon
genes in their intestinal epithelium (192), It has been shown
that under physiological conditions, GR binds to the DNA as a
monomer, exerting transcriptional functions related to cell-type-
specific functions, and that only after acute stress or injection
of GCs, GR dimers are formed leading to binding to full GRE
elements (119). Also, elegant, NMR-based work by Watson et al.
has shown that, depending on the DNA sequence where GR
dimers bind, an intramolecular signal, via a lever arm, provides
a dimer- and DNA-binding-stabilizing interaction between two
DBD domains, precisely via the amino acid that was mutated
in the GRDim version. The absence of this amino acid “weak
binding” in the GRDim version was enough to cause less robust
dimers and DNA binding (131).

It has been stated that the picture about the mechanisms of
glucocorticoid actions (transactivation/transrepression) is still far
from complete, especially for known GR mutants. In addition,
the aforementioned functional PPI interfaces, recent structural
biology work shows that the knowledge on GR dimerization
and structural conformation may be incomplete based on
structural homology and residue conservation between the NR
transcription factor family, and new dimer interfaces that remain
unexplored so far. In one study researchers have postulated that
the conformation of the GR that is generally accepted as the
dimeric conformation might not be correct and they propose
different configurations (113). The fact most of the structural
work so far was done on subdomains of the GR, as the whole
protein is very hard to crystalize, may contribute to this limited
knowledge of GR structure.

Many studies have investigated steroidal and non-steroidal
SEGRAM in the hope to be able to dissociate the GC-induced
anti-inflammatory effects from the GC-induced side effects (193–
197). Several interesting SEGRAM have been characterized [e.g.,
Al-438, LGD-5552, ZK216348, Mapracorat and Compound A
(CpdA)] and were shown to have dissociative profiles in vivo
(198–206). Despite the intensive research, none of the SEGRAM
have reached the market today. So far, only Fosdagrocorat (for
RA) (207–209) andMapracorat (for ocular inflammatory diseases
and skin inflammation) have reached clinical trials.

To prevent GC-induced side effects, strategies other than
shifting the balance between the monomeric and the dimeric GR
are also followed (184–186). Some aim at cell-specific targeting
of GCs via antibody- or peptide-GC conjugates (210) or via
liposomes (211), thereby preventing systemic GC-effects. Other
studies investigate the therapeutic use of GC-induced proteins
(e.g., GILZ, the protein coded by the TSC22D3 gene) without
administrating GCs themselves. By this, steps are undertaken
to develop therapies that stimulate only the wanted anti-
inflammatory GC-functions without inducing the broad and also
the unwanted GC-effects (212). Further, studies also invest in
the therapeutic potential of combination therapies, such as the
combination of GR and PPAR agonists (213, 214).

GC THERAPY IN ACUTE VS. CHRONIC
INFLAMMATION: SIRS AND THE
SEDIGRAM CONCEPT

During the recent years, it has become clear that the old
idea in GC-research, that claims that GC anti-inflammatory
effects can be separated from GC-induced side effects by simply
dissociating GR TR from GR TA, because the former would
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be mainly monomeric-driven GR functions and the latter GR
homodimeric-driven functions. To date it is known that this
separation cannot be made that strictly. In addition, GRDim

mice studies showed that not all GC-induced side effects are GR
dimer-driven and that thus also monomeric GR is involved in
at least some side effects. Indeed, GRDim mice were observed
to develop osteoporosis and muscle atrophy, despite their lack
of GR dimer-dependent effects (215, 216). Next to this, the
GR dimer was found to be indispensable for the GC-mediated
protection in models of acute inflammation. GRDim mice are
strongly sensitized in models of TNF- and LPS-induced Systemic
Inflammatory Response Syndrome (SIRS) (217, 218) and these
mice could furthermore no longer be protected by a prophylactic
Dexamethasone administration (192). Additionally, GR dimer-
induced GRE genes were found to be important in the protection
against SIRS: this was shown for DUSP1 (217) (encoding MKP-
1) and TSC22D3 (212) (encoding GILZ). Finally, skewing the
GR toward the monomer by using CpdA sensitized mice for
TNF-induced SIRS, suggesting that GR monomers are unable
to protect in this model of acute inflammation and that GR
monomers should rather be avoided in SIRS (219). Altogether
these data illustrate the importance of the GR dimer in the
protection against acute-inflammation.

As a consequence of the former observations in GRDim mice,
the SEGRAM concept needed to be revised. Therefore, recently,
it was proposed that chronic inflammatory diseases which
require a long-term GC therapy would benefit from “Selective
Monomer GR Agonists and Modulators” (SEMOGRAMs), since
these SEMOGRAMs would avoid important side effects such as
hyperglycemia that are detrimental for the patients. Recently, it
was also observed that ligand-induced GR turnover leading to
GCR is GR dimer dependent (220). The latter observation thus
further supports the need for SEMOGRAMs for the treatment of
chronic inflammation. On the other hand, in acute-inflammatory
settings such as SIRS, where GR dimers are indispensable,
the administration of GCs that increase the GR dimerizing
potential, termed “Selective Dimer GRAgonists andModulators”
(SEDIGRAMs), would be the preferred strategy to follow (221).

There has been some doubt about the value of the GRDim

mouse tool and its inability to form homodimers and bind DNA.
Although in vitro experiments (making use of high GC-doses)
showed very little effect of the Dim-mutation onGR dimerization
and DNA binding (188, 191), in vivo research confirmed

that GC-induced transcription is very broadly hampered in
GRDim vs. GRWT mice (192, 222). Moreover, the remaining
GRDim transcription was observed to be especially the result
of GR monomer functioning at half-sites (119). Although we
are aware that a second interface in the GR LBD is also of
relevance for dimerization and that remaining dimerization in
the GRDim mutant is probably provided through this protein-
protein contact, the latter studies confirm the value of the
GRDim mouse-tool.

FUTURE PERSPECTIVES

Certain challenges and (new) questions remain to be answered or
further investigated. GCR in patients is still largely an unresolved
issue, especially in complex diseases such as sepsis but also
in severe asthma. Understanding GC resistance, preventing or
reverting it could mean a real breakthrough in current medical
practice. Another avenue of research, aside from more selective
dimer/monomer ligands, is GR structure and DNA binding
conformation as some more recent research suggested that the
GR can bind to DNA is a tetramer conformation instead of a
dimer. Also, the non-genomic effects of GCs and GR are far
from understood and need more research. Finally, a wealth of
information has been published using a variety of GR ligands,
some being endogenous ligands, others synthetic ligands, all of
which may have very different effects on the canonical GR and
non-canonical ones (splice variants, shorter proteins) and even
different effects in different mammalian species or cell types. It
is a big challenge for the community to try to streamline this
information in a comprehensive way.
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