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Cancer immunotherapy has made remarkable clinical advances in recent years.

Antibodies targeting the immune checkpoint receptors PD-1 and CTLA-4 and adoptive

cell therapy (ACT) based on ex vivo expanded peripheral CTLs, tumor infiltrating

lymphocytes (TILs), gene-engineered TCR- and chimeric antigen receptor (CAR)-T

cells have all shown durable clinical efficacies in multiple types of cancers. However,

these immunotherapeutic approaches only benefit a small fraction of cancer patients

as various immune resistance mechanisms and limitations make their effective use

a challenge in the majority of cancer patients. For example, adaptive resistance to

therapeutic PD-1 blockade is associated with an upregulation of some additional

immune checkpoint receptors. The efficacy of transferred tumor-specific T cells under

the current clinical ACT protocol is often limited by their inefficient engraftment, poor

persistence, and weak capability to attack tumor cells. Recent studies demonstrate that

the complement receptor C3aR and C5aR function as a new class of immune checkpoint

receptors. Complement signaling through C3aR and C5aR expressed on effector T

lymphocytes prevent the production of the cytokine interleukin-10 (IL-10). Removing

C3aR/C5aR-mediated transcriptional suppression of IL-10 expression results in

endogenous IL-10 production by antitumor effector T cells, which drives T cell expansion

and enhances T cell-mediated antitumor immunity. Importantly, preclinical, and clinical

data suggest that a signaling axis consisting of complement/C3aR/C5aR/IL-10 critically

regulates T cell mediated antitumor immunity and manipulation of the pathway ex vivo

and in vivo is an effective strategy for cancer immunotherapy. Furthermore, a combination

of treatment strategies targeting the complement/C3aR/C5aR/IL-10 pathway with other

treatment modalities may improve cancer therapeutic efficacy.

Keywords: complement, cancer immuno therapy, complement receptor C3aR, complement receptor C5aR, IL-10

(interleukin-10), PD-1 - PDL-1 axis, immune check point

INTRODUCTION

As a major component of the innate immunity, the complement system also directly regulates
lymphocyte function (1, 2). Recent studies have shed important insights to the role of complement
and its receptors in antitumor immunity. Clinical observations and animal studies suggest that
complement signaling inhibits antitumor immunity. It was reported that tumor or circulating
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complement levels are positively correlated with tumor
size and poor outcome in different types of cancers, such
as neuroblastoma, colorectal, lung, ovarian cancer, chronic
lymphocytic leukemia, and carcinomas of the digestive tract
(3). Extensive animal studies have also demonstrated that the
complement system functions to inhibit antitumor immunity
(4–15). Mechanistically, complement may inhibit antitumor
immunity by promoting recruitment of myeloid-derived
suppressor cells (MDSCs) into the tumor microenvironment
(TME) (4–6, 9, 12, 13) or by suppressing dendritic cells
(DCs)/NK cell activation (7, 8). Recent studies suggest that
a new mechanism plays an important role in complement
signaling-mediated suppression of antitumor immunity: direct
inhibition of IL-10 production in CD8+ tumor infiltrating
lymphocytes (TILs) in TME (11, 14). Here, we summarize
relevant findings and propose that C3aR and C5aR function
as a new class of immune checkpoint receptors that should be
targeted for cancer immunotherapy.

COMPLEMENT SUPPRESSES ANTITUMOR
IMMUNITY THROUGH C3aR AND C5aR

In addition to the many clinical reports positively correlating
complement levels with tumor size and poor outcome in various
human cancers [reviewed by Pio et al. (3)], animal studies
testing different tumor types in different mouse models also
show that the complement signaling pathway exerts potent
inhibition on antitumor immunity (4–15) (Table 1). The tested
mouse tumor models include TC-1 cervical cancer, Lewis lung
cancer, RMA lymphoma, 4T1, and E0771 breast cancer, B16
melanoma, HPV16 skin cancer, and MC38 colon cancer with
either transplanted tumor cells or spontaneously developed
cancers. Complement signaling was disrupted in these animal
studies by using genetic models including mice deficient for
C3, C4, C3aR, or C5aR1 (4, 9–15) or inhibitors to complement
C3, C3aR, and C5aR1 (4–6, 8, 10–12, 14). The reported results
are highly consistent in that tumor growth is suppressed when
complement-mediated signaling is inhibited or removed. In
studying the underlying cellular mechanisms, Markiewski and
colleagues first showed that C5a/C5aR1 interaction promotes the
migration of MDSCs into tumors and enhances the suppressive
capacity of tumor-associated MDSCs (4). The regulation of
myeloid suppressor cells in tumors by complement signaling is
also observed by several other studies (5, 6, 9, 12, 13). Thus,
a major immune suppressive role by complement signaling
may be mediated through recruitment of MDSCs into tumors.
In addition to MDSCs, other innate cell populations such as
neutrophils, DCs and NK cells are also involved in complement-
mediated immune suppression of antitumor immunity (7, 8, 10).
When complement C3 is exhausted using cobra venom factor,
NK cells are greatly increased in tumors and depletion of NK
cells nullifies the enhanced antitumor activity induced by cobra
venom factor treatment (8). Although complement signaling
modulates innate immune cell activities, the enhanced antitumor
immunity exhibited in mice following disruption of complement
signaling is T lymphocyte dependent. Not only effector CD4+

and CD8+ TILs are enhanced in these mice but also depletion
of T cells through TCRα genetic deletion or antibodies against
CD4+ or CD8+ T cells diminishes the enhanced antitumor
immunity in the complement signaling deficient models (4, 8–
15). These studies suggest that multiple immune suppressive
mechanisms are induced by C3aR and C5aR1 signaling (Table 1).

C3aR AND C5aR-MEDIATED IMMUNE
SUPPRESSION ON T LYMPHOCYTES

Three small cationic peptides, C3a, C4a, and C5a, generated
by complement activation are termed as anaphylatoxins. These
peptides induce chemotaxis, cell activation, and inflammatory
signaling by binding to their respective G-protein-coupled
receptors (GPCR), referred to as C3aR and C5aR1. The models
for anaphylatoxins binding to their cognitive receptors have been
proposed after the molecular cloning of C3aR and C5aR1 (19).
In the immune system, C3aR is predominantly distributed on
leukocytes of myeloid lineages, such as neutrophils, basophils,
eosinophils, mast cells, monocytes/macrophages (20–23).
Ligand-receptor engagement induced receptor phosphorylation
leads to receptor desensitization, internalization, and activation
of diverse downstream signaling pathways in different cell types.
C3aR is highly expressed on neutrophils, and C3a induces
calcium influx in response to C3a (24); however, C3aR inhibits
neutrophil mobilization in vivo in an intestinal ischemia-
reperfusion model (25). In mast cells, C3a activates PI3K
signaling pathways and subsequent Akt-phosphorylation, as
well as MAP kinases Erk1/Erk2 to promote cytokine expression
(26). In human monocyte/macrophage, engagement of C3a
to Ca3R, together with TLR signaling induces secretion of
proinflammatory cytokines such as IL-1β, IL-6, and TNFα
(27, 28). C3aR signaling modulates IL-1β secretion through
NLRP3 inflammasome activation by regulating ATP efflux (29).
Similar to C3aR, C5aR is abundantly expressed in neutrophils,
eosinophils and basophils, monocytes/macrophages, and mast
cells (30–33). C5a binding to C5aR causes calcium flux as well as
activation of several components of different signaling pathways,
including PI3K-γ kinase, phospholipase C, phospholipase D and
Raf-1/B-Raf mediated activation of MEK-1 (34–37). In addition
to a similar proinflammatory function of C3aR, C5aR1 is also a
chemotactic receptor. Upon engagement with C5aR1, C5a serves
as a chemoattractant for monocytes, neutrophils, eosinophils,
and basophils (38).

It is well established that complement components and their
receptors C3aR and C5aR1 are expressed in not only myeloid and
tumor cells but also CD4+ T lymphocytes (39–44). Furthermore,
endogenously or locally produced C3a and C5a bind to C3aR
and C5aR on CD4+ T cells and regulate T cell function, such
as differentiation, survival and cytokine production (40, 41, 45,
46). Interestingly, in contrast to the lack of C3aR and C5aR1
expression on peripheral CD8+ T cells in naive mice, both
receptors are strongly upregulated on CD8+ TILs from mouse
and human tumors (11). Overall, ∼20% of CD8+ TILs are
C3aR and C5aR double positive. To determine the source of
complement that mediates immune suppression on CD8+ TILs,
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TABLE 1 | Mouse models on the complement/C3aR/C5aR1/IL-10 pathway in antitumor immunity.

Reference Animal strain/Treatment Tumor type Phenotype

Ajona et al. (12) PD-1/C5a double blockade Lung cancer Growth and metastasis inhibition

Cho et al. (16) C3−/− mice, C5a silencing in tumor Ovarian cancer C5a recruits MDSCs to tumor microenvironment

Corrales et al. (5) C5aR antagonist Lung cancer C5a recruits MDSCs to tumor microenvironment

Emmerich et al. (17) IL10Rb−/− mice, IL-10 treatment Squamous carcinoma IL-10 promotes anti-tumor CD8+ T cell response

Gunn et al. (6) SCID mice, C5a overexpression Lymphoma/ovarian cancer C5a recruits MDSCs

Janelle et al. (8) cobra venom factor treatment Melanoma Complement inhibits NK function

Kwak et al. (14) C3−/− mice,C3aR, C5aR antagonists lung Cancer Complement inhibits CD4+ T cell function

Markiewski et al. (4) C3−/−, C4−/−, factor B−/−, C5aR−/− mice Cervical cancer Complement recruits MDSCs to tumor

Medler et al. (15) K14-HPV16 Tg, C3−/−mice Squamous cell carcinoma C5a/C5aR regulate macrophage/mast cell

Mumm et al. (18) IL-10−/−, IFNg−/−, MMTV-rtHer2 Tg mice Squamous tumor/thymoma IL-10 promotes CD8+ T cell function

Nabizadeh et al. (10) C3aR−/−mice, C3aR/C5aR antagonists melanoma, colon, breast cancer Complement inhibits CD4+ T cell and neutrophil

Qing et al. (7) C3−/− and C5aR−/− mice Melanoma Complement inhibits DC-NK function through MDSCs

Vadrevu et al. (9) C5aR−/− mice, C5aR antagonist Breast cancer Complement inhibits T cell through Treg and MDSCs

Wang et al. (11) C3−/−, IL-10−/−, TCR−/−mice, C3aR and

C5aR antagonists

Melanoma/colon/breast cancer Complement inhibits antitumor CD8+ T cell by

Zha et al. (13) C5aR−/− mice, PD-1 blockade and C5aR

antagonist

Melanoma/colon cancer C5a/PD-1 blockade enhances antitumor efficacy

chimeric mice with either lymphocytes or host cells lacking
C3 were used as tumor-bearing hosts. C3-deletion in CD8+ T
cells was sufficient to remove complement-mediated suppression
on antitumor immunity (11), suggesting that autocrine C3
production and the interaction of activation products with
Ca3R/C5aR plays a critical role in suppressing effector CD8+

TIL function.

C3aR AND C5aR SIGNALING INHIBITS
IL-10 PRODUCTION IN TUMOR
INFILTRATING T LYMPHOCYTES

How does autocrine complement signaling inhibit effector CD8+

T cell function? Several clues suggest a possible mechanism
underlying C3aR/C5aR signaling-mediated immune checkpoint
function: complement signaling may inhibit IL-10 production
in effector T lymphocytes given the role of IL-10 in CD8+

TIL expansion and immune activating function in antitumor
immunity (see Discussion in next section). First, it was shown
that a fraction of CD8+ effectors expresses IL-10 at the peak
of coronavirus infection and the IL-10+CD8+ T cells show
superior CTL activity and in vivo protection against chronic
infection (47). Second, we found that complement pathway
related genes are enriched in the IL-10+CD8+ T cells (11),
suggesting a possibility of mutual or reciprocal regulation.
Indeed, in C3−/− Il10 reporter (Tiger) mice, CD8+ TILs within
B16 tumors but not peripheral blood readily express IL-10 (11).
Kwak and colleagues also observed enhanced IL-10 expression
in CD4+ and CD8+ T lymphocytes in lungs of tumor-bearing
C3-deficient mice (14). Furthermore, antagonists to C3aR and
C5aR1 also promote IL-10 production in CD8+ TILs as well as
in vitro activated CD8+ T cells (11). Importantly, the enhanced
antitumor immunity in complement-deficient mice or wildtype

mice treated with antagonists to C3aR and C5aR1 depend on
IL-10. Depletion of the IL-10 gene in these mice completely
abolishes the enhanced antitumor immunity in both melanoma
and breast cancer tumor-bearing C3-deficient mice (11). The
suppression of IL-10 production in CD8+ TILs is mediated
through endogenously produced complement and its autocrine
interaction with C3aR and C5aR on CD8+ T cells. The inhibition
on IL-10 production by signaling through C3aR and C5aR
is redundant as antagonism to one of these receptors alone
does not promote IL-10 production. Accordingly, antagonism
to C3aR and C5aR1, but not to a single receptor, suppresses
tumor growth and the antitumor effect depends on IL-10 in vivo
(11). Therefore, inhibition of antitumor immunity through
suppression of IL-10 production in CD8+ TILs in response to
complement/C3aR/C5aR signaling represents a new mechanism
of complement-mediated immune supression (48).

IL-10 FUNCTIONS AS AN IMMUNE
ACTIVATING CYTOKINE IN CANCER
IMMUNOTHERAPY

IL-10 is a pleiotropic cytokine produced by many cell
populations, including but not limited to activated T cells, B
cells, macrophages as well as mast cells (49, 50). Although it
was initially identified as a cofactor for thymocytes growth and
T cell activation, IL-10 was further recognized as a regulatory
cytokine due to its anti-inflammatory functions. IL-10 impairs
the maturation of dendritic cells and macrophages by interfering
with upregulation of costimulatory molecules such as CD80,
CD86, MHCII, and CD83 on activated dendritic cells and
macrophages (51, 52). In addition, IL-10 skews the Th1/Th2
balance to Th2 by selectively blocking IL-12 synthesis in
activated dendritic cells (53). Macrophages can be polarized
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to M1 (inflammatory) or M2 (anti-inflammatory) phenotypes
depending on the microenvironmental stimuli. IL-10 inhibits
the activation and proliferation through Stat3-dependent and -
independent pathways and polarizes macrophage to a M2 like
phenotype (54, 55). IL-10 directly acts on CD4+ T cells to
differentiate T helper cells into inducible regulatory T cells
and maintain the expression of key transcription factor Foxp3
(56, 57). Regulatory T cells also express IL-10 and mice
deficient for IL-10 in regulatory T cells did not display systemic
autoimmunity; however, these mice developed spontaneous
colitis, skin and lung hyperreactivity, suggesting an organ specific
role of IL-10 on regulatory T cells (58).

Although IL-10 is often associated with an immune
suppressive function, recent clinical studies have unequivocally
shown that IL-10 is an immune activating cytokine promoting

antitumor immunity (59–61). In a phase I clinical trial, pegylated
recombinant human IL-10 (rhIL-10) has shown encouraging
clinical efficacy in several types of solid tumors (59). Among
the 24 patients treated with rhIL-10 monotherapy at 20–40
µg/kg active dose, the overall objective response rate is 21%.
Furthermore, IL-10 treatment increases serum levels of pro-
inflammatory cytokines IL-18 and IFNγ as well as FasL in
cancer patients and the induced cytokine levels are strongly
correlated with clinical responses (59, 61). Pegylated rhIL-
10 treatment dramatically expands PD-1+LAG-3+ activated
CD8+ T cells in the blood of cancer patients. Importantly,
both the number and effector function of CD8+ TILs from
these patients are increased (61). These results support that the
major function of rhIL-10 is to expand the number as well
as enhance the effector function of antitumor CD8+ T cells

FIGURE 1 | Synergistic effect of three combined strategies by targeting complement/C3aR /C5aR1/IL-10 pathway and other treatment modalities. The three

combined strategies were shown as follows: (1) dual blockade of complement signaling and immune checkpoint receptor PD-1; (2) complement signaling blockade

and chemotherapy; (3) the clinical use of pegylated rhIL-10 with anti-PD-1 antibody.
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in cancer patients. A Phase 3 clinical trial (NCT02923921) in
patients with metastatic pancreatic cancer is being conducted
based on promising efficacy data from early clinical studies.
Mechanistically, checkpoint inhibition, and IL-10 treatment
together enhances the number and quality of pre-existing TILs.
The efficacy of PD-1/PD-L1 inhibitors is highly associated with
tumor microenvironment such as TIL density, PD-1/PD-L1
expression; tumor intrinsic feature, such as tumor mutational
burden, microsatellite instability; as well as gut microbiota
(62). The clinical trials of pegylated recombinant human IL-
10 are focused on several solid tumor types. Its efficacy on
solid and blood tumor types needs to be tested clinically in
the future.

Another potential application for IL-10 and C3aR/C5aR
antagonists is to incorporate them into in vitro expansion
protocols of T cells for ACT. IL-2 is the primary cytokine used
in the in vitro expansion of TILs and gene-engineered T cells
for clinical use, however, the in vivo efficacy of expanded T
cells under the current clinical ACT protocol is often limited
by their inefficient engraftment, poor persistence, and weak
capability to attack tumor cells (63–68). It was shown long ago
that IL-10 augments IL-2-induced proliferation and promotes
CTL activity of activated CD8+ T cells (69–72). Consistent with
animal studies and human clinical trial data showing that IL-
10 promotes CD8+ TIL proliferation (11, 17, 18, 61), addition
of IL-10 to in vitro culture of TILs from human lung cancer
with IL-2 drastically enhances the quantity and quality of the
expanded human TILs and upregulates genes related to several
signaling pathways, such TCR signaling, Notch signaling, cell
cycle and CTL killing (11). Furthermore, pegylated rhIL-10
also prevents continuous TCR-stimulation induced apoptosis
of activated human T cells (61). Interestingly, remissions in
lymphoma patients treated with anti-CD19 chimeric antigen
receptor (CAR-T) cells are associated with high serum levels
of IL-10 and IL-15 (73). These results strongly suggest that the
addition of IL-10 to the IL-2-supported in vitro T cell expansion
protocol may improve the clinical efficacy of adoptive T cell
therapy. In addition to IL-10, antagonists to C3aR/C5aR1 may
also be used in such protocol as the in vitro culture of activated
CD8+ T cells in the presence of C3aR/C5aR1 antagonists induces
IL-10 production (11).

SYNERGISTIC EFFECT BY TARGETING
COMPLEMENT/C3aR/C5aR/IL-10
PATHWAY AND OTHER TREATMENT
MODALITIES

Significant progress has been made on testing the

synergistic effect of combined treatment targeting the

complement/C3aR/C5aR/IL-10 pathway and other cancer
treatment modalities. The first combined strategy is dual
blockade of complement signaling and immune checkpoint
receptor PD-1 (Figure 1). The complement signaling/IL-10
pathway is independent of the PD-1/PD-L1 pathway as
modulation of this pathway does not affect the expression

of PD-1 on T cells and PD-L1 on tumor cells (11). Two
different experimental systems in which (1) PD-L1-silenced
B16F10 tumors were inoculated in C3-deficient mice or
(2) B16F10 tumor-bearing wildtype mice were treated
with anti-PD1 and antagonists to C3aR/C5aR clearly show
that blockade of complement signaling and PD-1/PD-
L1 interaction has dramatic synergistic antitumor effect
(11). This synergistic antitumor effect is subsequently
confirmed by two other studies (12, 13). These data
provide important clues to rational design of future
clinical trials.

The second combined treatment strategy uses complement
signaling blockade and chemotherapy (Figure 1). In a
squamous cell carcinoma (SCC) model, antagonist to
C5aR1 enhances the treatment efficacy of paclitaxel
chemotherapy and the synergistic effect depends on CD8+

T lymphocytes (15). Increased CD8+ TILs and the expansion
of specific T cell clones were associated with enhanced
efficacy (15).

The third combination is the clinical use of pegylated
rhIL-10 with the anti-PD-1 antibody pembrolizumab in a
cohort of heavily pretreated patients with melanoma, no-
squamous cell lung cancer or renal cell carcinoma (61)
(Figure 1). This combination achieved a 42% objective
response rate, in contrast to the 21% objective response
rate by pegylated rhIL-10 monotherapy (59). A combination
of pegylated rhIL-10 with anti-PD-1 promotes persistent
proliferation and expansion of LAG-3+PD-1+ CD8+

T cells in the cancer patients. These exciting clinical
trial results have opened new avenues for effective
cancer immunotherapy.

In summary, we have identified that tumor infiltrating CD8+

T cells express complement receptors C3aR and C5aR and
complement signaling inhibits anti-tumor functions through
repression of endogenous IL-10 production in CD8+ TILs.
We and other groups have also confirmed that endogenous
and exogenous IL-10 enhances anti-tumor functions of
CD8+ T cells in human and mouse in vitro and in vivo. The
independence of complement/C3aR/C5aR/IL-10 from the
PD-1/PD-L1 signaling pathway makes it possible to block
complement receptors and PD-1/PD-L1 as a combined
therapy to treat cancer patients clinically. Results from
other groups also suggest that the combined blockade of
complement and PD-1/PD-L1 signaling with antibodies
improves the efficacy of treatment through other mechanisms.
Together, we and other groups provide clear evidences that
complement receptors C3aR and C5aR are a new class of
immune checkpoint receptors.
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