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The nod-like receptor family pyrin domain containing 3 (NLRP3) is currently the

most widely studied inflammasome and has become a hot topic of recent research.

As a macromolecular complex, the NLRP3 inflammasome is activated to produce

downstream factors, including caspase-1, IL-1β, and IL-18, which then promote

local inflammatory responses and induce pyroptosis, leading to unfavorable effects.

A growing number of studies have examined the relationship between the NLRP3

inflammasome and cardiovascular diseases (CVDs). However, some studies have

shown that the NLRP3 inflammasome is not involved in the occurrence of certain

diseases. Therefore, identifying the mechanism of action of the NLRP3 inflammasome

and its potential involvement in the pathological process of disease progression is of

utmost importance. This review discusses the mechanisms of NLRP3 inflammasome

activation and the relationship between the inflammasome and CVDs, including coronary

atherosclerosis, myocardial ischemia/reperfusion, cardiomyopathies, and arrhythmia, as

well as CVD-related treatments.

Keywords: NLRP3 inflammasome, cardiovascular diseases, immune-inflammatory, coronary atherosclerosis,

myocardial ischemia/reperfusion

INTRODUCTION

Despite considerable improvements in preventing and treating cardiovascular diseases (CVDs),
the lack of a comprehensive understanding of the mechanisms involved in the development of
CVDs remains a principle factor implicated in global morbidity and mortality (1). For instance,
in the United States of America, coronary heart disease (CHD), the most prevalent form of CVD,
accounts for approximately half of the total number of CVD cases. It has been estimated that by
the year 2035, more than 130 million adults will suffer from different forms of CVD, incurring
a great cost as a direct result of increased medical expenses (2). Thus, gaining insight into the
pathogenesis of CVDs and the search for new treatments are of utmost importance. Since the
NLRP3 inflammasome can activated via a variety of different mechanisms and plays an important
role in CVD development, the NLRP3 inflammasome is currently the most fully characterized
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FIGURE 1 | NLRP3 inflammasome and associated cardiovascular diseases.

inflammasom, and may be involved in disease progression
(Figure 1). Inhibition of the NLRP3 inflammasome pathwaymay
be a new approach for the prevention and/or treatment of CVDs.
The NLRP3 inflammasome, which is composed of NLRP3, an
adaptor protein apoptosis-associated speck-like protein (ASC),
and caspase-1 (3), may be activated by intact pathogens, a large
number of structurally diverse pathogen-associated molecular
patterns (PAMPs), host-derived risk signals (danger-related
molecular patterns, DAMPs), and environmental stimuli (4).

NLRP3 INFLAMMASOME AND THE
ACTIVATION MECHANISM

In order to detect PAMPs, the innate immune system scans
the extracellular environment and endosomal compartments
using pattern recognition receptors (PRRs), which include
membrane-bound toll-like receptors (TLRs) and C-type lectins
(CTLs) (4). Another group of receptors, the nucleotide-binding
oligomerization domain-like receptors (NLRs), differ from TLRs
and CTLs in that they are capable of recognizing both PAMPs
and DAMPs (4). The NLR family has a central nucleotide
binding and oligomerization (NACHT) domain that is typically
surrounded by C-terminal leucine-rich repeats (LRRs) and N-
terminal caspase recruitment (CARD) and pyrin (PYD) domains
(5, 6). The NLR family is classified into three distinct subfamilies
the NODs, the NLRPs (also known as NALPs), and the IPAF
subfamily based on the NACHT domain (4). When NLRP3
is activated, ASC recruits pro-caspase-1 through the CARD
domain to assemble an inflammasome. Subsequently, pro-
caspase-1 is hydrolyzed into active caspase-1, a process which
produces several proteins including pro-IL-1β and pro-IL-18
(7, 8). The protein pro-IL-1β is transcriptionally activated by

the transcription factor nuclear factor kappa B (NF-κB). While
pro-IL-18 is a fixed expression, which is expressed after cell
activation, pro-inflammatory cytokine transcription, maturation
and release (9, 10). Themembers of the IL-1β cytokine family that
are activated by caspase-1 trigger the activation of other immune
cells, such as neutrophils, at the site of infection or tissue damage,
thereby promoting an inflammatory response (9).

Activation of the NLRP3 inflammasome occurs in two stages.
Firstly, signaling through the TLR and NF-κB pathways initiate
the transcriptional synthesis of various inflammatory factor
precursors such as pro-IL-1β (11, 12). Secondly another signal is
transduced by multiple PAMPs and DAMPs forming the NLRP3
inflammasome macromolecular complex which is assembled by
NLRP3, ASC, and pro-caspase-1 (13, 14).

The NLRP3 inflammasome can be activated by multiple
mechanisms, including reactive oxygen species (ROS), which
are essential inflammation signals. In this mode, changes in the
concentration of ROS are detected by thioredoxin interacting
protein (TXNIP) which then separates from thioredoxin (TRX)
and binds to NLRP3 effectively activating it (15, 16). Activation
may also occur through adenosine triphosphate (ATP) via
the P2X7 receptor, a characteristic non-selective ATP-gated
cationic channel. Extracellular signaling molecules, including
ATP, other nucleotides and nucleosides, operate through a
complex purinergic signaling network that consists of the P2X7
and other membrane receptors, as well as ectoenzymes (17).
When ATP is released into the extracellular medium, elevated
levels of ATP are detected by the P2X7 receptor, which in
turn induces the production of ROS and the activation of NF-
κB (18). In an acute myocardial infarction (AMI) trial, P2X7
was revealed to be effective at activating NLRP3, triggering
an inflammatory response which negatively impacts prognosis
(19, 20). At the same time, activation of the P2X7 receptor
allows for small positive ions to pass through the cell membrane
resulting in potassium outflow. The NLRP3 inflammasome
can also be activated by a decrease in intracellular potassium
concentration (21). Rupture of lysosomes is also a signal that
leads to the activation of NLRP3. Certain PAMPs and DAMPs
are sensed by lysosomes, causing lysosome damage and loss
of integrity through phagocytosis. The hydrolyzed lysosomes
are released into the cytoplasm, and the NLRP3 inflammasome
is activated by indirectly sensing lysosomal damage (22, 23).
Many different types of post-translational modifications are
an indispensable part of NLRP3 inflammasome assembly,
including ubiquitylation, phosphorylation, deubiquitylation, and
dephosphorylation (24). More specifically, linear ubiquitination
is required for assembly of the NLRP3/ASC inflammasome (25).
NLRP3 inflammasome formation also requires phosphorylation
of ASC by the spleen tyrosine kinase (Syk) (26). BRCA1/BRCA2-
containing complex subunit 3 (BRCC3), a deubiquitinating
enzyme, is critical for NLRP3 activity by promoting its
deubiquitination (27). Phosphatase 2A (PP2A) also promotes
NLRP3 activation via dephosphorylating NLRP3 PYD (28).

In addition, the NLRP3 inflammasome is also associated with
autophagy and mitochondrial autophagy (mitophagy). Knockout
of CD38 and lysosomal V-ATPase-inhibition induced lysosomal
dysfunction and autophagy disorder can result in activation of
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NLRP3 inflammasome (29). The NLRP3 inflammasome can also
be activated, in a way that inhibits autophagy, by knocking
out sirtuin (sirt) 3 (30). Furthermore, overexpression of sirt3
reduced the activation of NLRP3 inflammasome in THP-1 cells,
mainly due to a decrease in mitochondrial ROS production
induced by palmitic acid and recovery of autophagy (30).
CVL, an autophagy inducer, also inhibits NLRP3 inflammasome
activation via the sirt1/autophagy signaling pathway (31). In
contrast, the NLRP3 inflammasome can also inhibit autophagy
through caspase-1-mediated TRIF-cleavage (32). Mitophagy is
a process of degradation and recycling through autophagy after
mitochondrial damage that acts as a negative regulator of NLRP3
inflammasome activation (33). When mitophagy is triggered
via the AMPK/ULK1 signaling and PIK3CA-AKT1-MTOR-
RPS6KB1 pathways, the NLRP3 inflammasome is inhibited (34,
35). NOD2-RIPK2 is a related signaling pathway, which is also
involved in autophagy, mitophagy and the production of IL-18,
and specifically regulates mitophagy (36).

NLRP3 AND CVDS

Activation of the NLRP3 inflammasome has been shown to
contribute to regulation of pathogenesis of a number of CVDs
(Figure 2).

NLRP3 and Coronary Atherosclerosis
Atherosclerosis often results in thrombosis or arterial stenosis
which may lead to a variety of ischemic diseases including
myocardial infarction (MI), ischemic stroke, further tissue
ischemia, and in severe cases, can affect the quality of life (37).
Atherosclerotic plaque formation often involves endothelial
dysfunction and other complex processes, and oxidative
stress is believed to increase the prevalence of atherosclerosis
(38). The NLRP3 inflammasome has also been linked to the
onset of coronary atherosclerosis. The NLRP3 inflammasome
in subcutaneous adipose tissue (SAT) from patients who
underwent heart device implantation and coronary angiography,
may be involved in the development of atherosclerosis
and is directly connected with the severity of coronary
atherosclerosis (39).

The relationship between the NLRP3 inflammasome and
coronary atherosclerotic heart disease through cholesterol
crystals/monosodium glutamate (MSG), downstream factors and
endothelial cell (EC) injury is summarized below.

Cholesterol Crystals/MSG
Cholesterol crystals are a danger signal that can drive sterile
inflammation, such as atherosclerosis, by interacting with
neutrophils (40). They appear at the earliest stages of
diet-induced atherosclerosis, almost simultaneously with
subcutaneous immune cells (41). During disease progression,
macrophages can phagocytize and accumulate cholesterol
crystals through the CD36 receptor and activate the
inflammasome through lysosomal damage (41, 42). NLRP3
in the cytoplasmic matrix of macrophages and foam cells is
involved in the cleavage of cholesterol crystals (43). Early
atherosclerosis and IL-18 levels notably decreased after using
a high-cholesterol diet when the NLRP3 inflammasome

components and its important downstream factors, including
NLRP3, ASC, and IL-1α/β, were simultaneously knocked
out in ldlr-deficiency mice (41). NF-E2-related-2 (Nrf2), a
transcription factor, plays an important role in endogenous
antioxidant stress systems (44). Nrf2 inhibits activation
of the NLRP3 inflammasome through the Trx1/TXNIP
complex (45). Cholesterol crystals induce Nrf2-related signaling
pathways, including the caspase-1-independent IL-1 signaling
and NLRP3/caspase-1-dependent IL-1 pathways, leading to
atherosclerosis. Diet-induced atherosclerosis was lower in
Nrf2−/−Apoe−/− than in heterozygous Nrf2+/−Apoe−/−

mice, but neutralization of IL-1α and IL-1β did not reduce
atherosclerosis in Nrf2−/−Apoe−/− (46). One of the activation
mechanisms of the NLRP3 inflammasome is lysosomal
phagocytosis of exogenous activators, including crystals and
particulate structures, when the substances released after
lysosomal injury are sensed by the NLRP3 inflammasome
(4). Similarly to cholesterol crystals, MSG crystals can act
as DAMPs to activate the NLRP3 inflammasome and cause
inflammatory responses, which eventually lead to gout rather
than hyperuricemia, increasing the risk of CHD (47).

IL-18, IL-1β, and Caspase-1
IL-18 is a pro-inflammatory responsive factor which plays a
vital role in the inflammatory response (48). IL-18 is known to
be an interferon (IFN)-γ-inducible factor with strong activity
on macrophages and T cells, which play a crucial role in
the occurrence and development of atherosclerosis (49, 50).
IL-18 is independent of other risk factors and inflammatory
markers, which are associated with the occurrence of CHD in
the Prospective Epidemiological Study of Myocardial Infarction
(51). The IL-18 levels are significantly elevated in plaques and
IL-18 mRNA transcription is associated with the development
and vulnerability of atherosclerotic plaques. IL-1β acts primarily
extracellularly as a soluble mediator, which acts on a variety
of cells and organs, including vascular endothelial, smooth
muscle cells, and macrophages (52). IL-1β acts on the outside
cells to increase the levels of leukocyte adhesion molecules and
thrombosis-inducing substances. In the case of IL-1α or IL-
1β inducing themselves or each other, a positive feedback loop
pertains. IL-1 receptor I (IL-1RI) transduces IL-1β signaling. The
formation of the IL-1 receptor complex heterodimer results in
the generation of the IL-1β precursor. And then the assembled
NLRP3 inflammasome results in the formation of the active
caspase-1. Active caspase-1 processes the IL-1β precursor in the
cytosol or in the secretory lysosome, results in the generation
and secretion of IL-1β (10, 52). The type II IL-1 receptor (IL-
1RII) binds IL-1 but does not transduce a signal, and acts
as a sink for IL-1β and has been termed a “decoy” receptor
because of its anti-inflammatory property. A hyperlipidemic
condition may exacerbate the indirect effect of saturated fatty
acids due to a decrease of IL-1RII in monocytes, which may
augment the expression and release of adhesion molecules
in vascular endothelial cells, result in triggering of the onset
of CVDs (53). The level of NLRP3 in the CHD group was
distinctly higher than that in the non-CHD group, and the
levels of IL-1β and IL-18 were positively correlated with the
level of the NLRP3 inflammasome expression, producing the
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FIGURE 2 | Activation modes of the NLRP3 inflammasome and the regulatory mechanism of CVDs. Activation of NLRP3 (1) ROS mode; (2) the ATP mode; (3)

lysosome mode. Autophagy and the NLRP3 inflammasome inhibit each other, and mitochondrial autophagy inhibits the NLRP3 inflammasome. The NLRP3

inflammasome and CVDs: (a) after activation of the NLRP3 inflammasome, endothelial cells are damaged resulting in coronary atherosclerosis; (b) myocardial fibrosis

is induced by the TGF-β1/Smad pathway; (c) caspase-1 mediated pyroptosis, leading to diabetic MI/R; (d) IL-18 and IL-1β can cause myocardial inflammation,

coronary arteritis and myocardial hypertrophy; (e) the NLRP3 inflammasome leads to atrial fibrillation by influencing Kv1.5 and SR Ca2+ leakage; (f) NLRP3 deficiency

induces cardiac remodeling via the TLR4/NF-κB pathway; (g) activation of the CaSR/NLRP3 inflammasome pathway leads to cardiac remodeling after MI. DADs,

delayed after depolarization; APD, action potential duration.

chronic inflammation involved in the pathogenesis of CHD (54).
Caspase-1 is an enzyme that induces IL-18 and IL-1βmaturation,
and knockdown of caspase-1 can reduce atherosclerotic lesions
in ApoE−/− mice (55) and significantly reduce the plaque area
(56). ATP-binding cassette transporters A1 and G1 (Abca1/g1)
deficiency leads to cholesterol deposition, which actives NLRP3
inflammasome. IL-18 and IL-1β levels were elevated in the
group with an Abca1/g1 deletion. This was unlike the NLRP3

or caspase-1 deletion groups, suggesting that in the absence of
Abca1/g1, the NLRP3 inflammasomewas activated and caspase-1
cleavage was increased (56).

These results indicated that factors downstream of the NLRP3
inflammasome are involved in the pathogenesis of coronary
atherosclerotic heart disease.

Vascular Endothelial Cell Injury in Coronary Heart

Disease
The EC injury and inflammatory responses also play a role in
the formation of coronary atherosclerosis (57, 58). EC promote
apoptosis, reduces proliferation rate, and increases the density
of inflammatory proteins after senescent injury. This damage is
particularly prevalent in elderly patients presenting with CVDs
(59, 60). Under the stress of CHD, microRNA-22 (miR-22)
can reduce the apoptosis rate, increase cell activity and reduce
EC damage. MiR-22 was found to reduce the level of pro-
inflammatory cytokines by inhibiting the NLRP3 inflammasome
pathway, thereby protecting EC in rats afflicted with CHD (61).
This indicates that the NLRP3 pathway can damage EC and
cause CHD.
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Atherosclerosis Progresses Independently of the

NLRP3 Inflammasome
Surprisingly, it was revealed that there were no differences
in the progression of atherosclerosis and plaque stability
in NLRP3/ApoE, ASC/ApoE, and caspase-1/ApoE double
knockout mouse models (Table 1) (62). These results suggest
that atherosclerosis in ApoE−/− mice model progresses
independently of the NLRP3 inflammasome. There may be
two reasons for this discrepancy. Firstly, IL-1α played an
important role in atherosclerosis development in the ApoE−/−

mice model (62). One study showed that the absence IL-1α
significantly decreased atherosclerotic plaque area in a high-fat
diet C57BL/6 mouse model, and the absence of IL-1β did not
reduce atherosclerosis development in a statistically significant
manner (63). In another study, IL-1α deficiency reduced the
aortic sinus lesion area compared with IL-1β in ApoE−/− mice
(64). As active IL-1α can be produced in the absence of the
NLRP3 inflammasome through calpain-mediated processing
(65), deficiency of the NLRP3 inflammasome would not impair
the development of atherosclerosis (62). Secondly, in the same
high-cholesterol (1.25%) diet, ApoE−/− mice had higher plasma
cholesterol andmore serious pathologic changes (66), thus minor
contributions of genes that potentially result in atherosclerosis
might be missed in the prior model (62).

NLRP3 and Myocardial
Infarction/Reperfusion
After the onset of AMI, ischemic injury, cell death and
the associated cell debris and metabolites act as DAMPs
thereby activating the inflammasome leading to an inflammatory
response (67, 68). In the clinical treatment of AMI, reperfusion
can reduce ischemic injury and infarct size. However, after
reperfusion, ROS levels increase, and pro-apoptotic proteins are
released as a result of mitochondrial injury (69). Therefore,
reperfusion injury can also affect infarct size. Using novel
small molecule inhibitors of the NLRP3 inflammasome can
reduce myocardial infarct area and maintain cardiac function
in animal models of MI (70). The mechanism of NLRP3
in ischemia/reperfusion (I/R) may be related to TXNIP,
pyroptosis, and EC injury. But NLRP3 may not play a role in
mouse models lacking surgical trauma. The closed-chest mouse
model of myocardial infarction/reperfusion (MI/R) reduces the
inflammatory response induced through the surgical stress of the
frequently-used open-chest model. NLRP3 protein was detected
in the I/R-hearts of the open-chest model, but not in the
I/R-hearts of the closed-chest model indicating that NLRP3
expression in the I/R-hearts of the open-chest model is mainly
due to acute surgical stressors and not related to acute cardiac
I/R (71).

TXNIP
In a new mechanism of MI/R injury, TXNIP activates the
NLRP3 inflammasome in cardiac microvascular ECs via ROS in
in vitro experiments (72). As the concentration of intracellular
ROS increases, this complex dissociates and TXNIP binds to
the LRR region of NLRP3, which results in the activation of
the NLRP3 inflammasome (73). Intramyocardial TXNIP siRNA

injection attenuated infarct size and NLRP3 activation in MI/R
mice showing that the interaction between TXNIP and NLRP3
was enhanced in ischemic hearts (72). A similar mechanism
exists in cerebral I/R injury where Nrf2 negatively regulates
activation of the NLRP3 inflammasome. Nrf2 activates the Trx1
gene, prompting the formation of a compound consisting of Trx1
and TXNIP, thereby inhibiting TXNIP activation of the NLRP3
inflammasome. These results indicate that TXNIP activation
of the NLRP3 inflammasome may be one of the activation
mechanisms in the case of MI/R injury (45).

Pyroptosis
The NLRP3 inflammasome, in addition to IL-18 and IL-1β, not
only plays pivotal roles in inflammation in cardiac fibroblasts
and circulating inflammatory cells, but also in the occurrence
of pyroptosis, caspase-1 dependent programmed cell death
(74–76). Pyroptosis is a newly discovered form of cell death,
which is driven by non-infectious factors, including host factors
produced during MI (76, 77). The primary ischemic injury and
the subsequent mitochondrial damage result in activation of
the NLRP3 inflammasome in the heart, inducing inflammatory
cell pyroptosis in cardiomyocytes, further increasing myocardial
injury and infarct size (68, 78). In diabetic rats, pyroptosis
mediated by the NLRP3 inflammasome, which was activated by
ROS, played an important role in MI/R injury. Inhibition of
NLRP3 could attenuateMI/R injury, and in the presence ofMI/R,
caspase-1 and IL-1β were positively correlated with infarct size
and the degree of injury. These results show that NLRP3-induced
pro-inflammatory programmed cell death is the initial response
to MI/R injury in diabetes (79).

Vascular Endothelial Cell Injury in MI
In the build up to MI/R, EC damage is caused by an anoxic
environment and ROS plays an important role in vascular
endothelial injury during cardiovascular pathology (80, 81). EC
injury and the inflammatory response were improved through
regulation of the NLRP3 pathway, which is related to miR-495.
MiR-495 can inhibit cell apoptosis and reduce the mRNA and
protein levels of NLRP3 as well as downstream factors in mice
with MI/R injury (82). In another study, miR-495 was thus
shown to not only contribute to atherosclerotic lesion formation,
but also plaque stability in ApoE−/− mice. Inhibition of miR-
495 reduced intimal hyperplasia and decreased accelerated
atherosclerosis and plasma cholesterol levels (83). A recent study
revealed that activation of the NLRP3 inflammasome occurred
after cerebral I/R, suggesting that initially microglia are the main
source of activated NLRP3 inflammasomes, and in the later
stages, the NLRP3 inflammasome is activated within neurons and
vascular EC (84). This raises new questions on the relationship
between MI/R and the NLRP3 inflammasome.

NLRP3 and Cardiomyopathies
In addition to the aforementioned diseases, the NLRP3
inflammasome may also be involved in the pathological
mechanism of cardiomyopathies, including cardiac remodeling
and cardiac hypertrophy. However, excessive inhibition of
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TABLE 1 | Mechanisms of KO/KI animal models for NLRP3 inflammasome pathway related genes.

Genotype Animal KO or KI Cardiovascular diseases Mechanism of action References

NLRP3 Mice KO Atherosclerosis Reduced plasma levels of IL-18 and decreased atherosclerotic lesion size (41, 56)

Mice KO Atherosclerosis Not critically implicated in atherosclerosis progression (62)

Mice KO Cardiac remodeling Increased TLR4 expression and deteriorated cardiac remodeling via

regulation of the TLR4/NF-κB pathway

(89)

Mice KI AF Developed spontaneous premature atrial contractions and inducible AF;

exhibited ectopic activity, abnormal sarcoplasmic-reticulum Ca2+-release,

AERP shortening and atrial hypertrophy

(103)

ASC Mice KO Atherosclerosis Decreased early atherosclerosis and inflammasome-dependent IL-18 levels (41)

Mice KO Atherosclerosis Did not influence atherosclerosis progression (62)

Caspase-1;

Caspase-1/11

Mice KO Atherosclerosis Decreased the number of lesion-associated cells expressing major

histocompatibility complex class II and reduced lesion-associated IFN-γ

expression

Reduced neutrophil accumulation and neutrophil extracellular trap formation

in atherosclerotic plaques and decreased plasma IL-18 levels

(55, 56)

Mice KO Atherosclerosis No effect on the development of atherosclerosis (62)

IL-1α/β Mice KO Atherosclerosis Decreased plasma levels of IL-18 as well as lesional area (41)

IL-18 Mice KO Cardiac hypertrophy Blunted the pro-hypertrophic signaling pathway (91)

Nrf2 Mice KO Atherosclerosis Highly protected against diet-induced atherogenesis by cholesterol

crystal-induced IL-1 responses

(46)

CD38 Mice KO Atherosclerosis Led to lysosome dysfunction and autophagy derangement, and increased

colocalization of NLRP3 vs. ASC or caspase-1 enhanced IL-1β

accumulation and caspase-1 activity

(29)

NLRP3, Nod-like receptor family pyrin domain containing 3; TLR, Toll-like receptor; ASC, adaptor protein apoptosis-associated speck-like protein; IL, interleukin; IFN, interferon; Nrf2,

NF-E2-related-2; AF, Atrial fibrillation; KO, knockout; KI, knock-in.

the NLRP3 inflammasome may also have adverse effects on
the disease.

Cardiac Remodeling
Cardiac remodeling generally features changes in cardiac
structure, shape, and function. These alterations are an adaptive
response to maintain cardiac function; nevertheless, in the
context of sustained stress and over a period of time, these
changes become maladaptive, and the heart eventually fails (85,
86). The calcium sensing receptor (CaSR)/NLRP3 inflammasome
through the phospholipase C-inositol phosphate 3 (PLC-IP3)
pathway in M1 macrophages plays a pivotal role in accelerating
cardiac remodeling after MI in rats, including promoting cardiac
fibroblast phenotypic transversion and increasing collagen as
well as extracellular matrix secretion (87). In mice where
Ca2+/calmodulin-dependent protein kinase II δ (CaMKIIδ)
was selectively deleted from cardiomyocytes and in floxed
control mice subjected to transverse aortic constriction (TAC),
inflammation and NLRP3 inflammasome activation initiated
in response to pressure overload by CaMKIIδ signaling in
cardiomyocytes are essential for adverse cardiac remodeling (88).
In addition, NLRP3 deficiency accelerates cardiac hypertrophy,
fibrosis, as well as inflammation responses induced by pressure
overload in a cardiac remodeling mouse model. NLRP3
deficiency also increased the level of TLR4 expression, which
results in adverse cardiac remodeling (89).

Cardiac Hypertrophy
In prospective studies, IL-18 is a strong independent predictor
of coronary artery disease (51, 90). IL-18 plays a key

role in the hypertrophic response, with down-regulation of
hypertrophy-related genes seen in IL-18 knockout mice (91).
In a rabbit model, IL-18 expression also increased significantly
during pressure loading, with sustained upregulation of IL-
18 in response to transaortic constriction (92). The levels
of the NLRP3 inflammasome were notably increased in
mice with TAC and were involved in the increase in
inflammatory mediators and profibrotic factor production,
leading to myocardial fibrosis, cardiomyocyte hypertrophy, and
impaired cardiac function (93). When the oxidative stress
system of myocardial cells is activated, accumulated ROS and
Ca2+ are released to the cytoplasm, resulting in changes in
mitochondrial membrane potential, leading to apoptosis of
myocardial cells (94). Pirfenidone improved TAC-induced left
ventricular hypertrophy and myocardial fibrosis in a mouse
model through inhibiting NLRP3 inflammasome assembly, and
regulating the NLRP3-IL-1β signaling pathway in both the ROS-
dependent and ROS-independent pathways (95). Moreover, NF-
κB and NLRP3 were related to receptor for advanced glycation
end products (RAGE)-induced cardiomyocyte hypertrophy
that may be induced via activation of the NF-κB-NLRP3-
IL-1β signal pathway in H9C2 cells (96). These studies
revealed that the signaling pathways related to the NLRP3
inflammasome may be involved in the pathological process of
myocardial hypertrophy.

NLRP3 and Arrhythmia
The mechanism of action of the NLRP3 inflammasome in
the pathogenesis of arrhythmia after heart failure and atrial
fibrillation (AF) is summarized below.
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Arrhythmia After Heart Failure
Patients with heart failure often experience changes in electrical
remodeling, which result in arrhythmia (97). TLR2 and
NLRP3 inflammasome activation in heart macrophages
induce the production of IL-1β in diabetes mellitus mice
(98). IL-1β then decreased the density of L-type Ca2+ (ICaL),
implicating ROS signaling and protein kinase C activation
and resulting in the development of arrhythmia and heart
failure (99). During heart failure, persistent inflammatory
stimulation leads to collagen accumulation and myocardial
fibrosis that aggravates the condition (100). The myocardial
fibroblasts then in turn induce inflammatory mediator
production forming a vicious cycle (101). The expression
of NLRP3 and ASC as well as inflammasome assembly
were inhibited, and the NLRP3-transforming growth factor
β1 (TGFβ1)-Smad pathway was blocked, in mice when
mouse cardiac fibroblasts were treated with anti-fibrotic
drugs (102).

Atrial Fibrillation
The activity of NLRP3-inflammasomes is markedly enhanced
in the atrial cardiomyocytes of AF patients and dogs with
atrial tachycardia pacing. A cardiomyocyte-specific knock-in
mouse model expressing constitutively active NLRP3, exhibited
spontaneous premature atrial contractions and inducible AF
(103). Overactive NLRP3-signaling in cardiomyocytes enhances
the expression of ryanodine receptor type-2 (RyR2), leading
to increased protein expression and abnormal release of
sarcoplasmic reticulum (SR) Ca2+. Meanwhile, the transcription
of Kcna5 was enhanced, which resulted in augmented Kv1.5-
current (Ikur) that abbreviates the atrial effective refractory
period, creating a reentry substrate (103).

NEW THERAPIES RELATED TO THE
NLRP3 INFLAMMASOME

The small molecule inhibitor, MCC950, is selective for
the NLRP3 inflammasome and does not inhibit other
inflammasomes, such as NLRP1 and NLRP4, nor does it
affect other immune responses (104). MCC950 has the potential
to prevent diseases associated with the NLRP3 inflammasome,
including small vessel disease, stroke in diabetic patients (105),
hypertension, kidney damage (106), as well as CVDs (107).
Another NLRP3 inflammasome inhibitor, CY-09, is binds the
NACHT domain which limits NLRP3 oligomerization and
assembly of the inflammasome. Additionally, CY-09 inhibits
NLRP3 activation of ATPase, but does not affect NLRP1 ATPase
activation, suggesting that CY-09 is specific in its inhibition of
the NLRP3 inflammasome (108). CY-09 significantly reduces
platelet aggregation by affecting the threshold concentration of
collagen, as well as impaired clot contraction in platelets (109).

In clinical trials of a canakinumab anti-inflammatory
thrombosis outcomes study (CANTOS), canakinumab inhibited
the expression of IL-1 related genes. Canakinumabmay therefore
reduce the incidence of CVDs and may, in the future, become a
new treatment for the secondary prevention of CVDs and other

diseases (110). Subsequent clinical trials revealed that the patients
receiving canakinumab exhibited a decrease in high-sensitivity
C-reactive protein compared with the placebo group. Changes
in low-density lipoprotein cholesterol, high-density lipoprotein
cholesterol and triglycerides were not significant, suggesting
that canakinumab targets the IL-1β protein, reduced CVD and
was not associated with lowering blood lipid levels. The most
effective dose of canakinumab was 150mg every 3 months
(111). In coronary artery disease, statins especially atorvastatin,
can reduce expression of the NLRP3 inflammasome as well
as downstream factors IL-1β and IL-18. In contrast, the
effect of rosuvastatin is not obvious. Statins have inhibitory
effect on endothelial dysfunction which accounts for their
mechanism of action (54). Statins may also treat I/R injury
by inhibiting the NLRP3 inflammasome, although further
research is required to explore this concept (112). Colchicine
displayed a greater effect on CVDs. After MI in mice, colchicine
reduced acute inflammation in infarct areas, improved survival,
prevented heart failure, reduced ventricular remodeling and
maintained stability in cardiac function (113). Colchicine was
capable of reducing myocardial injury induced by elevated
levels of IL-1β in the infarcted area from early reperfusion
(114). Colchicine also inhibits the NLRP3 inflammasome and
caspase-1 and the associated inflammatory response and matrix

TABLE 2 | New therapies related to the NLRP3 inflammasome.

Inhibitors of the NLRP3

inflammasome

Mechanism of action References

MCC950 Inhibited the NLRP3 inflammasome

selectively

(104–107)

CY-09 Binds to the NACHT domain which

limits NLRP3 oligomerization and

assembly of the inflammasome;

inhibited NLRP3-mediated activation of

ATPase selectively

(108, 109)

Canakinumab Inhibited the expression of IL-1

associated genes; targeted for IL-1β

anti-inflammatory therapy

(110, 111)

Statins Reduced the expression of the NLRP3

inflammasome as well as the

downstream factors IL-1β and IL-18

(54, 112)

Colchicine Reduced acute inflammation in infarct

areas, improved survival, inhibited heart

failure, reduced ventricular remodeling

and maintained stability in cardiac

function

(113–116)

Colchicine and statins Significantly reduced the incidence of

cardiovascular events

(116)

PEDF Inhibited mitochondrial division through

PEDFR/iPLA2

(117)

TA Inhibited cell death and reduced

oxidative stress and inflammation

(118)

TP Inhibited the expression of NLRP3 and

ASC as well as inflammasome

assembly, and blocked the

NLRP3-TGFβ1-Smad pathway

(102, 119)

PEDF, pigment epithelium-derived factor; TA, total flavones; TP, triptolide.
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metallopeptidase (MMP) expression (including MMP2 and
MMP9) (113). Colchicine significantly reduces the prevalence of
MI in patients with gout (115). For patients with stable angina
pectoris, taking colchicine significantly reduces the incidence
of acute coronary syndrome and other symptoms (116). The
addition of low doses of colchicine (0.5 mg/d) to standard
drugs such as statins produced better results, significantly
reducing the incidence of cardiovascular events (116). In
addition, pigment epithelium-derived factor (PEDF) is accepted
as another method for AMI treatment. In a rabbit model,
PEDF reduced the activation of the NLRP3 inflammasome,
supposedly by inhibiting mitochondrial division through the
pigment epithelial-derived factor receptor/calcium-independent
phospholipase A2 (PEDFR/iPLA2), indicating that PEDF can
also be used as a treatment strategy for ischemic diseases,
including AMI and MI/R injury (117). Since total flavones
(TA) can inhibit cell death and reduce oxidative stress and
inflammation, they have a definite role in the treatment of
CVDs. Studies in I/R mice have revealed that TA inhibits the
activation of the NLRP3 inflammasome and has a positive
therapeutic effect on I/R (118). Triptolide (TP) alleviates cardiac
hypertrophy induced by isoproterenol (ISO) in mice (119). In
addition, low-dose TP improves mouse cardiac fibrosis induced
by ISO (in vivo) or angiotensin II (in vitro) through blocking
NLRP3 inflammasome assembly, and inhibits the activation of
the NLRP3-TGFβ1-Smad pathway (102).

These studies revealed that the use of NLRP3 inflammasome
inhibitors and blocking the relevant pathways represents new
treatment strategies for NLRP3 inflammasome related diseases.
However, the effectiveness of these new treatment methods has
to be validated, not only through animal studies, but also through
clinical trials (Table 2).

CONCLUDING REMARKS

The discovery of the NLRP3 inflammasome has enriched our
understanding of the pathogenesis of CVDs and other diseases.
However, some experimental results demonstrate that the NLRP3
inflammasome has no influence on the occurrence of disease,
so the mechanism of action by which these various diseases
occur requires further attention. Moreover, research on the
inhibition of NLRP3 inflammasome activity is equally important
and provides novel targets for the treatment of CVDs. The
current review has demonstrated that canakinumab, MCC950,
colchicine, statins, TA, TP, and other downstream factor
inhibitors treat disease by inhibiting the NLRP3 inflammasome
pathway. It is worth noting that the inhibition of the NLRP3
inflammasome may also have adverse effects, and therefore, the
effect of inhibition of the NLRP3 inflammasome needs to be
continuously explored.
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