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Self-reactive B cells generated through V(D)J recombination in the bone marrow or

through accrual of random mutations in secondary lymphoid tissues are mostly purged

or edited to prevent autoimmunity. Yet, 10–20% of all mature naïve B cells in healthy

individuals have self-reactive B cell receptors (BCRs). In patients with serologically

active systemic lupus erythematosus (SLE) the percentage increases up to 50%,

with significant self-DNA reactivity that correlates with disease severity. Endogenous

or self-DNA has emerged as a potent antigen in several autoimmune disorders,

particularly in SLE. However, the mechanism(s) regulating or preventing anti-DNA

antibody production remain elusive. It is likely that in healthy subjects, DNA-reactive B

cells avoid activation due to the unavailability of endogenous DNA, which is efficiently

degraded through efferocytosis and various DNA-processing proteins. Genetic defects,

physiological, and/or pathological conditions can override these protective checkpoints,

leading to autoimmunity. Plausibly, increased availability of immunogenic self-DNA may

be the key initiating event in the loss of tolerance of otherwise quiescent DNA-

reactive B cells. Indeed, mutations impairing apoptotic cell clearance pathways and

nucleic acid metabolism-associated genes like DNases, RNases, and their sensors are

known to cause autoimmune disorders including SLE. Here we review the literature

supporting the idea that increased availability of DNA as an immunogen or adjuvant,

or both, may cause the production of pathogenic anti-DNA antibodies and subsequent

manifestations of clinical disease such as SLE. We discuss the main cellular players

involved in anti-DNA responses; the physical forms and sources of immunogenic

DNA in autoimmunity; the DNA-protein complexes that render DNA immunogenic;

the regulation of DNA availability by intracellular and extracellular DNases and the

autoimmune pathologies associated with their dysfunction; the cytosolic and endosomal

sensors of immunogenic DNA; and the cytokines such as interferons that drive auto-

inflammatory and autoimmune pathways leading to clinical disease. We propose that

prevention of DNA availability by aiding extracellular DNase activity could be a viable

therapeutic modality in controlling SLE.
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INTRODUCTION

Anti-DNA Antibodies as a Biomarker for
SLE
Anti-DNA antibodies (Abs) are not exclusive to systemic lupus
erythematosus (SLE or lupus), yet, their persistence in serum
is the most reliable serological marker for lupus diagnosis
(1–4). High titers of anti-DNA Abs directly correlate with
disease activity (3, 5), predictions of lupus flares (6, 7),
hypocomplementemia (8), and proliferative lupus nephritis (9,
10). 70–80% of SLE patients have detectable levels of anti-DNA
Abs, of which ∼45–50% have high titers (3, 8, 11). This is
in contrast with anti-DNA Ab- positive non-SLE patients with
rheumatoid arthritis (RA), scleroderma, vasculitis, tuberculosis,
autoimmune hepatitis, viral hepatitis or cancer, where the
titers are predominantly low-to-moderate (3, 8). Additionally, a
fraction of aged healthy individuals also have anti-DNA Abs but
rarely at high titers (12). The correlation of high titers of anti-
DNA Abs with SLE disease severity is indicative of a requirement
for the persistent availability of DNA as an immunogen.
Additionally, many pathological conditions including infections,
and cancer can induce anti-DNA Abs which invokes a status
for DNA as a readily available adjuvant associated with various
proteins under different conditions.

B Cells in Anti-DNA Responses
Rheumatic diseases like SLE, RA, Sjogren’s syndrome, vasculitis,
antiphospholipid syndrome etc., which cause development of
anti-DNA Abs in several patients, are driven by B cells
(13, 14). Moreover, DNA-specific B cells can readily expand
in all individuals upon exposure to microbial DNA (4). In
healthy individuals, the microbial DNA-specific B cell expansion
is transient. However, under autoimmune conditions, the
bacterial DNA-reactive B cells also recognize self-DNA and are
retained after the infection is cleared (15). It is therefore of
clinical relevance to understand the conditions which cause the
persistence of DNA-reactive B cells in autoimmune diseases like
SLE. Toward this goal, significant advances have been made
in the area of B cell biology to understand the regulation
of autoreactive B cells. A recent comprehensive review on
B cell genetic risk factors involved in SLE highlighted the
importance of examining specific B cell subsets for better
targeted therapeutic intervention (16). The major B cells subsets
implicated in anti-DNA antibody production include germinal
center (GC) B cells that produce long-lived plasma/ memory
cells and the extrafollicularly generated short-lived plasmablasts
(17, 18). Several studies in mice outline a significant role
of the extrafollicular pathway in anti-DNA/ chromatin Ab
production, showing that B cells can undergo both isotype
switching and affinity maturation outside of the GCs (19–22).
Notably, expansion of extrafollicular B cells in active human
SLE patients has also been reported (23, 24). In a recent
study, specific subsets of B cells involved in the extrafollicular
pathway of autoantibody production in SLE were defined in
patients with active disease (25). Unlike the GC pathway, the
absence of extrafollicular tolerance checkpoints might explain the

preferential emergence and amplification of anti-DNA responses
via the extrafollicular route.

In accordance with the predominantly short-lived nature of
DNA-reactive B cells, B cell targeting therapies like Rituximab
(anti-CD20) and Belimumab (anti-BAFF) have been partially
effective in SLE treatment (13, 14, 26). There was a modest
yet significant reduction of SLE disease severity in patients
with serologically and clinically active SLE upon treatment
with Belimumab (Benlysta), alongside standard therapy (7, 27–
29). Notable observations from phase III Belimumab trials
BLISS−52 and BLISS−76 (30, 31) were that increased anti-
DNA Ab titers predicted lupus flares (6, 7), while successful
treatment resulted in reduced anti-DNA Abs (29), positively
correlating anti-DNA Abs with disease manifestations. Although
anti-B cell therapies are promising (14, 32), there remains
great variability in the reduction of autoantibodies and disease
severity upon treatment, in part due to the variable B cell
subsets involved in antibody production. Additionally, most
patients receive supplemental concurrent administration of
corticosteroids that have several adverse side effects, including
infections, hypertension, hyperglycemia, osteoporosis, cataracts,
glaucoma, and cognitive impairment (33, 34). Therefore, effective
treatment of SLE with minimal side effects requires newer
approaches and interventions in addition to and beyond B cell-
targeted therapy.

T Cells in Anti-DNA Responses
Along with B cells, the generation, and amplification of anti-DNA
antibodies requires a T-cell dependent antigenic stimulation
process, which indicates that anti-DNA antibody production is
not just a consequence of polyclonal stimulation of immune
cells. Indeed, autoreactive T cell clones have been identified
in mice (35) and humans (36–38) and are essential for the
amplification of autoreactive B cells (Figure 1). A subset of
CD4+ T cells expressing high CXCR5, ICOS, and PD-1, named
follicular helper T cells (Tfh) are particularly implicated in several
autoimmune diseases. Tfh promote the generation of germinal
center-driven anti-DNA Abs in several lupus mouse models by
providing key cytokines like IL-21 and IL-4 to B cells in the
germinal centers (39–41). Likewise, a subset of SLE patients have
increased numbers of CD4+CXCR5+ICOShiPD-1hi circulating T
cells, resembling mouse Tfh cells (39, 42, 43). Another distinct
population of helper T cells has also been identified in the
generation and amplification of anti-DNA/ chromatin responses
through the extrafollicular pathway in mice (44–46), and more
recently in SLE patients (47). Given the pleiotropic roles of T
cells as B cell helpers (Tfh), cytokine producers (Th1, Th17) and
suppressors of autoimmunity (Tregs) in SLE, it is no surprise
that several T-cell targeted therapies are in use and/ or under
investigation for lupus (48).

pDCs in Anti-DNA Responses
In addition to the direct role of B and T cells in anti-DNA
Ab production, high serum type-I interferon levels and activity
directly correlate with high anti-DNA Ab titers in SLE patients
(49–51). Plasmacytoid dendritic cells (pDCs) are considered
as professional IFN-I producing cells and are implicated in
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FIGURE 1 | Cellular and molecular responses to extracellular and intracellular DNA. The schematic shows involvement of extracellular DNases in anti-DNA responses/

SLE pathogenesis and intracellular DNases in interferonopathies. The major molecular pathways of autoantibody and autoinflammatory responses are highlighted in

different colors as described below. Yellow: Primary cellular and molecular pathways of anti-DNA Ab production. DNase1L3-deficiency increases availability and

uptake of cfDNA (naked DNA, NET-DNA, cell-free chromatin, and microparticle-associated chromatin), along with associated proteins potentially through self-reactive

BCRs or through cell-surface TLRs. Internalized self-DNA causes TLR-MyD88 dependent B cell activation, differentiation, IFN production, and presentation of

(Continued)
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FIGURE 1 | cfDNA-associated peptides to T cells. Blue: T cells help in anti-DNA Ab production. Costimulatory and cognate MHC-TCR interactions between

DNA-reactive B and T cells stimulate activation, proliferation, and differentiation of B cells into anti-DNA Ab secreting cells. Purple: Amplification of anti-DNA Abs

through myeloid cell help. Anti-DNA antibodies accumulate and form immune complexes with cfDNA which are internalized through Fc-receptors on myeloid cells i.e.,

DCs, pDCs, macrophages, further inducing IFN production through TLR-MyD88 pathway. Myeloid cells also present self-antigen to T cells further amplifying the B-T

cell interaction loop and anti-DNA Ab production. Red: Undigested DNA promotes IC formation and deposition in target organs. DNase1 expressed in kidneys digests

locally produced apoptotic cell-derived DNA. IC-formation is enhanced in the presence of extracellular DNA. ICs deposit in kidneys causing immune

complex-mediated tissue damage. Green: DNases and signaling pathways regulating interferonopathies. DNase2 cleaves endocytosed apoptotic cell-derived DNA

while TREX1 cleaves cytosolic DNA. Absence of DNase2 and TREX1 trigger activation of cGAS-STING pathway causing IFN production leading to interferonopathies.

DNase2 and TREX1 do not directly contribute to anti-DNA antibody production.

autoimmunity (52, 53). Stage III-IV lupus nephritis (LN)
patients also show increased infiltration of pDCs in kidneys
(54). Consistently, pDC depletion in BXSB and B6. Nba2
models of SLE ameliorated disease (55, 56). Furthermore,
functional impairment of pDCs by monoallelic deletion of Tcf4
was sufficient to reduce autoantibody production and disease
manifestations in two genetic mouse models (57). Clearly, the
role of pDCs in autoimmunity is evident but their precise role
in anti-DNA antibody production needs further investigation.
In humans, pDCs were shown to promote B cell differentiation
into plasmablasts/ plasma cells by producing IFNα and IL-
6 in vitro (58), while activated human B cells were able to
induce IFNα production by pDCs (59). In another study,
pDCs from healthy subjects promoted the expansion of IL-
10 producing regulatory B cells through IFNα, while pDCs
from SLE patients did not (60). This evidence for a reciprocal
interaction between B cells and pDCs with the involvement of
IFNα, warrants further investigation of the role of pDCs in
anti-DNA antibody production.

Taken together, the generation of anti-DNA Abs in SLE
requires the activation and interaction of several key immune
cell types, depicted in Figure 1. In the following sections we will
review what we know so far about the forms of antigenic DNA,
its regulation and sensing, and the effector responses that drive
anti-DNA Ab production.

Immunogenic DNA: Sources and Protein
Partners
DNA by itself is a weak antigen compared to macromolecules
like proteins, lipids, and glycans. However, certain nucleotide
sequences and structural determinants can be immunogenic.
Anti-DNA Abs to specific bacterial DNA are present in healthy
individuals and do not react with other bacterial or endogenous
DNA (61). On the other hand, antibodies to bacterial DNA
in SLE patients cross react with all DNA irrespective of its
source (61–63). Such promiscuity of anti-DNA Abs in SLE
patients could be explained through: (1) positive selection of
BCR clones recognizing common determinants of DNA, e.g.,
phosphodiester backbone due to B cell tolerance checkpoint
defects; (2) epigenetic/ structural modification of endogenous
DNA through chemical modifications or interactions with DNA-
binding proteins; or (3) the excessive availability of immunogenic
cell-free DNA (cfDNA) due to clearance or DNA digestion
defects. Overall, it is likely that the availability of modified
immunogenic DNA to DNA-reactive B cells precipitates SLE-
associated pathogenic anti-DNA responses (Figure 1). cfDNA is

detectable in the serum and plasma of healthy subjects (64), while
its levels increase in conditions associated with excessive cell
death, e.g., pulmonary embolism, mechanical, or drug induced
injury/ trauma, cancer, pregnancy, sepsis, organ transplantation,
RA and SLE (65, 66), summarized inTable 1. The common forms
of cell death that cause cfDNA release include apoptosis, necrosis,
and NETosis.

Neutrophil Extracellular Traps
NETosis is a form of neutrophil cell death involving release
of neutrophil extracellular traps—NETs (92). NETs are released
through a process of nuclear decondensation followed by either
slow (lytic) or rapid (non-lytic) release of chromatin studded
with neutrophil granular proteins. The complex biology of NETs/
NETosis and its roles in antimicrobial immunity, pathological
conditions like allergic asthma, vasculitis, RA, psoriasis, and SLE
were recently comprehensively reviewed (74). Increased NETosis
was identified in kidney and skin biopsies from SLE patients
with lupus nephritis and cutaneous SLE, respectively (93).
Moreover, a positive correlation was observed in SLE patients
with reduced NET-associated DNA (NET-DNA) degradation
and lupus nephritis (94). The pathogenic effects of NETs in
psoriasis (75) and SLE (76, 77) have been attributed to their
stimulatory activity on pDCs, wherein nucleic acid-mediated
TLR9/7 stimulation causes type I IFN secretion, which in turn
potentiates the autoinflammatory loop (76–78).

The stimulatory NET components are a composite of
neutrophil genomic DNA (gDNA), mitochondrial DNA
(mtDNA) and neutrophil granular proteins, which are
interferonogenic (78, 83, 84). Like gDNA MtDNA is associated
with DNA-binding proteins to form complexes called nucleoids,
akin to chromatin. Transcription factor A-mitochondria
(TFAM), is a high-mobility group (HMG) protein involved in
the compaction of mitochondrial DNA into nucleoids. Unlike
other cells, damaged mtDNA in neutrophils is not degraded
through “mitophagy”; instead, damaged-unoxidized mtDNA is
decondensed and expelled, while oxidized mtDNA (ox-mtDNA)
is degraded through lysosomes within neutrophils or after uptake
by macrophages. Both these pathways are non-inflammatory
in healthy individuals (95). However, in several SLE patients,
due to the blocking effect of anti-RNP Abs or IFNs on TFAM,
neutrophil-mtDNA is unable to dissociate from nucleoids, hence
ox-mtDNA is retained within the neutrophils and expelled with
NETs, which induces the production of type-I IFNs through
pDCs (78). Indeed, in about 50% of SLE patients (n = 14) with
anti-RNP Abs, ox-mtDNA is present, and so are antibodies to
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TABLE 1 | Autoimmune responses to extracellular DNA—Antigens, regulators, and sensors.

cfDNA-

Association or

source

Generated

through

Associated

proteins

Sensitive to Sensors Associated

pathologies

Key References

Chromatin Apoptosis

Necrosis

NETosis

Pyroptosis

Histones

HMGB1

DNase1L3

> Dnase1

TLR9

TLR2

TLR4

RAGE

SLE

RA

Sjogren’s Syndrome

(67–69)

Microparticles
Apoptosis

Cellular-activation

Necrosis

Histones

HMGB1

G3BP

Dnase1L3 MyD88-signaling

pathway

SLE

HUVS

(67, 70–73)

Neutrophil

Extracellular Traps

(NETs)

NETosis
Histones

HMGB1

LL-37

MPO

HNP

Other

granular proteins

Dnase1L3 and

Dnase1

TLR4

TLR9

SLE

RA

Psoriasis

(74–82)

Mitochondrial NETosis TFRAM Dnase1L3 (?)

Dnase1 (?)

TLR9

RAGE

SLE (78, 83, 84)

Bacterial Infection Curli Amyloid

ERV gp70

β2GPI

DNase1

Dnase1L3 (?)

TLR2/

TLR9

?

SLE

AIH

(85–87)

Cancer Tumor cell

apoptosis,

Necrosis

? Dnase1

Dnase1L3 (?)

? Anti-DNA

Abs

?

(3, 65, 66, 88, 89)

Fetal Apoptosis of fetal

cells

? DNase1L3 ? ? (66, 90, 91)

ERV gp70, Endogenous retrovirus glycoprotein 70; HMGB1, High mobility group box 1; G2RB, galectin 3 binding protein; LL-37, cathelicidin-derived antimicrobial peptide; MPO,

Myeloperoxidase; TFRAM, Transcription factor A-mitochondria; β2GPI, β2 Glycoprotein I; SLE, Systemic lupus erythematosus; AIH, Autoimmune hepatitis; HNP, Human Neutrophil

protein; HUVS, Hypocomplementemic urticarial vasculitis syndrome; ?, unknown.

it (78). Increased NETosis (77, 84) and increased anti-mtDNA
Abs are associated with increased anti-dsDNA, IFN-signature
and disease activity index in SLE patients (83), indicating an
important role of neutrophil mtDNA in SLE pathogenesis.

Apart from self-DNA and ox-mtDNA, the DNA-associated
neutrophil microbial peptides LL37 and human neutrophil
proteins (HNPs), human beta-defensin 2 and 3 are strong
potentiators of IFN responses. LL-37 cause aggregation of
DNA fragments, making them resistant to nucleases and
facilitating their endocytosis in pDCs via autoantibody-Fc
receptor-mediated uptake and IFN production (75, 77, 96).
In monocytes, LL37 promoted the uptake of self-DNA to
activate type I IFN responses through cytosolic DNA sensor
cGAS-STING (79). Overall, in different cell types LL37-DNA
complexes are potent inducers of type-I IFN through cytosolic
or endosomal sensing. Not surprisingly, 40–55% of SLE patients
were also found to develop anti-LL37 and anti-HNP antibodies,
which significantly correlated with serum IFNα and disease
activity score (77). These data suggest that increased NETosis
drives chronic IFN production from pDCs in SLE patients,
via production of high molecular weight immune complexes
containing gDNA, ox-mtDNA and LL37. It was recently
shown in human SLE patients that LL37-DNA complexes
from netting neutrophils promoted internalization of self-
DNA resulting in activation of LL37-specific human memory

B Cells via TLR9 stimulation and production of anti-LL37
Abs (80).

In summary, autoimmune responses to NETs studied so far
provide evidence for NET-DNA (gDNA/ mtDNA) as a TLR9
ligand and as an adjuvant promoting IFN production and
polyclonal proliferation of B cells, including DNA reactive B cells
in SLE, RA (81), psoriasis etc. However, there is little evidence to
suggest that NET-DNA serves as a direct autoantigen for DNA-
reactive B cells. Further experiments need to be undertaken to
answer these questions.

Intracellular and Apoptotic DNA
Oxidized mtDNA generated within the cells due to oxidative
stress can be immunogenic if not processed and purged
efficiently. Autophagic clearance of cytoplasmic substrates in
the lysosomes has been suggested to prevent the availability
of altered self-antigens including modified nuclear-DNA and
ox-mtDNA in the cytosol (97, 98). A recent study using
monocytes from SLE patients found that autophagic degradation
of mtDNA in lysosomes is essential to prevent its accumulation
in the cytosol. When accumulated, mtDNA activated the
cGAS-STING pathway causing differentiation of monocytes
into autoinflammatory DCs (99). Interestingly, IFNα signaling
triggered increased mitochondrial respiration, oxidative stress
and impaired lysosomal degradation in monocytes, suggesting
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a direct role of IFNα in autoinflammation (99). This study
highlights the importance of efficient mitochondrial recycling
through autophagy in themaintenance of peripheral tolerance. In
addition to mtDNA, apoptotic DNA internalized by phagocytes
is also digested within acidified lysosomes. Inefficient lysosomal
maturation in macrophages derived from lupus-prone MRL/lpr
mice caused increased oxidative stress and impaired acidification
of lysosomes. This promoted prolonged accumulation of
internalized nucleic acids in endolysosomes and leakage into the
cytosol, activating TLRs, and cytosolic sensors (100). Overall,
autophagic and lysosomal degradation of self/internalized
nucleic acids and associated proteins prevents autoinflammation.

Microparticles
Apoptotic cells are quickly efferocytosed by macrophages under
an anti-inflammatory program, the impairment of which can
contribute to SLE (101). Upon cell death, DNA could be exposed
extracellularly on apoptotic bodies (102), microparticles (MPs)
(70), or as nucleosomes (103). MPs are small lipid membrane
bound vesicles of 0.2–1µm in diameter, generated during late
apoptosis/ early necrosis of platelets, leukocytes, endothelial
cells, or upon cellular activation through TLRs (70). MPs are
decorated with different proteins like transporters, adhesion
molecules, surface receptors etc., depending on their cellular
parent, along with several constitutive proteins like galectin 3
binding protein (G3BP) (71), HMGB1 (104) and histones. MPs
also contain nucleic acids like DNA, RNA, and microRNAs
which could be surface exposed or encapsulated (105). MP-
associated DNA appears concealed from the most abundant
extracellular nuclease—DNase1, and specifically requires the
activity of DNase1L3 for efficient degradation (67). Due to
their ubiquitous production by all cells and unique structural/
antigenic properties, MPs present the most abundant and
enduring source of autoantigens including cfDNA.

Although MPs are produced in all individuals and were
proposed to have homeostatic functions (106, 107), several
pathologies are also associated with them. Considerable
increase in numbers, alterations in cellular origin and
composition of circulating MPs have been implicated in
atherosclerosis, thrombosis, vasculitis, systemic sclerosis,
diabetes, thrombocytopenia, and rheumatoid arthritis (72, 107–
109). MP-associated DNA and proteins have also emerged as
important contributors to SLE pathogenesis. Antibodies from
SLE patient sera and mouse models, as well as monoclonal anti-
dsDNA Abs, have been shown to bind DNA in microparticles
(67, 73, 110). There is also a significant increase in proportions
of MPs in SLE patients with surface bound IgG2, IgM, and C1q,
which positively correlates with disease activity, anti-DNA Abs
titers and complement activation in patients (110, 111). There is
also an increase in the concentration/ proportion of circulating
MPs in SLE sera with altered protein composition—expressing
VCAM-1, CD40L, HMGB1, or G3BP (71, 110, 112), which
could serve to further engage ICs. In agreement, MPs-expressing
G3BP were found to predominate in SLE patient sera (n = 44)
(71). Moreover, colocalization of G3BP with IgG was imaged
by immune electron microscopy in the glomeruli of nephritic
kidneys, suggesting local cell-derived MPs as additional source

of autoantigen for tissue IC-deposition (71). Overall, it is likely
that circulating ICs form early in lupus development and
initially may not reach the threshold of pathogenicity. Their
eventual deposition in tissues and the ensuing organ damage
could be enhanced by additional local factors such as impaired
degradation of DNA. This multistep process may also explain
why not all lupus patients develop lupus nephritis.

It was reported that MP-associated ICs from SLE patients
promote ROS production in neutrophils and prime them for
LPS-mediated NETosis (113, 114). MPs derived from SLE
patients activated blood-derived pDCs and monocyte-derived
DCs to express increased CD80, CD83, IL-6, and TNFα (113).
Notably, unlike SLE-MPs, MPs from controls, RA and systemic
sclerosis patients lacked MP-associated chromatin and did not
activate DCs, nor induced NETosis (113). This agrees with our
observations that about 1/3rd of the SLE patients with sporadic
SLE, have DNase-sensitive chromatin on the surface of their
MPs (67). The loss of DNase1L3 activity causes preferential
accumulation of DNA in MPs (67) as well as the presence of
higher molecular weight DNA in the plasma (90). These higher
order structures are much more capable of engaging multiple
BCRs in a stable interaction (4), and therefore could be potent
stimulators of B cells with DNA-reactive BCRs. Together these
studies are suggestive of a significant role of MP-associated
chromatin as an abundant source of self-DNA in SLE, for
activation of pDCs and DCs via the Fc receptors and potentially
direct activation of DNA-reactive BCRs.

Microbial (Bacterial/ Viral) DNA
SLE is a multifactorial disease requiring genetic susceptibility
and environmental triggers for complete loss of tolerance and
pathogenic manifestations. A major cause of lupus flares and
increased disease activity in SLE patients is due to infections
(7). Bacterial infections are most common in SLE patients
and thought to contribute to SLE pathogenesis by enhancing
inflammation and generating cross-reactive B cells which
recognize bacterial as well as self-DNA (61). Bacterial amyloid
protein-DNA composites were shown to stimulate a potent IFN
response and trigger autoantibody production including anti-
dsDNA Abs in lupus-prone as well as wild type mice (115,
116). Infections by all bacterial strains expressing amyloid-DNA
complexes could potentially trigger autoimmunity in predisposed
individuals, which could contribute to sporadic SLE and also
lupus flares.

The role of microbiota in autoimmunity is well-appreciated,
although poorly understood (117). A recent study showed that
the pathobiont Enterococcus gallinarumwas able to translocate to
the liver and activate autoantigenic T cells, induce IFN-responses
through TLR7 stimulation and anti-dsDNA Ab production in
lupus prone mice. Accordingly, the pathological responses could
be alleviated by antibiotic treatment (85). In several SLE patients,
reactivation of human polyomavirus (BK virus) generates
antibodies to T-antigen, DNA and DNA-binding proteins—TBP
(TATA-box binding protein) and CREB (cAMP response element
binding protein). Specifically, anti-dsDNA Ab were confined to
patients with frequent polyomavirus reactivations and expression
of T antigens (86), indicating a role for T-Ag-DNA complexes
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in the stimulation of DNA-reactive B cells. Other potential
sources of cfDNA in autoimmunity include tumor-derived DNA
in cancer patients and fetal-DNA in pregnant females (66,
91). Altogether, these studies suggest that microbial DNA may
promote autoimmune responses including the production of
anti-DNA Abs; however, its primary antigenic role in the loss of
tolerance to self-DNA has not been firmly established.

DNases as Key Regulators of
Immunogenic DNA
Innate nucleic acid (NA) sensors do not discriminate between
foreign and self-NAs, hence the processing or metabolism of
endogenous NAs is of paramount importance to prevent immune
stimulation. Therefore, it is not surprising that ∼40% of the
genes involved in monogenic or Mendelian-inherited forms of
autoimmunity are nucleases. Nucleases can be broadly classified
into two main categories depending on their spatial expression:
(1) Intracellular nucleases—cleave NAs inside the cells, during
apoptosis or after uptake of apoptotic bodies. (2) Extracellular
nucleases—cleave NAs exposed extracellularly during apoptosis
or generated outside of the cells. The tissue expression profile,
structure, enzymatic activity, and functions of the two main
classes of DNases in various pathological conditions were
recently reviewed (118, 119).

Intracellular Nucleases: Major Negative
Regulators of Autoinflammation
Cytosolic Nucleases
Genetic autosomal recessive mutations in RNA processing
enzymes of the RNASEH2 complex, ADAR1, and SAMHD1
cause abnormal induction of type-I IFNs and lead to Aicardi-
Goutières syndrome (AGS) and related interferonopathies. In
addition to these RNases, an autosomal recessive mutation
in the cytoplasmic–ER membrane-resident 3′-DNA repair
exonuclease1 (TREX1 or DNASEIII) also causes AGS and
SLE (120, 121). Classical AGS is identified very early in age,
mainly as a neuroinflammatory disorder of the central nervous
system with very high levels of IFNα in the cerebrospinal fluid.
Glaucoma, thrombocytopenia, hepatomegaly, chilblain-like skin
lesions, and late onset of SLE like symptoms are also typical
of AGS (122). Analysis of serum autoantibodies from 56 AGS
patients (23.4%-TREX1; 57.1%-RNASEH2B; 2.1% RNASEH2A;
4.3%; 8.5% RNASEH2C; 4.3% SAMHD1; and 4.3% ADAR1
mutants) was performed, using an autoantibody array to assess
their antigen-specificity. The study revealed their specificity to
nuclear antigens like gp210, PCNA, Ro/SSA, Sm/RNP, SS-A/SS-B
etc. Even though AGS and SLE share several overlapping disease
manifestations, ss/dsDNA specific antibodies were not detected
in any of the AGS patient sera in this study (123). Moreover,
in a previous AGS clinical study, only 3 patients (all <3 years
age) from a cohort of 24 had anti-dsDNA Abs. Among the three,
one patient had a mutation in TREX1, one in RNASEH2C and
one had an unknown mutation (124). Trex1−/− mice do not
develop classical AGS, but rather develop lethal inflammatory
myocarditis, without anti-chromatin/ DNAAbs (125, 126). These

studies indicate a limited role for the intracellular exonuclease
TREX1 in anti-DNA B cell responses.

Lysosomal DNases
DNASE2 is an endonuclease that functions in the lysosomes
and is known to process DNA internalized with apoptotic cells.
DNASE2 is expressed by macrophages in almost all tissues. Mice
deficient in DNASE2 die in-utero, due to an overwhelming IFNα

response and lethal anemia (127, 128). Sequencing analysis on 24
SLE patients from a Korean cohort revealed 6 sequence variants
of DNASE2, all of which were at a higher risk for renal disorders
but showed no significant association with SLE (129). Recently,
three individuals from two families of Algerian or Italian ancestry
were identified with biallelic mutations in DNASE2, causing
complete loss of DNASE2 endonuclease activity. They were able
to survive with medical intervention but had severe neonatal
anemia, glomerulonephritis, liver fibrosis, and arthropathy. The
hallmark yet again was the excessive production of IFNα and
associated interferonopathies (130). Remarkably, all the patients
with DNASE2 mutations had high titers of anti-DNA Abs and
renal disorders. Further analysis of DNASE2 in SLE patients
will shed more light on its role in SLE pathogenesis and anti-
DNA responses. Notably, both the intracellular DNases—TREX1
and DNASE2, signal through the cGAS-STING pathway for IFN
production (131).

Most recently, two endolysosomal proteins phospholipases
D3 and D4 (PLD3/PLD4) with putative phospholipase activity

were shown to have a functional 5
′

exonuclease activity
preferentially on unstructured ssDNA. PLD3 or PLD4-deficient
mice displayed a TLR9-stimulated inflammatory syndrome while
PLD3/4 double-deficient mice were unable to survive beyond the
age of 21 days due to severe liver inflammation. Interestingly,
the observed autoinflammatory syndrome was mediated by
IFNγ instead of IFNα. Although there was excessive TLR9
activity causing IFNγ production, no autoantibody responses
were reported (132). Polymorphisms in PDL4 linked to RA and
systemic sclerosis (133, 134) have also been reported. Altogether,
these studies identify the predominant function of intracellular
nucleases in preventing autoinflammatory conditions, whereas
their contribution toward anti-DNA antibody responses may be
limited, as shown in Figure 1.

Extracellular DNases: Negative Regulators
of Extracellular Immunogenic DNA
DNase1: A Potential Negative Regulator of Lupus

Nephritis?
DNase1 is the most abundant secreted endonuclease, that
is primarily expressed in the salivary glands, kidneys and
gut (135). The association of DNase1 with SLE was initially
identified through the DNase1−/− mouse model generated on
a mixed B6/129 background, in which some mice developed
anti-DNA and anti-nucleosome-Abs (predominant), as well as
glomerulonephritis in a gender-independent manner. However,
in subsequent studies it was shown that the B6/129 mixed
background itself caused most of the observed SLE phenotype
(136), as DNase1−/− mice on a pure B6 background did not
develop SLE features (68).
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Similarly, limited association of DNASE1 with anti-DNA
antibody production in human SLE has been identified. Two
Japanese patients that developed serological features of SLE with
high titers of anti-DNA and anti-Nuc Abs, were identified with
an A→ G mutation in exon 2 of human DNASE1 causing a 3–4
fold reduction in enzymatic activity (137). Till date there are no
further reports on SLE patients identified with similar or other
mutations in DNASE1 (138). However, in another study with 113
SLE patients, Dnase1 activity was found to be significantly lower
in SLE patients compared to healthy controls, which negatively
correlated with anti-Nucleosome antibody titers. No correlation
was found between reduced DNase1 activity and SLE disease
flare-ups or kidney complications in this cohort (139). Notably,
kidney biopsies from 10 patients were screened for DNASE1
activity of which 4 patients had SLE-associated nephropathy.
These 4 patients showed a concurrent low enzymatic activity
of DNASE1 compared to healthy controls (140). In agreement
with these observations, a reduction in DNASE1 expression in
kidney, and urine directly correlated with progression of lupus
nephritis in mouse and in humans with self or transplanted
kidneys (141, 142). These studies suggest a potential role of
locally produced DNase1 in the prevention of immune complex
deposition and subsequent kidney nephritis (143).

Unlike its role in anti-DNA responses, the function of Dnase1
in the degradation of NETs is better established. Healthy human
serum was able to degrade NETs in vitro and the functional
component was identified to be DNase1. Conversely, sera from
36.1% of 61 SLE patients had poor or no ability to degrade
NETs in vitro. These patients were found to have high anti-
NET Abs which hampered the accessibility of DNASE1 to NETs,
Notably, in this cohort of SLE patients the poor NET degraders
had severe kidney nephritis (94)—further supporting a potential
role of DNase1 in preventing kidney nephritis. Recently, NET
degradation activity of Dnase1 was further corroborated when
Dnase1 was also shown to have a redundant function along
with DNase1L3 in the degradation of NETs formed during
sterile neutrophilia and septicemia. The absence of DNase1
and DNase1L3 both caused vascular obstruction and organ
damage. The results were consistent with human sera samples
and in two different mouse models of DNase1 deficiency
(82). This chromatin-degrading effect of Dnase1 seems to be
specific to NET-associated DNA as the quality and quantity
of cfDNA fragmentation was indistinguishable between plasma
from WT and DNase1−/− mice (144). Overall, the available
data from SLE patients and DNase1−/− mice do not indicate
its involvement in anti-DNA antibody responses, whereas its
role in SLE-related renal pathogenesis is prominent and deserves
further exploration.

DNase1 Like 3: Major Negative Regulator of

Anti-DNA Responses
As the name indicates, DNase1L3 bears close structural and
functional resemblance with DNase1 and together they comprise
the secreted endonucleases in the serum (145). DNase1L3 is
one of the family members of three homologous DNase1 like
proteins. The DNase domain of all the Dnase1 family of
enzymes is highly conserved, while the C terminal domains

are most variable and may impart unique attributes to the
enzymes. DNase1 and DNase1L2 lack a C-terminal domain,
while DNase1L1 has a GPI-anchored hydrophobic region.
DNase1L3 contains a positively charged C terminal domain
(146). Homologymodeling suggested that the C-terminal peptide
of DNase1L3 may stretch out at a fixed angle from the main
DNase domain with a stable α-helical secondary structure
bearing a positive charge (67). Upon deletion of the C-terminal
domain or modulation of its conformation, DNase1L3 lost
its unique abilities of (1) efficiently degrading DNA within
polynucleosomes and (2) digesting liposome-coated DNA (67,
147). Although the exact mechanism by which the C-terminal
domain of DNase1L3 imparts the protein its unique ability to
access lipid-encapsulated and histone-protectedDNA is not clear,
the positive charge on the α-helix may facilitate lipid membrane
binding/ penetration and dislocation of histones fromDNA. This
unique structural property of DNase1L3 poises it to digest MP-
associated DNA and prevent accumulation of extracellular DNA,
thereby suppressing SLE. Indeed, we found that IgG from sera of
at least 2/3rd of the 53 patients with sporadic SLE, bound to the
surface of MPs. Pre-treatment of MPs with DNase1L3 abolished
this binding in half of the patients indicating that the IgG binding
on the surface of MPs was DNase1L3-sensitive (67). This finding
could have implications in using DNase1L3 as a therapeutic
to reduce MP-DNA-dependent immune complex formation.
DNase1L3was also recently shown to degrade intravascular NET-
DNA and prevent vascular occlusion by disrupting NET clots
similar to DNase1 (82).

The role of DNase1L3 in autoimmunity was discovered
during clinical human patient analysis, summarized in Table 2.
A homozygous 1-bp deletion in DNASE1L3 (c.643delT)
caused pediatric-onset familial SLE (148). Homozygous
frameshift mutations—c.289_290delAC and c.320+4delAGTA
in DNASE1L3 led to exon skipping and pediatric SLE in
two respective families (149). Recently, four Italian affected
individuals were identified with similar mutations in DNASE1L3
(150). In addition to null mutations, SNPs have also been
reported in DNASE1L3 in humans. A heterozygous SNP
C686/T686 resulting in R206C substitution in DNASE1L3
was found to reduce the DNase1L3 enzymatic activity (151).
Furthermore, SNPs in DNase1L3 gene have also been associated
with a related autoimmune disease Scleroderma (152, 153).
Similar to humans, DNase1L3-deficient (DNase1L3KO) mice
(on a pure B6 or pure129 background) develop SLE-like
symptoms, including the gender-neutral formation of high
titers of anti-DNA abs at an early age (67). Recently, another
strain of DNase1L3KO mice was shown to develop anti-
DNA responses that were further enhanced in SLE-prone
mice (154). In striking contrast with all other nucleases, the
anti-DNA responses in DNase1L3KO mice were STING-
independent but MyD88-dependent (67). These data
identify DNase1L3 as a DNase that is uniquely structured
to access and degrade DNA associated with lipids and DNA-
binding proteins. It forms an essential component of the
DNase arsenal, in the absence of which extracellular DNA
escapes degradation and can be a direct autoantigen for
the activation and proliferation of DNA-reactive B cells. In

Frontiers in Immunology | www.frontiersin.org 8 July 2019 | Volume 10 | Article 1601

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Soni and Reizis DNases: Role in Anti-DNA Responses

TABLE 2 | Known cases of DNASE1L3 mutations in human subjects.

Cohort details Identified mutations in DNASE1L3 Disease characteristics Reference

1. 6 families

17 affected subjects (6 Females. 11 males)

Homozygous 1-bp deletion c.643deiT ANA+ve, Anti-dsDNA+ve, ANCA+ve

Hypocomplementemia

Nephritis in 10 subjects

SLE in all subjects with SLEDAI: 8-22

(148)

2. 2 families

5 affected subjects

(All females)

Homozygousframeshift mutation.

c.289_290deiAC and c.320+4deiAGTA

HUVS in all subjects

SLE in 4 subjects

ANA+ve, Anti-dsDNA+ve, ANCA+ve

Hypocomplementemia

Nephntis(classll-111) in 3 subjects

(149)

3. 1 family

4 affected subjects

(2 females. 2

males)

Homozygous 2b frameshift deletion

c.289_290deiAC

ANA+ve, Anti-dsDNA+ve, ANCA+ve

Polyarthritis Glomerulonephritis

Vasculitis Hypocomplementemia

(150)

4. 9 populalons

>90 subjects per group

Heterozygous SNP C686fT686 resulting in

R206C substitution

Found mainly in European

Populations

Reduced Dnase1L3 enzymatic activity

Disease association not studied

(151)

agreement, DNase1L3-deficient patients and DNase1L3KO
mice show the development of anti-DNA Abs at a very
early age.

Altogether, as depicted in Figure 1, these studies on
nucleases provide evidence that (1) Anti-DNA responses
are not induced by excessive IFN production per se, arguing
that IFNs play a major role in the amplification of anti-
DNA responses but not in the breakdown of tolerance
to DNA. (2) Extracellular availability of immunogenic
DNA as a direct antigen drives anti-DNA reactive B
cell responses in SLE, making a strong case for the
regulatory role of extracellular DNases in anti-DNA
antibody production.

Nucleic Acid Sensors: The Double-Edged
Sword
It is now well-established that microbial NA sensors also
recognize self-NAs under autoimmune conditions (69, 155,
156). For that reason, self-NA availability to NA-sensors
is limited by nucleases and the availability of several NA-
sensors is stringently controlled by their localization inside
endosomes and by post translational processing for function
(157). Together, they prevent self-NA availability and sensing.
The contribution of DNA and RNA-sensors in autoimmunity
has been the topic of several comprehensive reviews (158,
159). Here we highlight some key points related to the
DNA-sensors involved specifically in the antibody response to
DNA. We discuss literature which emphasizes the prominent
role of endosomal TLRs in DNA sensing to generate an
“autoantibody response,” unlike the cytosolic DNA sensors
which mainly engage an “autoinflammatory response.” All
the DNA and RNA-sensors are intracellular and further
divided into two groups—cytosolic or endosomal. In keeping
with the main theme of this review, we discuss the known
NA-sensing pathways regulated through intracellular and
extracellular nucleases.

NA-Sensing Regulated Through
Intracellular Nucleases
Mice deficient in RNaseH2 complex proteins, SAMHD1 and
ADAR1 are either embryonically lethal or do not recapitulate
human AGS. Yet, they revealed that RNaseH2 or SAMHD1-
dependent NA-accumulation led to the stimulation of the cGAS-
STING pathway, while loss of ADAR1 (deaminase) stimulated
the RNA sensing MDA5-MAVS pathway (118). Cytosolic DNA
sensing due to DNaseIII or Trex1 deficiency stimulated the
cGAS→ cGAMP→ STING→ IRF3→ IFNα signaling axis
(121, 126, 131). Overall, the predominant response to DNA
sensing in the cytosol was autoinflammatory in both humans and
mice. Additionally, although antibodies with other specificities
were observed, DNA specific antibodies were detected only in a
minority of patients (118, 122, 124). As highlighted in Figure 1

in green, these studies point toward the role of cytosolic cGAS-
cGAMP-STING signaling pathway in autoinflammation but not
in the initiation of anti-DNA antibody responses.

The contribution of lysosomal DNase2 in anti-DNA antibody
production is complicated partly because of the absence of
a viable mouse model and partly due to the paucity of
human patients identified with DNASE2mutations. The absence
of DNase2 in mice causes accumulation of apoptotic cell
derived DNA in the lysosomes of liver and bone marrow
macrophages causing lethal anemia and cell death. DNase2KO
mice can be rescued by the deletion of IFNAR. However,
“IFNAR-deficient DNase2KOmice develop chronic polyarthritis,
splenomegaly, and ANA. The accumulated DNA stimulates
the cGAS-STING-IRF3/7 pathway leading to massive type-I
interferon production, because the deficiency of either cGAS
(131)/ STING (160, 161)/ IRF3 or IRF7 (162)/AIM2 (161) can
rescue the mice form prenatal anemia and severe arthritis.
While the generation of IFNα and TNFα in DNase2-deficient
mice as well as humans is documented, anti-DNA antibody
production in DNase2KO mice is not predominant (131, 160,
163). Instead, DNase2-IFNAR-double-deficient mice developed
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antibodies against RNA-associated antigens and splenomegaly in
an RNA-driven TLR-dependent manner (161, 163, 164). Further
analysis of DNase2 in anti-DNA responses is required as the
three DNASE2-deficient patients (age 11–17) reported thus far
had fluctuating significant elevations in circulating anti-DNA
Abs (130). It is possible that the formation of anti-DNA Abs
in these patients and mice is an “after-effect,” as a result of
polyclonal activation of B cells due to chronic inflammation and
IC formation.

Altogether, the current literature suggests that the cytosolic
DNA is detected primarily through the cGAS-STING pathway
which induces a potent autoinflammatory response, while the
minimal anti-DNA antibody production seems to be a secondary
effect. This agrees with the seemingly confounding role of
STING in autoimmunity. STING appears to be a potentiator
of autoimmune responses by inducing IFNα and downstream
ISGs (165, 166). Remarkably, patients with overactive STING do
not develop detectable anti-DNA Abs (165, 166)—strengthening
the idea that cytosolic STING signaling pathway is not
directly involved in anti-DNA responses. Contrary to its
autoimmune-stimulatory activity, STING-deficiency was shown
to exacerbate autoimmune manifestations including anti-DNA
antibody production in MRL. Faslpr lupus mouse model (167).
It is likely that when cytosolic DNA is absent STING functions
as a negative regulator of endosomal TLR signaling through yet
undiscovered mechanisms. Alternately, when cytosolic DNA is
present STING induces IFNα signaling and autoinflammation.
Overall, what we can conclude with confidence is that the
cGAS-STING pathway does not seem to induce anti-DNA
Ab production.

NA-Sensing Regulated Through
Extracellular Nucleases
As discussed earlier, DNase1 deficiency does not seem to induce
anti-DNA responses by itself. However, its local functions
reported in the kidney may promote formation of immune
complexes laden with DNA, which are known to engage
the endosomal TLR9-MyD88 signaling pathway (168). Further
studies on DNase1 need to be performed to establish its NA-
sensing partners.

DNASE1L3-deficient patients and DNase1L3KO mice both
develop high titers of anti-DNA Abs at an early age, without a
female gender bias. Using DNase1L3KO mice deficient in either
STING or MyD88 we found that anti-DNA and anti-nucleosome
responses in DNase1L3KO mice are dependent on the TLR-
MyD88 pathway. Further studies are underway to delineate
which MyD88-dependent TLRs are involved in the autoimmune
responses to MP-associated DNA in D1L3KOmice. Some studies
suggest that DNase1L3 may have intracellular localization with
functions in apoptosis and inflammation, reviewed in Keyel
PA (119). However, as autoimmunity in DNase1L3KO mice
is independent of the cytosolic DNA sensor STING (67), it
indicates that the anti-DNA responses are specifically due to the
extracellular DNase function of DNase1L3. Indeed, we were able
to temporarily reduce the anti-DNA Ab titers in DNase1L3KO
mice by transient replenishment of circulating DNase1L3 enzyme

(67). Overall, extracellular DNases predominantly regulate the
stimulation of TLR-MyD88 pathway of DNA sensing, highlighted
in yellow in Figure 1.

Role of Toll-Like Receptors in Anti-DNA
Antibody Production
Deficiency of the adaptor protein MyD88 ameliorates SLE
specific autoantibodies and associated pathology in several
lupus mouse strains (169). Expression levels of TLR2, TLR7,
TLR9, IFN-alpha, and LY6E (Sca-1) mRNAs in SLE patients
are significantly higher than healthy controls, indicating
contribution of TLR-MyD88 signaling pathways in the
pathogenesis of human lupus (170). Several studies show
that circulating DNA-containing ICs correlate positively with
anti-dsDNA Ab production in SLE patients (171, 172). Indeed,
the importance of BCR/TLR–dual signaling in autoimmune B
cell responses was originally identified by using IC-mediated
activation of IgG2a-reactive murine AM14 B cells (69). However,
it is now clear that TLR engagement also promotes activation,
proliferation/ differentiation of B cells that directly bind DNA
(or other autoantigens) through the BCR and may therefore
play an important role in the early stages of autoantibody
production. Among the MyD88-dependent TLRs—TLR7 and
TLR9 are the prominent ones involved in the development of
anti-DNA Abs in mouse models of lupus and altered TLR7
and 9 expression has been reported in human SLE patients
as well (173). Perhaps the most convincing evidence for the
involvement of TLR7/9 signaling in B cells for anti-DNA
antibody production comes from the case studies of SLE
patients that develop an antibody deficiency syndrome similar
to common variable immunodeficiency (CVID). These patients
have a complete remission from SLE, with absence of anti-DNA
Abs, and B cells are unresponsive to TLR7/9 stimulation—
indicating the crucial role of TLR7/9 mediated B cell responses in
SLE (174, 175).

TLR7- the Master of RNA-Driven SLE
Pathogenesis
The seminal role of TLR7 in SLE pathogenesis is firmly
established. TLR7 promotes the formation of autoantibodies
against RNA and RNA-associated proteins. Deletion of TLR7
reduces anti-SmRNP and other RNA-associated antibody
responses, however, in most cases there is no reduction in anti-
DNA responses (158, 176, 177). It was shown that B cell-intrinsic
TLR7 signaling is essential for the formation of spontaneous
germinal centers (178). Therefore, in the B6. Sle1b lupus mouse
model where autoantibody formation is driven predominantly
through the GC-pathway (179), TLR7 deficiency also reduces
anti-DNA Abs (178, 180). Most-importantly, deficiency of
TLR7 ameliorates SLE-associated splenomegaly and nephritis
(176, 181), while expression of an extra copy of TLR7 exacerbates
it (182). Altogether, TLR7 is the master regulator of RNA-driven
TLR-dependent systemic autoimmune manifestations. However,
it does not seem to play a direct role in anti-DNA antibody
production and yet appears indirectly involved in SLE though

Frontiers in Immunology | www.frontiersin.org 10 July 2019 | Volume 10 | Article 1601

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Soni and Reizis DNases: Role in Anti-DNA Responses

its functions in molecular pathways necessary for antibody
production and inflammation.

The Dichotomous Pathogenic and
Tolerogenic Role of TLR9 in Autoimmunity
By far the most confounding endosomal TLR is TLR9, which
is endowed with both pathogenic and regulatory functions. It
is required for the generation of high-titer antibodies to DNA
and DNA-associated proteins in several murine lupus models
including MRL/Faslpr , B6. Sle1b and FcγRIIB−/− (158, 169,
176, 178). However, even though anti-DNA specific B cells and
antibody titers are reduced in the absence of TLR9, there is
an exacerbation of lupus pathogenesis (splenomegaly, nephritis,
etc.) and an increase in autoantibodies against RNA-associated
antigens (176, 177, 181, 183, 184)—suggesting a negative
regulatory or tolerogenic role for TLR9 in the pathogenesis of
lupus, by suppressing TLR7-mediated autoimmunity. Similar
regulatory role of TLR9 was demonstrated in pristane-induced
murine lupus. Pristane exposed TLR9-deficient BALB/c mice
had an exacerbated production of autoantibodies against RNA,
neutrophil cytoplasmic antigens, andmyeloperoxidase and worse
renal disease than TLR9-sufficientmice (185). TLR9 has also been
shown to promote production of protective IgM antibodies by
B-1b cells and prevent expansion of proinflammatory Th17T
cells, thereby regulating systemic autoimmunity (186). Recently,
another potential mechanism contributing to the regulatory role
of TLR9 was described. Exposure of phagocytes to apoptotic cell-
associated DNA (a common antigenic source in experimental
lupus), upregulated the expression of the transcription factor
AhR (aryl hydrocarbon receptor) in a TLR9-dependent manner.
AhR in turn drove the production of the immunoregulatory
cytokine IL-10. Therefore, loss of TLR9 or AhR in lupus
prone mice exacerbated disease (187). These studies indicate
that TLR9 stimulation by DNA in macrophages could be
immunosuppressive. However, B cells may not be subject to the
same suppressive effects as they are poor phagocytes and this
aspect needs further investigation.

A Potential Role of Surface TLRs in
Anti-DNA Responses
Several studies indicate an indirect contribution of cell surface
TLRs in anti-DNA antibody production through HMGB1 which
is a DNA binding protein known to stimulate TLR-signaling
and induce a proinflammatory program (188). In C57BL/6lpr/lpr

mice deficient in TLR2 or TLR4, glomerular IgG deposition
and mesangial cell proliferation were remarkably decreased,
and ANA, anti-dsDNA, and anti-cardiolipin autoantibody titers
were significantly reduced (189). Moreover, TLR2-deficiency
significantly reduced anti-DNA/nucleosome antibodies, renal
disease, and IL-6 production in a pristane-induced lupus mouse
model (190). Similarly, in SLE patients, HMGB1 in circulating
DNA-containing ICs from SLE patients induced production of
anti-dsDNA Abs through the TLR2-MyD88 pathway in-vitro
(172). Recently, amyloid curli-DNA complexes were also shown
to stimulate TLR9 via TLR2 (87).

In summary, the studies so far suggest a central role for TLR9
in the induction of anti-DNA antibody responses, supported by
TLR7, 2, and 4. TLR9 is the only direct endosomal DNA sensor
and induces a robust IFN response upon stimulation. However,
its endosomal localization limits its accessibility. Therefore, IC-
mediated internalization through Fc-receptors or direct BCR
mediated uptake of DNA are the most potent inducers of TLR9
and anti-DNA Abs. Surface TLRs might play a role in aiding
the delivery of DNA to TLR9. However, for long-lived plasma
cell formation the germinal center pathway of differentiation
is necessary. TLR7 plays a key role in the formation of
spontaneous GCs, probably via stimulation through endogenous
retroelements (191). Therefore, TLR7 signaling could further
promote anti-DNA responses via the GC-pathway. It is more
likely that for an effective anti-DNA B cell response all these
TLRs—TLR9, TLR7, and TLR2/4 are required in tandem and
the inflammatory program induced by them which includes
cytokines like IFNα, IFNγ, IL-6, IL-10, and TNFα is necessary
for the amplification of DNA-reactive B cells.

Interferons: Key Effectors in the
Development and Progression of Anti-DNA
Responses and SLE Pathogenesis
Type-I Interferons: Prominent Role of IFNα in

Anti-DNA Responses
The three main pathways of type-I interferon induction include
sensing by (1) cGAS-STING, (2) RIG-I/MDA5-MAVS, and
(3) TLR-MyD88/TRIF. Their involvement in the pathogenesis
of several rheumatic diseases and the current therapeutic
interventions targeting the type-I interferon pathway have been
extensively discussed in excellent reviews elsewhere (192, 193).
Type1 interferons are at the core of several disease manifestations
in monogenic disorders discussed above, so much so that most
of the symptoms have been classified separately as “type-I
interferonopathies,” with AGS as the prototype. Loss of function
mutations in cytosolic DNA/RNA processing enzymes and gain
of function mutations in the ds-RNA receptor gene IFIH1
(MDA5) (194, 195) and adapter protein TMEM173 (STING)
cause excessive type-I IFN production leading to severe disease
pathologies (122, 196). However, as discussed in previous
sections, the induction of type-I interferons by the stimulation
of cytosolic NA sensors does not seem to engage the pathways
directly responsible for anti-DNA antibody production, although
it is crucial for disease manifestations with features overlapping
that of rheumatic diseases.

On the other hand, accumulating evidence implicates the TLR
pathway of type-I IFN production as a major pathway of anti-
DNA Ab production. The most convincing data is from SLE
patients with genetic variations in the major proteins involved
in the TLR-IFN signaling axis. Polymorphisms in TLR signaling
pathway proteins such as IRF5, IRF7, IRF8, and IRAK1 are
associated with SLE (197, 198). Most of the polymorphisms in
IRFs directly correlate with high anti-DNA and anti-Ro/La/Sm
antibodies which result in increased IFNα activity (199–201).
These studies suggest a crucial role of autoantibody-DNA/ RNA
complexes in the stimulation of the TLR pathway resulting in
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increased type I IFN production (Figure 1), which feeds into an
amplification loop. Although the role of ICs in the production
of type-I IFNs is clear, whether they are directly involved in
the generation of autoantibodies found in those ICs is less
understood. In this regard, understanding the direct vs. indirect
effects of type-I IFNs on B cells may be critical. Indeed, a number
of studies have looked at the effect of IFNα on B cells in various
lupus-prone mouse models by overexpressing IFNα through
adenovirus inNZB/W-F1, NZW/BXSB and B6. Sle1,2,3, reviewed
in Liu et al. (202); or by deleting the IFNα receptor in B cells
of B6. Sle1b (203) and WASp-chimeric (204) experimental lupus
models. In all these models IFNα signaling positively correlated
with B cell activation and differentiation into GC B cells and
antibody-forming cells and high anti-DNA Ab titers. In the
B6. Sle1b model, IFNα specifically promoted autoreactive B cell
expansion and positive selection through the germinal center
pathway but was dispensable for B cell responses against foreign
antigens (203). Interestingly, in most experimental models, IFNα

production through the TLR7 signaling pathway seems to play a
major role in SLE by either regulating germinal center formation
or by promoting the generation of IC-forming pathogenic
autoantibodies that ultimately cause kidney pathology. TLR9-
deficieny in MRL.Fas(lpr) mice caused exacerbated renal disease
which was abrogated in the absence of IFNAR-signaling
through specific reduction of anti-RNA specific antibodies
(205), suggesting a crucial role of TLR7-IFNα signaling axis in
SLE pathogenesis. In DNase1L3-deficient mice where increased
accumulation of undigested cfDNA leads to specific production
of anti-chromatin and anti-DNA antibodies through the TLR-
MyD88 pathway, IFNα overexpression exacerbated anti-DNA
responses and mortality (67). Collectively, these studies establish
an important role of type I IFN in autoantibody-driven
inflammation, although it has been difficult to distinguish its
effects on autoantibody production per se vs. the downstream
inflammatory process.

IFN Gamma: Initiator of Anti-DNA Antibodies in SLE?
Type-II IFN (IFNγ) has been implicated in both human and
mouse lupus (206). Accumulation of autoantibodies has been
shown to precede clinical presentation of SLE disease by
several years (2). A comprehensive longitudinal analysis of lupus
autoantibodies, IFNα, and IFNγ from serum samples of 55
patients before and after clinical onset of SLE, with matched
controls was performed. The study revealed that in SLE patients,
autoantibodies appear years before clinical SLE is detectable
but notably they either coincided with or followed an increase
in IFNγ. In contrast, increase in IFNα was observed mostly
at the time of detectable clinical disease (207). These findings
suggest IFNγ as the initiator and IFNα as the propagator of
autoantibody production. In line with this model, recently, in two
independent studies with B6. Sle1b or WASp murine models of
lupus, deletion of IFNγ receptor in B cells led to a complete loss of
germinal centers, abolishment of anti-dsDNA Abs and systemic
autoimmune manifestations (204, 208). In WASp chimeric mice
and in human B cells, IFNγ signaling along with BCR/CD40 and
TLR signaling was shown to be necessary for the induction of Bcl-
6, the master regulator of GC responses (204). Alternately, in the

B6. Sle1bmodel, IFNγ signaling through STAT1 was required for
the expression of transcription factor T-bet, and IFNγ production
in B cells, which then differentiated into pathogenic anti-DNA
IgG2b/2c producing cells (208). Interestingly, a subset of B cells
expressing T-bet, CD11c, and IFNγ named age-associated B cells
(ABCs), have been implicated in SLE pathogenesis as well (209).
Moreover, upon deletion of IFNγ a dramatic decrease in anti-
dsDNA antibodies of IgG2a subclass and reduced proliferation
of B cells was also observed in the MRL-FAS (lpr) mice (210),
where anti-DNA antibody production occurs mainly through
the extrafollicular pathway (20). Overall, these studies highlight
the important role of IFNγ signaling in the GC, extrafollicular,
and ABC-associated pathways of anti-DNA antibody production.
Several studies describing IFNγ in SLE, highlight the role of T
cells in the production of pathogenic IFNγ (204). Indeed, a higher
percentage of CD4+ and CD8+ T cells from SLE patients produce
excessive IFNγ (211). Additionally, Tfh mediated autoimmunity
in Roquinsan/san mice was induced by the accumulation of
excessive IFNγ producing T cells due to delayed degradation
of IFNγ mRNA (212). Considering the evident importance of
IFNγ in autoimmunity, neutralization, or reduction of IFNγ

has been tried as a therapeutic modality in mice and human
SLE. Significant reduction in autoimmunity was observed in
NZB/NZW-F1, MRL. Faslpr and pristane induced mouse model
of lupus, however, due to the crucial role of IFNγ in antiviral
immunity in humans, the usefulness of IFNγ blockade in SLE
may be limited (206).

Overall, the role of interferons in anti-DNA Ab production
is well-established. However, due to the significant overlap
between the genes induced by IFNα and IFNγ (213, 214),
it is harder to delineate their individual contribution to
autoantibody production and SLE pathogenesis. Based on the
evidence discussed above, it is plausible that under autoimmune
conditions (in the presence of cfDNA/RNA or cell-intrinsic
defects), autoantibody production is initiated by the stimulation
of B cells by antigen-stimulated IFNγ-producing T cells, leading
to autoreactive B cell proliferation and differentiation. The
autoantibodies produced thereby form complexes with the
cfDNA/RNA may then promote pDC/DC activation and IFNα

production, which would further amplify the response, as shown
in the schematic in Figure 1.

CONCLUSIONS

Emerging genetic and functional evidence suggests that the
efficient degradation of extracellular DNA is an important
checkpoint in preventing the stimulation of DNA-reactive B cells.
As depicted in Figure 1, a B cell-intrinsic TLR-MyD88 pathway
of DNA recognition seems to be necessary for the break in
tolerance to DNA, supported by helper T cells recognizing DNA-
associated antigens. These autoreactive B cells could further
proliferate and differentiate in response to type-I IFNs produced
by themselves and by myeloid/ stromal cells, thereby amplifying
the autoantibody response. Therefore, using interventions that
could enhance or amplify the degradation of extracellular DNA
may work to impede the production of anti-DNA antibodies and
could be tested as a therapeutic for SLE.
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