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The tumor microenvironment (TME) of diverse cancer types is often characterized by

high levels of infiltrating myeloid cells including monocytes, macrophages, dendritic cells,

and granulocytes. These cells perform a variety of functions in the TME, varying from

immune suppressive to immune stimulatory roles. In this review, we summarize the

different myeloid cell populations in the TME and the intratumoral myeloid targeting

approaches that are being clinically investigated, and discuss strategies that identify

new myeloid subpopulations within the TME. The TME therapies include agents that

modulate the functional activities of myeloid populations, that impact recruitment and

survival of myeloid subpopulations, and that functionally reprogram or activate myeloid

populations. We discuss the benefits, limitations and potential side effects of these

therapeutic approaches.

Keywords: tumor micoenvironment, macrophage, tumor associated macrophage (TAM), immune checkpoint

blockade (ICB), dendritic cell (DC), myeloid cells, myeloid tuning, monocytes

INTRODUCTION

The tumor microenvironment (TME) consists of a cellular multitude including fibroblasts,
endothelial cells, and immune cells from the lymphoid and myeloid lineage (1–3). The TME shapes
the growth of tumor cells and influences responses to therapies (4). In cancer patients, the immune
system fails to suppress tumor growth in part due to the presence of active immune checkpoints
or “brakes,” that usually result in the suppression of T-cell function (5, 6). CTLA-4 was the first
immune checkpoint identified on T-cells in 1996 (7) and led to the development of the anti-
CTLA-4 antibody Ipilimumab that is now approved in the clinic (8). PD-1 (9) was the second
immune checkpoint identified (10) and led to the development of multiple anti-PD-1 and anti-PD-
L1 monoclonal antibodies that are now approved therapies (11, 12). These Immune Checkpoint
Blockade (ICB) therapies mainly function by re-engaging the immune system to promote anti-
tumor activity. In the clinic, ICB therapies have shown profound clinical benefits and durable
responses in a subset of patients in multiple tumor indications, including metastatic melanoma,
NSCLC, and renal cell carcinoma (13). Only about 25% of patients across all indications respond
to ICB therapies, highlighting the importance for additional therapies to treat the remaining non-
responsive patients (14). There is currently a major effort to develop therapies that block additional
immune inhibitory pathways (e.g., TIM3, LAG3, IDO, VISTA, and KIR) or that activate immune
co-stimulatory receptors (e.g., CD40, GITR, ICOS, CD137, and OX40) (15). To date, these second
generation immune-therapies have yet to yield significant clinical efficacy beyond anti-PD-1,
anti-PD-L1, or anti-CTLA-4 therapies. For instance, IDO-1 inhibitors failed to provide benefit
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as monotherapy in Phase I/II clinical trials (16, 17) and in
combination with anti-PD-1 therapy in a Phase III clinical trial in
advanced melanoma patients (18), highlighting the challenges to
understand the biology of this drug target and to explore further
combination therapies in the clinic.

Both the lack of progress in next-generation ICB agents
targeting the T cells as well as identification of resistance and
regulatory pathways beyond T cells in the TME has renewed
interest in identification of novel targets in the TME. Profiling the
immune cells in the TME of patients with advanced techniques
demonstrated significant differences in the immune infiltrates
and composition of the TME within patients from the same
tumor types, especially in cells from the myeloid lineage (19–23).
The intratumoral myeloid cells in the TME are heterogeneous in
nature and include mononuclear cells (monocytes, macrophages,
dendritic cells), and polymorphonuclear granulocytes (3, 19, 24,
25). In normal tissues, these myeloid cells assist in damage
repair and provide a first line of defense against dangers such as
pathogens and viruses. They are not uniform, either in form or
function, presumably to ensure versatile responses to the diverse
challenges faced in normal and disease physiology. In the TME,
they can either suppress or promote anti-tumor immunity and
play an important role in phagocytosis and antigen presentation
to T-cells (24, 26, 27). For instance, myeloid inhibitory cells such
as tumor-associated macrophages (TAMs) can limit responses
to chemotherapy, irradiation, and angiogenic inhibitors (28–
30). In contrast, stimulatory myeloid cells such as migratory
dendritic cells (DCs) are critical for eliciting potent anti-tumor
T-cell responses, and patients with higher migratory DCs have
significantly increased overall survival (19, 20, 24, 26, 27, 31).
Despite the potential to mediate antitumor effector T cell
immunity, however, steady-state DC populations also maintain
peripheral T cell tolerance (32, 33) and these baseline homeostatic
processes may compromise their stimulatory capacity in some
patients (34, 35). Therefore, strategies to target specific myeloid
populations and cellular programs in the clinic have attracted
considerable attention from many companies, and multiple
drug agents are currently being evaluated in the clinic. In this
review, we describe the myeloid subpopulations in the TME
and summarize the different myeloid tuning strategies to target
these cells.

MYELOID SUBPOPULATIONS IN THE
TUMOR MICROENVIRONMENT

Themyeloid cell populations within the TME, their ontogeny and
development, the key chemokines required for their trafficking
and survival, as well as the gene products that are used by
many researchers to define the various myeloid populations in
humans and mice are outlined in Figure 1 and discussed in more
detail below.

Macrophages
The most abundant myeloid population in tumors are generally
TAMs (27, 36). Though an inclusive term, TAMs have
heterogeneous ontogeny and can broadly be classified on this

basis as monocyte-derived macrophages “mo-Macs” or yolk-sac
derived tissue-resident macrophages (29, 30, 36, 37). While high
frequencies of TAMs are generally associated with poor prognosis
in a wide variety of cancer indications, correlations between
high TAM density and improved survival have also emerged
(30, 38, 39). These discordant observations raise questions
about whether there are qualities of TAMs that can make them
beneficial to an adaptive response, and also reinforce the need
for markers to rigorously distinguish TAMs from distinct origins,
distinct phenotypes, as well as from other myeloid populations
(Figure 1). Like some of their other myeloid counterparts, TAMs
take on distinct activation states. Although it trivializes the
diversity in vivo, TAMs are often reduced to existing in binary
states of classical (“M1”) or alternative (“M2”) activation based
on in vitro studies that skewed macrophage differentiation with
the single chemokines IFN-γ vs. IL-4, respectively. Although
more reductionist than what occurs in vivo, these two cellular
profiles exemplify the possibility of polarized transcriptional and
secretory programs, and those in turn may explain conflicting
correlations in patient outcome (40). For instance, “M2”
signatures, which sometimes correlate with poor prognosis, tend
to be anti-inflammatory and associated with tissue remodeling
and wound-healing processes (30, 38). However, it is now clear
that activation and polarization of macrophages consist of a
range of non-terminal phenotypes rather than two binary states
and there are multiple factors contributing to their intratumoral
and intertumoral heterogeneity, such as the anatomical location,
cancer subtype, and exposure to a myriad of environmental
factors corrupting the TAMs to exist in a katzenjammer
state (30, 38, 41, 42).

The heterogeneity of macrophages may be due to lineage-
imprinted differences between mo-Macs and tissue-resident
macrophages (30, 37, 43, 44). While some tissue-resident
macrophages express tissue-specific markers (45), recent
advances have improved separation of mo-Macs and tissue-
resident macrophages in the TME (36, 37). In these studies,
tissue-resident macrophages exhibited a stronger “M2” profile
(36) and took on a wound repair program (37) while mo-Macs
exhibited the ability to prime CD8+ T cells, although these
experiments were performed in vitro with pulsed antigen,
bypassing normal cross-presentation machinery (37). RNA-
sequencing (RNA-seq) analyses of breast and endometrial
cancer TAMs in comparison with FACS sorted tissue-resident
macrophages from normal tissues confirmed the existence of
tissue-specific niches that influence macrophage and TAM
profiles irrespective of their common precursor cells (45). A
better understanding of macrophage origin and heterogeneity
is vital when exploring the effects of targeting the macrophage
population within the TME. Recent studies using single-cell
profiling by RNA-seq suggest a more complex heterogeneity
and plasticity of macrophages that could further affect tumor
development and responsiveness to immunotherapy (21–23).

Dendritic Cells
Conventional DCs (cDCs) similarly exhibit diversity, broadly
delimited as cDC1 and cDC2, with commitment to each
occurring early in specific precursor populations, called
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FIGURE 1 | Summary of the different subtypes of myeloid cells present in the TME, their ontogeny and development, their survival and trafficking requirements, and

their human and mouse nomenclatures including transcription factors and cell surface markers. The “Others” myeloid cells in the last row represent the granulocytes.

“Lineage−” is defined as CD3−CD14−CD16−CD19− for the human nomenclature and CD3−NKp46−B220− for the murine nomenclature.

pre-cDCs (46) and the two mature classes corresponding
to differential transcription factor requirements and having
functional specialization (47–49). Pre-cDCs are detectable in
the blood, lymphoid, and non-lymphoid tissue, and can also
be found in the TME (50). Although cellularity may vary, both
cDC1s and cDC2s can be found in mouse and human tumors
(21, 27, 51) and take on distinct roles in the priming of anti-
tumor T cells. cDCs, particularly cDC1s, require FLT3-ligand
(FLT3-L) for development and in situ proliferation, as well as
GM-CSF for survival in peripheral tissue (52). Although there
have been reports of some cancers producing GM-CSF (53), the

origin of these cytokines in the TME is largely uncharacterized.
Notably, recent data suggests that natural killer cells act as a rich
source of FLT3-L in the TME (20).

cDC1s excel at antigen cross-presentation and are critical
for initiating CD8+ T cell responses across a number of
immunological settings, including tumor models (27, 51, 54). In
mice, cDC1s have two major subclasses: lymphoid tissue resident
CD8a+ DCs and non-lymphoid tissue (NLT) migratory CD103+

DCs, which are strikingly similar to one another transcriptionally
and share expression of the chemokine receptor XCR1 (49, 51,
55). Together cDC1s depend on transcription factors IRF8 (49)
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and BATF3 (54) for development, although strict requirements
between the subsets may differ (48). Although genetic models
eliminating these genes are useful for broad depletion of
cDC1s (54), more recent use of mixed bone marrow chimeras
demonstrated a specific and critical role for CCR7+ CD103+

DCs in migration and initiation of CD8+ T-cells responses in
tumor-draining lymph nodes (LNs) (26, 51). In addition to
outperforming the other DC subset at cross-presentation, tumor
cDC1s are a primary producer of IL-12 (27), which contributes to
CD8+ T-cell proliferation and effector function and is associated
with higher rates of responsiveness to chemotherapy (56).
Furthermore, cDC1s exert potent anti-tumor activity in the TME
despite being an extremely rare population (27). Tumor cDC1
production of CXCL9 and CXCL10 can recruit activated T-
cells to the TME (57) where local cDC1 re-stimulation of T-
cells support anti-tumor activity (27). Although the mechanistic
requirements and consequences of DC re-activation are still
not well-understood, tumor cDC1s may promote higher T-cell
motility and contact with cancer cells (20, 57, 58).

In contrast to cDC1s, cDC2s typically preferentially activate
CD4+ T-cells through presentation of peptides on MHC-
II, express SIRPα, and are dependent on the transcription
factor IRF4 (49, 52). Despite this overarching classification,
cDC2s encapsulate a great degree of heterogeneity (55). While
historically cDC2s have largely been identified as CD11b+ DCs
(47), dermal cDC2s do include a CD11bhi, and CD11blo KLF4-
dependent population (59), highlighting the advantage of using
SIRPα as a defining marker. Another complicating feature of
cDC2s is that they share many surface markers with monocytes
and macrophages (e.g., CD11b, CD11c, SIRPα, CX3CR1, CCR2,
CD14). While this overlap has made it difficult to precisely
define and isolate cDC2s, additional markers including CD64,
MERTK, and Ly6C have been proposed to selectively identify
macrophages and monocytes (60). ZBTB46 has also emerged as
a cDC lineage-restricted transcription factor and may help to
clarify ontogeny (61). In humans, cDC2s are best aligned with the
CD1c+ (BDCA1+) subset found in the blood and various tissues
including tumor (35, 62, 63) and comprise at least two subset
populations as revealed by recent single-cell RNA-sequencing
analysis (35, 64).

Inflammatory DCs
Although cDCs are tautologically pre-cDC-derived, monocytes
can be recruited to sites of inflammation and differentiate
into mo-DCs, also called inflammatory or iDCs, in response
to a number of infectious or adjuvant agents (65). Monocyte
ontogeny is primarily demarcated by CCR2-dependency and
surface markers, and transcriptional profiling of skin cell
populations revealed that mo-DCs exhibit a similar gene
signature to CD11b+ cDCs (60). In some cases, mo-DCs may
substitute for cDCs functionally or shape T-cell differentiation
(65). As with cDCs, mo-DCs have been identified in the
TME of mice (66) and human tumor ascites (65), and
may also contribute to anti-tumor immunity as they were
suggested to actively suppress T-cell responses (66). Indeed,
anthracycline chemotherapy can prompt massive recruitment
and differentiation of monocytes. In this model the therapeutic

benefit of chemotherapy relied on CD11b+ cells (67), suggesting
that these mo-DCs may exhibit anti-tumor activity. Many
questions remain as to how mo-DCs develop, if mo-DC
populations from these studies share common transcriptional
programs, and how they are functionally distinct from their
peer cDCs. While seemingly semantic, clarity on origin,
and functional specification will allow for more consistent
comparisons across models and shed light on the myeloid
populations that contribute to anti-tumor responses.

Plasmacytoid DCs
Plasmacytoid DCs (pDCs) develop from the common DC
progenitor (CDP), but are independent of the cDC lineage
(47). While they can promote antiviral responses through type-
I interferon, pDCs can also induce tolerance and have been
associated with poor outcome in breast and ovarian cancer (68).
Despite their proposed tolerogenic properties, however, some
studies have found potent anti-tumor activity in pDCs upon
therapeutic stimulation (68). It is important to note, however,
that a recent study identified human CD123+ CD33+ pre-cDCs
to exhibit substantial surface marker overlap with pDCs (69).
Although CD33 and several othermarkers can separate pre-cDCs
from pDCs (69), the cells used in older studies of pDCs may
be contaminated with pre-cDCs, and conclusions drawn may
warrant reevaluation.

Monocytes
In both mouse and human, monocytes develop in a colony-
stimulating factor 1 (CSF-1) dependent manner primarily
in the bone marrow, through differentiation of monocyte-
committed common monocyte progenitor (cMoP) population
(70, 71). Although single-cell sequencing approaches are rapidly
identifying subsets of these cells in bone-marrow, blood, and
tissue, two primary subtypes, classical and non-classical or
“patrolling” monocytes, clearly exist within the blood (72, 73).

In human, classical monocytes are characterized by their
expression of both CD14 and CD16, while in mouse they are
described as being Ly6ChiCCR2+. Classical monocytes, hereby
referred to as Ly6Chi monocytes, are thought to persist in
circulation for 1–2 days, at which point they have either entered
a tissue site in response to a stimulus, differentiated into a
non-classical monocyte, or died (74). Studies on a population
of cells known as monocytic myeloid-derived suppressor cells
(mMDSC) (75), which includes monocytes, have been shown
to promote tumor growth through the production of various
immunosuppressive cytokines and factors (76–78) and the
suppression T-cell proliferation and function (79), suggesting
that perhaps, even as an undifferentiated precursor monocytes
may contain functional capacity of consequence. Furthermore,
a recent study using multiphoton intravital imaging of the lung
pre-metastatic site in mice revealed that as pioneering metastatic
tumor cells arrived and died, distinct waves of myeloid cells
ingested tumormaterial, supplying antigen to both pro- and anti-
tumor immune compartments (80). Monocytes were found to
engulf the majority of tumor material, potentially sequestering
valuable tumor antigen from stimulatory DC populations and
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genetic ablation of monocytes resulted in higher antigen loads in
those DC.

Non-classical monocytes, hereby referred to as Ly6Clow

monocytes, are described in human as being CD14low CD16+

and in mouse as Ly6ClowCCR2−Nr4a1+ (81). Unlike their
Ly6Chi monocyte counterparts, the function and critical features
of Ly6Clow monocytes are poorly understood, particularly in the
TME. Ly6Clow monocytes are generally characterized as being
blood-resident, which helps explain data suggesting a role for
them in the surveying of endothelial integrity (82, 83). While
the role and even presence of Ly6Clow monocytes in the TME
is debatable, Ly6Clow monocyte involvement in the metastatic
site is clearer. A recent study (84) using Nr4a1-deficient mice,
which lack Ly6Clow monocytes, demonstrated that in the absence
of Ly6Clow monocytes tumor metastatic burden significantly
increased but could be reduced by adoptive transfer of Nr4a1-
proficient LyC6low monocytes. It was shown that infiltrating
Ly6Clow monocytes detect tumor through CX3CR1 and were
capable of phagocytosing tumor material.

Granulocytes
These cells include tumor associated neutrophils (TANs), which
are distinct from circulating neutrophils in phenotype, cell
surface markers, and chemokine activity. These neutrophils
are recruited to the tumor site through various chemokine
and receptor systems and their accumulation in the tumor
is influenced by multiple factors and interactions with other
cells types and environmental cues in the TME (85). Although
neutrophils can inhibit or promote tumor progression based
on their active role as regulators of the immune system
and their impact on the TME, clinical evidence show their
correlation with poor prognosis in multiple tumor indications
such as melanoma, lung, melanoma, and renal carcinomas (86–
90). Various reviews have highlighted the paradoxical role of
neutrophils and provided insights on the mechanisms for their
recruitment to the tumor site, their functional plasticity and
polarization, and their activation to support tumor progression
or enhance their antitumor functions (91–97). At present,
numerous laboratories are engaged in single-cell sequencing
efforts focusing on neutrophil heterogeneity, polarization, and
lineage determination.

Beyond neutrophils, inflamed tissue can contain mast cells,

eosinophils, or basophils, but little is known of the possible
role(s) for these cells in cancer progression and the surrounding
microenvironment. Similar to monocytes and macrophages,
these cells can produce various angiogenic and lymphangiogenic
factors important for tumor development andmetastasis, chronic
inflammation, and tissue injury and remodeling (98, 99).
Mast cells are the stromal components of the inflammatory
microenvironment and secrete a myriad of protumorigenic and
antitumorigenic molecules depending on the environment, the
tumor type, or their peritumoral or intratumoral localization
(100). Eosinophils and basophils can also have protumorigenic
or antitumorigenic roles, depending on their modulatory and
regulatory functions to other immune cells in the TME or to
their cytotoxic effects against tumor cells (101–103). Increasing
evidence suggests that neutrophils, mast cells, eosinophils, or

basophils can be potential therapeutic targets in different types
of tumors (3, 100). However, there are still many unanswered
questions that should be addressed before we understand
their exact function in tumor progression and design accurate
strategies for targeting them.

Both monocytes and neutrophils are often referred to as
“myeloid-derived suppressor cells” orMDSC, a name given based
on data suggesting a pro-tumoral, immune suppressive function
when cultured with T-cells. For clarity purposes, we will refer
to all myeloid cells in this review based on their individual
population name.

THERAPEUTIC TARGETING OF MYELOID
POPULATIONS IN THE TME

Given that there are populations of myeloid cells within the
TME that impede productive anti-tumor immunity, it is of
great interest to target myeloid populations that block anti-
tumor immunity antagonistically, or to activate stimulatory cells
that can help promote anti-tumor immunity. In this review we
discuss the notion of “myeloid tuning,” which broadly involves
the use of therapeutic compounds to change the composition

of myeloid cells in the TME or to alter their functional

attributes. Figure 2 describes the six myeloid tuning strategies
and highlights the myeloid targets known to inhibit recruitment,
block survival, affect proliferation, induce immune activation,
alter differentiation, and stimulate reprogramming of myeloid
cells in the TME (Figure 2 and Table 1). Multiple recent reviews
have described various strategies to target the myeloid cells in
the TME (3, 25, 29, 30, 38, 104–106). Here we aim to focus
on the ongoing clinical trials of agents targeting the TME
myeloid cell populations that are showing early therapeutic
promise, placing them within the “myeloid tuning” mechanisms-
of-action framework.

Targets and Therapies That Alter TME
Myeloid Population Composition by
Altering Cell Recruitment, Proliferation,
and Survival
Altering the recruitment of specific subsets of myeloid cells to the
tumor, or modulating their proliferation or survival is viewed as
a promising approach to promote durable anti-tumor responses
either as single agent therapies or in combination with currently
available cancer therapies. Many of the myeloid protein targets
that are being pursued therapeutically to alter TME myeloid
composition (Figure 2) vary in their specificity or lack thereof for
specific subsets, and are discussed below.

CCL2-CCR2 Axis
The chemokine CCL2 and its receptor CCR2 are critical
for attracting monocytes into tissues. CCR2 inhibition retains
monocytes in the bone marrow and reduces the number of
TAMs in tumors, leading to decreased tumor burden and
metastasis in different tumor indications (107–114). Previous
reviews have described different strategies to prevent CCL2-
mediated recruitment of myeloid cells and elucidated the
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FIGURE 2 | Cartoon depicting the six “Pillars of Myeloid Tuning” and the myeloid targets within each category. The myeloid tuning strategies affecting the

Composition of the TME include targets modulating Recruitment (CCL2-CCR2/5, CSF1-CSF1R, CXCL8-CXCR1/2; CXCL12-CXCR4, VEGF-VEGFR, Endothelins),

Proliferation (FLT3L-FLT3, TLRs, CD40-CD40L), and Survival (CSF1R, TRAIL/Caspase 8, VEGF, c-kit). The myeloid tuning strategies altering the Function of the TME

include targets inducing Differentiation (CSF1, GM-CSF, G-CSF, Retinoic Acid Receptor ATRA), Reprogramming (Histone Deacetylase, CSF1R, MARCO, Arginase,

PI3Kγ), and Activation (CD47-SIRPα, A2AR, CD73/CD39, STING, TLRs, CD40, Arginase). The indicated myeloid targets in each category are not comprehensive.

pharmacological difficulties in safely and efficiently blocking
this CCL2/CCR2 axis (29, 30, 115–118). Multiple experimental
agents targeting the CCL2/CCR2 axis also showed limited
efficacy in the clinic, and the clinical testing of some of
these agents were recently discontinued (e.g., Carlumab from
Centocor/J&J, Plozalizumab from Millenium Pharamceuticals,
and PF-04136309 from Pfizer). The limited therapeutic efficacy
of the Carlumab was attributed to the profound accumulation
of total CCL2 in the periphery due to high chemokine synthesis
rate and the significant discrepancy between the in vitro and
in vivo KD values (119, 120). The limited efficacy and lack of
durable responses of these agents could in part be linked to the
rapid compensation by granulocytes, the lack of effect on tissue
resident macrophages, and the rebound inmonocyte recruitment
after treatment cessation as seen in pre-clinical models (37,
121, 122). The anti-CCR2 mAb Plozalizumab was terminated
in a Phase I trial in malignant melanoma (NCT02723006) due
to a classified business decision in May 2018. PF-04136309, a
small molecule antagonizing CCR2, was used in combination
with FOLFIRINOX in a Phase Ib study in resectable pancreatic
ductal carcinoma (NCT01413022). Treatment related toxicities
of grade≥3 adverse events were seen in≥10% of patients treated

with both therapies, which included neutropenia, lymphopenia,
hypokalemia, and diarrhea (123). Another clinical trial in
metastatic pancreatic patients using PF-04136309 in combination
with nab-paclitaxel and gemcitabine was terminated in May 2017
(NCT02732938) reported by the sponsor as due to a change in
portfolio strategy without commenting on either safety or efficacy
signals. Previously, it had been reported that in 21 enrolled
patients, the drug had encouraging safety, PK, and efficacy
profiles (124).

NOX-E36, an Emapticap pegol RNA Aptamer that targets
CCL2 showed an acceptable clinical safety profile in type II
diabetes patients and decreased the CCR2+ monocytes blood
count as expected [NCT01547897; (125)]. NOX-E36 therapy
in a mouse tumor model inhibited the infiltration of tumor-
associated macrophages leading to significant changes of the
TME and a reduction in liver tumor burden (126). The small
molecule inhibitor CCX-872, which targets CCR2, is currently
in the clinic for the treatment of patients with advanced and
metastatic pancreatic cancer (NCT02345408), and data from the
ongoing Phase Ib trial demonstrated promising safety and overall
survival with the CCX872 and FOLFIRINOX combination
therapy compared to FOLFIRINOX alone (127, 128).
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TABLE 1 | Summary of ongoing clinical trials with agents that target myeloid cells.

Target Myeloid target cells Drug name Drug class Sponsor Indications Clinical trials

CCL2 Chemokine for Monocytes and

other immune cells

NOX-E36 PEG-Aptamer Noxxon Pharma AG NSCLC and PDAC Phase Ib/II Planned

CCR2

CCR5

Monocytes Macrophages,

DCs, T-cells

BMS-813160 SM Bristol-Myers Squibb Co Advanced Solid Tumors Phase Ib/II, NCT03184870

CCR2 Monocytes Macrophages,

DCs, T-cells

CCX872-B SM ChemoCentryx Inc Metastatic Adenocarcinoma of

the Pancreas

Phase Ib; NCT02345408

CXCR2 Neutrophils, Mast cells,

Macrophages, Monocytes

SX-682 SM Synthrix Biosystems Inc Metastatic Melanoma Phase I; NCT03161431

CXCL8 Chemokine for neutrophils and

monocytes

BMS-986253 SM Bristol-Myers Squibb Co Hormone sensitive prostate

cancer

Phase Ib/II; NCT03689699

CSF1R Monocytes, Macrophages,

DCs (also on microglia, Paneth

cells, Ostecolasts, Epithelial

cells)

PLX-3397 SM Plexxikonn Inc Tenosynovial Giant Cell Tumor Phase III NCT02371369

CSF1R Monocytes, Macrophages,

DCs (also on microglia, Paneth

cells, Ostecolasts, Epithelial

cells)

PLX-3397 SM Plexxikonn Inc Solid Tumors

GBM and Gliosarcoma

Refractory Leukemias and

Refractory Solid Tumors

KIT-mutated Melanoma

Metastatic Breast Cancer

Phase I; NCT01004861

Phase I/II; NCT02777710

Phase I/II; NCT01790503

Phase I/II; NCT02390752

Phase I/II; NCT02975700

Phase Ib/II; NCT01596751

CSF1R Monocytes, Macrophages,

DCs (also on microglia, Paneth

cells, Ostecolasts, Epithelial

cells)

ARRY-382 SM Array BioPharma Inc Solid Tumors Phase Ib/II NCT02880371

CSF1R Monocytes, Macrophages,

DCs (also on microglia, Paneth

cells, Ostecolasts, Epithelial

cells)

Cabiralizumab mAb Bristol-Myers Squibb Co Advanced Pancreatic Cancer

Stage IV Pancreatic Cancer

Resectable Biliary Tract Cancer

Phase II; NCT03336216

Phase II; NCT03697564

Phase II; NCT03768531

CSF1R Monocytes, Macrophages,

DCs (also on microglia, Paneth

cells, Ostecolasts, Epithelial

cells)

Cabiralizumab mAb Bristol-Myers Squibb Co Advanced Melanoma, NSCLC,

and RCC

Tenosynovial Giant Cell Tumor

Selected advanced cancers

Phase I; NCT03502330

Phase I/II; NCT02471716

Phase I; NCT02526017

CSF1R Monocytes, Macrophages,

DCs (also on microglia, Paneth

cells, Ostecolasts, Epithelial

cells)

BLZ-945 SM Novartis AG Advanced Solid Tumors Phase I/II; NCT02829723

CSF1R Monocytes, Macrophages,

DCs (also on microglia, Paneth

cells, Ostecolasts, Epithelial

cells)

LY-3022855 mAb Eli Lilly and Co Melanoma

Pancreatic Cancer

Phase I/II; NCT03101254

Phase I; NCT03153410

CSF1R Monocytes, Macrophages,

DCs (also on microglia, Paneth

cells, Ostecolasts, epithelial

cells)

Emactuzumab mAb F. Hoffmann-La Roche

Ltd

Advanced Solid Tumors

Platinum-Resistant Ovarian

Cancer

Phase I; NCT02323191

Phase II; NCT02923739

CSF1R Monocytes, Macrophages,

DCs (also on microglia, Paneth

cells, Ostecolasts, Epithelial

cells)

AMG-820 mAb Amgen Pancreatic Cancer, Colorectal

Cancer, NSCLC

Phase Ib/II; NCT02713529

CSF1R Monocytes, Macrophages,

DCs (also on microglia, Paneth

cells, Ostecolasts, Epithelial

cells)

DCC-3014 SM Deciphera

Pharmaceuticals LLC

Hematological Tumors; Solid

Tumors

Phase I; NCT03069469

CSF1R Monocytes, Macrophages,

DCs (also on microglia, Paneth

cells, Ostecolasts, Epithelial

cells)

SNDX-6352 SM Syndax Pharmaceuticals

Inc

Solid Tumors Phase I; NCT03238027

M-CSF Growth factor for monocytes,

macrophages, and other cells

Lacnotuzumab mAb Novartis AG Advanced Malignancies Phase Ib/II; NCT02807844

(Continued)
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TABLE 1 | Continued

Target Myeloid target cells Drug name Drug class Sponsor Indications Clinical trials

M-CSF Growth factor for monocytes,

macrophages, and other cells

PD-0360324 mAb Pfizer Inc Platinum-Resistant Epithelial

Ovarian Cancer

Phase II; NCT02948101

CD47 Tumor Cells, Red Blood Cells Hu-5F9G4 mAb Forty-Seven Inc Hematological Malignancies

Relapsed/Refractory B-cell

Non-Hodgkin’s Lymphoma

Ovarian Cancer

Solid Tumors and Advanced

Colorectal Cancer

Phase I; NCT03248479

Phase Ib/II; NCT02953509

Phase I; NCT03558139

Phase Ib/II; NCT02953782

CD47 Tumor Cells, Red Blood Cells IBI-188 mAb Innovent Biologics Inc Advanced Malignant Tumors and

Lymphoma

Advanced Malignancies

Phase I: NCT03763149

Phase I: NCT03717103

CD47 Tumor Cells, Red Blood Cells CC-90002 mAb Celgene Corp Advanced Solid and

Hematologic Cancers

Phase I; NCT02367196

CD47 Tumor Cells, Red Blood Cells SRF-231 mAb Surface Oncology Inc Advanced Solid and

Hematologic Cancers

Phase I; NCT03512340

SIRPα Macrophages, DCs ALX-148 Fusion protein ALX Oncology Inc Advanced Solid Tumors and

Lymphoma

Phase I; NCT03013218

SIRPα Macrophages, DCs TTI-621 Fusion protein Trillium Therapeutics Inc Hematologic Malignancies and

Selected Solid Tumors

Relapsed and Refractory

Solid Tumors

Phase I; NCT02663518

Phase I; NCT02890368

SIRPα Macrophages, DCs TTI-622 Fusion protein Trillium Therapeutics Inc Relapsed or Refractory

Lymphoma or Myeloma

Phase I; NCT03530683

PI3Kγ Macrophages, neutrophils,

eosinophils. Mast cells

IPI-549 SM Infinity Pharmaceuticals

Inc

Advanced Solid Tumors

Advanced HPV+ and

HPV- HNSCC

Phase I; NCT02637531

Phase II; NCT03795610

A2AR T-cells, monocytes,

macrophages, DCs, NKs

CPI-444 SM Corvus Pharma Advanced Cancers Phase I; NCT02655822

A2AR T-cells, monocytes,

macrophages, DCs, NKs

PBF-509 SM Novartis AG Advanced NSCLC Phase I; NCT02403193

A2AR T-cells, monocytes,

macrophages, DCs, NKs

AB-928 SM Arcus Biosciences Inc Advanced Malignancies

Gastrointestinal Malignancies

TNBC and Gynecologic

Malignancies

Lung Cancer

Phase I; NCT03629756

Phase I; NCT03720678

Phase I; NCT03719326

Phase I; NCT03846310

CD73 Ectonucleotidase in the TME MEDI-9447 mAb MedImmune LLC Advanced EGFRm NSCLC

Relapsed Ovarian Cancer

Metastatic Triple-Negative Breast

Cancer

Metastatic Pancreatic Cancer

Phase Ib/II; NCT03381274

Phase II; NCT03267589

Phase I/II; NCT03616886

Phase Ib/II; NCT03611556

CD73 Ectonucleotidase in the TME CPI-006 mAb Corvus Pharma Advanced Cancers Phase I; NCT03454451

CD73 Ectonucleotidase in the TME BMS-986179 mAb Bristol-Myers Squibb Co Advanced Solid Tumors Phase I/IIa; NCT02754141

CD73 Ectonucleotidase in the TME AB-680 SM Arcus Biosciences Inc Healthy Volunteers Phase I; NCT03677973

CD73 Ectonucleotidase in the TME NZV-930 mAb Novartis AG Advanced Malignancies Phase I; NCT03549000

Arginase Macrophages, Neutrophils CB-1158 SM Calithera/Incyte Corp Advanced and Metastatic Solid

Tumors

Relapsed or Refractory

Multiple Myeloma

Phase I/II; NCT02903914,

NCT03314935

Phase I/II; NCT003837509

Arginase Macrophages, Neutrophils AEB-1102 Rec Enzyme Aeglea Biotherapeutics Advanced Solid Tumors

Extensive Disease SCLC

Phase I; NCT02561234

Phase I/II; NCT03371979

Arginase Macrophages, Neutrophils ARG1-18 Vaccine Herlev Hospital Metastatic Solid Tumors Phase I; NCT03689192

TLR3 DCs, Macrophages, T-cells Rintatolimod Oligonucleotide Hemispherx Biopharma

Inc

Recurrent Ovarian Cancer

Metastatic Colorectal Cancer

Peritoneal Surface Malignancies

Metastatic TNBC

Phase II; NCT03734692

Phase I; NCT03403634

Phase I/II; NCT02151448

Phase I; NCT03599453

TLR4 Macrophages, Monocytes,

Granulocytes, DCs

G100 Rec Adenovirus Immune Design Corp Follicular Non-Hodgkin’s

Lymphoma

Cutaneous T-cell Lymphoma

Phase I/II; NCT02501473

Phase II; NCT03742804

(Continued)
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TABLE 1 | Continued

Target Myeloid target cells Drug name Drug class Sponsor Indications Clinical trials

TLR4 Macrophages, Monocytes,

Granulocytes, DCs

GSK-091 SM GlaxoSmithKline Plc Advanced Solid Tumors Phase I; NCT03447314

TLR4 Macrophages, Monocytes,

Granulocytes, DCs

ECI-006 Oligonucleotide eTheRNA

Immunotherapies

Metastatic Melanoma Phase I; NCT03394937

TLR5 Macrophages, Monocytes,

DCs, T-cells, Intestinal

Epithelial cells

M-VM3 Vaccine Panacela Labs Inc Prostate Cancer Phase Ib; NCT02844699

TLR7 B-cells, DCs, Monocytes,

Macrophages, Neutrophils

Imiquimod

UGN-102

SM UroGen Pharmaceuticals

Ltd

Non-muscle Invasive Bladder

Cancer (NMIBC)

Phase II; NCT03558503

TLR7

TLR8

B-cells, DCs, Monocytes,

Macrophages, Neutrophils

NKTR-262 SM Nektar Therapeutics Advanced or Metastatic Solid

Tumor Malignancies

Phase I/II; NCT03435640

TLR7

TLR8

B-cells, DCs, Monocytes,

Macrophages, Neutrophils

Resiquimod

R848

SM Galderma SA Metastatic Melanoma Phase II; NCT00960752

TLR8 DCs, Monocytes,

Macrophages, Neutrophils

Motolimod

VTX-2337

SM Celgene Corp Recurrent, Platinum-Resistant

Ovarian Cancer

Phase I/II; NCT02431559

TLR9 B-cells, T-cells, Macrophages,

Monocytes, Neutrophils

Lefitolimod

MGN1703

Oligonucleotide Mologen AG Metastatic Colorectal Cancer

Advanced Solid Tumors

Phase III; NCT02077868

Phase I; NCT02668770

TLR9 B-cells, T-cells, Macrophages,

Monocytes, Neutrophils

Tilsotolimod Oligonucleotide Idera Pharmaceuticals

Inc

Solid Tumors Phase II; NCT03865082

TLR9 B-cells, T-cells, Macrophages,

Monocytes, Neutrophils

AST-008 Oligonucleotide Exicure Inc Advanced Solid Tumors Phase Ib/II; NCT03684785

TLR9 B-cells, T-cells, Macrophages,

Monocytes, Neutrophils

CMP-001 Oligonucleotide Checkmate

Pharmaceuticals Inc

Metastatic Colorectal Cancer

Non-small Cell Lung Cancer

Advanced Melanoma

Melanoma with LN disease

Phase I; NCT03507699

Phase I; NCT03438318

Phase I; NCT02680184

Phase II; NCT03618641

TLR9 B-cells, T-cells, Macrophages,

Monocytes, Neutrophils

SD-101 Oligonucleotide Dynavax Technologies

Corp

Relapsed or Refractory Follicular

Lymphoma

B-Cell Non-Hodgkin Lymphoma

Advanced or Metastatic

Solid Malignancies

Phase Ib/II; NCT02927964

Phase I; NCT03410901

Phase I; NCT03831295

TLR9 B-cells, T-cells, Macrophages,

Monocytes, Neutrophils

DV-281 Oligonucleotide Dynavax Technologies

Corp

Non-small Cell Lung Carcinoma Phase I; NCT03326752

DC DCs Poly-ICLC

(Hiltonol)

Vaccine Oncovir Inc MRP Colon Cancer

Unresectable Solid Cancers

Recurrent Pediatric Gliomas

Solid Cancer

Prostate Cancer

Phase I/II; NCT02834052

Phase I/II; NCT03721679

Phase II; NCT01188096

Phase II; NCT02423863

Phase I; NCT0362103

FLT3L DC Progenitors, pDCs, cDCs rhuFlt3L/(CDX-

301)

Rec protein Celldex Therapeutics Low Grade B-Cell Lymphomas

Advanced NSCLC

Phase I/I; NCT01976585

Phase II; NCT02839265

STING T-cells, NK cells, DCs,

Monocytes, Macrophages

MK-1454 SM Merck & Co Inc Advanced/Metastatic Solid

Tumors and Lymphomas

Phase I; NCT03010176

STING T-cells, NK cells, DCs,

Monocytes, Macrophages

ADU-S100

(MIW815)

SM Aduro BioTech Inc Advanced/Metastatic Solid

Tumors and Lymphomas

Phase I; NCT02675439

NCT03172936

CD40 DCs, Macrophages,

Monocytes, B-cells,

Endothelial Cells, Tumor Cells

APX-005M mAb Apexigen Inc Solid Tumors

Advanced Sarcomas

Metastatic Melanoma

Pediatric CNS Tumors

Metastatic Pancreatic Cancer

Phase I; NCT02482168

Phase II; NCT03719430

Phase I/II; NCT02706353

Phase I; NCT03389802

Phase Ib/II; NCT03214250

CD40 DCs, Macrophages,

Monocytes, B-cells,

Endothelial Cells, Tumor Cells

Selicrelumab mAb F. Hoffmann-La Roche

Ltd

Advanced/Metastatic Solid

Tumors

Phase I; NCT02665416,

NCT02304393

CD40 DCs, Macrophages,

Monocytes, B-cells,

Endothelial Cells, Tumor Cells

ABBV-927 mAb AbbVie Inc Advanced Solid Tumors

Advanced Head and

Neck Cancer

Phase I; NCT02988960

Phase I; NCT03818542

CD40 DCs, Macrophages,

Monocytes, B-cells,

Endothelial Cells, Tumor Cells

MEDI-5083 Fusion protein MedImmune LLC Advanced Solid Tumors Phase I; NCT03089645

(Continued)
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TABLE 1 | Continued

Target Myeloid target cells Drug name Drug class Sponsor Indications Clinical trials

CD40 DCs, Macrophages,

Monocytes, B-cells,

Endothelial Cells, Tumor Cells

SEA-CD40 mAb Seattle Genetics Inc Advanced Malignancies Phase I; NCT02376699

CD40 DCs, Macrophages,

Monocytes, B-cells,

Endothelial Cells, Tumor Cells

JNJ-7107

(ADC-1013)

mAb Johnson & Johnson Advanced Stage Solid Tumors Phase I; NCT02829099

CD40 DCs, Macrophages,

Monocytes, B-cells,

Endothelial Cells, Tumor Cells

CDX-1140 mAb Celldex Therapeutics Inc Advanced Malignancies Phase I; NCT03329950

CCL5-CCR5 Axis
Notably, alternative recruitment of monocytes can be achieved
via the CCL5-CCR5 axis (129) and inhibiting that axis also
restricted cancer growth in colorectal cancer (130) and blocked
metastasis of basal breast cancer cells. A dual small molecule
inhibitor, BMS-813160, that targets both CCR2 and CCR5,
is being tested in patients with advanced pancreatic cancer
in combination with Nivolumab and Gemcitabine and Nab-
paclitaxel (NCT03184870).

Emerging data suggest that tumor-produced IL-8 (CXCL8)
plays an important role in recruiting neutrophils and monocytes
into the TME of many cancer types (131). Neutralization of IL-
8 by the mAb HuMax-IL8 in TNBC decreases the recruitment
of neutrophils (also referred to as PMN-MDSCs) to the tumor
site and facilitates immune-mediated killing (132). The IL-8
inhibitor BMS-986253 is being tested in a Phase Ib/II trial
in combination with Nivolumab in hormone-sensitive prostate
cancer [NCT03689699; (133)].

CSF1-CSF1R Axis
The CSF1/CSF1R axis plays a key role in the differentiation,
recruitment, proliferation, and survival of both monocytes and
macrophages (134). Multiple inhibitors of the CSF1/CSF1R axis
are being clinically developed, and these inhibitors have been
extensively reviewed (29, 135–137). The most advanced agent in
clinical testing is the small molecule selective kinase inhibitor
Pexidartinib (PLX-3397), which is being tested in a Phase III
trial in Tenosynovial Giant Cell Tumors (TGCT; NCT02371369).
Pexidartinib demonstrated efficacy in TGCT (136, 138, 139).
TGCT is driven by the translocation of chromosome 1 and
2 (1p13 to 2q35), which leads to the overexpression of CSF1
caused by the fusion of CSF1 to COL6A3 (140). Pexidartinib
is also being investigated for the treatment of various solid
tumors, such as metastatic breast cancer, advanced ovarian
cancer, colorectal cancer, and pancreatic cancer, in combination
with chemotherapy or ICBs (Table 1). In pre-clinical models,
PLX-3397 increased the efficacy of anti-PD-1 or chemotherapy
treatments (141, 142). While PLX-3397 is a CSF1R inhibitor, it
also targets the c-kit and FLT3 receptor tyrosine kinases (RTKs),
which are expressed on other myeloid populations including
mast cells and dendritic cells. Two other small molecules CSF1R
inhibitors are in development, BLZ-945 and ARRY-382. BLZ-
945 is currently in Phase I/II trails for patients with advanced

solid tumors (NCT02829723). In preclinical studies, BLZ-945
was shown to repolarize TAMs to become antitumoral in mouse
models of glioblastoma by downregulating genes that have been
associated with an M2-like macrophage polarization phenotype
(143), and to decrease tumor progression as monotherapy and
in combination with ICBs in a mouse model of neuroblastoma
(144). ARRY-382 is also being tested in Phase I/II in patients with
advanced solid tumors (NCT02880371). Preliminary clinical data
demonstrated partial responses with a manageable tolerability
profile (145).

The anti-CSF1R mAb, Cabiralizumab blocks the activation
and survival of monocytes and macrophages by inhibiting
the binding of the two ligands CSF1 and IL-34 to CSF1R
(146, 147). Cabiralizumab is being tested in a Phase I
clinical trial in advanced solid tumors (NCT02526017), in a
Phase II trial in advanced pancreatic cancer (NCT03336216),
and in TGCT (NCT02471716). Preliminary data suggests
tolerable safety profiles in combination with Nivolumab and
durable clinical benefits in heavily pretreated patients with
pancreatic cancer (148). Recent data showed that treatment with
Cabiralizumab and Nivolumab depletes immunosuppressive
TAMs and promotes a pro-inflammatory TME (149). For
instance, tumors from treated patients had a decrease in
CSF1R+ macrophages, an increase in CD8+ T cells, and an
increase in pro-inflammatory genes.Moreover, these patients had
increased levels of CSF1/IL-34 and decreased levels non-classical
monocytes in the periphery (149). In addition, Cabiralizumab
demonstrated initial clinical benefits in patients with Pigmented
Villonodular Synovitis (150). In addition to Cabiralizumab,
several other antagonistic anti-CSF1R mAbs are in clinical
development (see Table 1). AMG-820 (a fully human IgG2
targeting CSF1R) resulted in a 32% stable disease in a Phase II
study (NCT01444404) in patients with relapsed or refractory
advanced solid tumors and induced adverse effects including
periorbital edema, increased aspartate aminotransferase, fatigue,
nausea, blurred vision, and deafness (151). AMG-820 is also
being tested in combination with pembrolizumab in patients
with pancreatic, NSCLC, and colorectal cancer (NCT02713529).
LY3022855 (a humanized IgG1 targeting CSF1R) is being tested
in a Phase I/II trial in patients with metastatic melanoma
in combination with BRAF/MEK inhibitors (NCT03101254).
Emactuzumab is a mAb that blocks CSF1R dimerization, and
demonstrated a 7% complete response rate in a Phase I
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trial with TCGT patients and had no reported dose toxicity
(152). Targeting the CSF1R ligand CSF1 has also proven to
be a promising strategy. Two mAbs developed by Novartis
(Lacnotuzumab) and Pfizer (PD-0360324) are currently in the
clinic. Recent data from Lacnotuzumab (MCS110)’s Phase Ib
clinical trial in advanced malignancies showed it is tolerated
and has preliminary antitumor activity, especially in the
pancreatic cancer cohort. However, grade 3 suspected drug-
related adverse effects were observed and included periorbital
edema, increased blood creatine phosphokinase, and increased
aspartate aminotransferase (AST) (153).

While targeting the CSF1/CSF1R axis has shown clinical
promise, novel resistance, and compensatory mechanisms could
emerge. For instance, acquired and inherent resistance to CSF1R
blockade has been reported in pre-clinical mouse models of
glioblastoma multiforme and other cancer types harboring
specific genetic alterations (105). Moreover, a recent study
identified a compensation between CSF1R+ macrophages and
Foxp3+ regulatory T-cells (Tregs) that can drive resistance to
immunotherapy in a mouse model of colorectal cancer (154).
In addition, the common side effects observed in most of the
CSF1/CSF1R antagonistic small molecules and mAbs developed
could be caused by the systemic depletion of tissue resident
macrophages in normal tissues. In addition to targeting the
CSF1/CSF1R axis to reduce tumor associated myeloid cells
there are a number of additional agents, including trabectidin
(Yondelis R©), lurbinectedin, and the bisphosphonates clodronate
and zoledronic acid (3, 29, 116).While there aremultiple ongoing
clinical trials to evaluate bisphosphonates, there is no available
data regarding their anti-tumor activity. Therefore, finding new
targets that are selectively upregulated in the TAMs and tumor-
associated monocytes is crucial and might lead to more clinical
benefits with fewer side effects.

Targets and Therapies That Alter TME
Myeloid Population Function by Altering
Cell Activation, Reprograming, and
Differentiation
Altering the activation status of pro-tumorigenic myeloid
cells to inhibit their immunosuppressive activity (reversal of
immunosuppression) or altering pro-tumorigenic myeloid cells
by differentiating or reprograming them to become anti-
tumorigenic is viewed as another promising approach to promote
durable anti-tumor responses either as single agent therapies
or in combination with currently available cancer therapies.
Another approach to alter the TMEmyeloid population function
is to induce activation of anti-tumorigenic myeloid cells such
as DCs. Many of the myeloid protein targets that are being
therapeutically pursued to alter TMEmyeloid function are shown
in Figure 2 and listed in Table 1 and are discussed below.

CD47-SIRPα Regulation of Phagocytosis
The CD47-SIRPα axis is a myeloid specific ICB that inhibits
phagocytosis of tumor cells by macrophages and other myeloid
cells (155). The “don’t eat me signal” CD47 is overexpressed
on the majority of hematopoietic malignancies and solid tumors

and is also expressed on red blood cells (156–158). CD47
binds its ligand SIRPα, a RTK expressed on the cell surface
of macrophages and dendritic cells and associates with the
downstream inhibitory tyrosine phosphatases SHP-1 and SHP-
2 (159). Recent review articles present the various clinical
strategies to enhance phagocytosis by targeting the CD47-
SIRPα axis (116, 155, 160, 161), and discuss the limitations
and potential toxicities of targeting this axis (116, 160). The
antagonistic anti-CD47 mAb Hu-5F9G4 induces phagocytosis
of tumor cells by blocking the CD47-SIRPα interaction (162).
Hu-5F9G4 was evaluated in a Phase Ib dose escalation study
in patients with relapsed/refractory non-Hodgkin lymphoma,
follicular lymphoma and diffuse large B-cell lymphoma (DLBCL)
in combination with rituximab (NCT02953509). In this small
study of 22 subjects (with 21/22 known to be refractory to
single agent rituximab), anti-tumor responses were observed in
50% of subjects (including 36% with complete response). Hu-
5F9G4 in combination with rituximab at standard rituximab
doses was generally safe and a maximum tolerated dose of
the antibody was not declared (163). The main on- target side
effect was anemia, which could be mitigated and managed by
initially “priming” subjects with a 1 mg/kg dose of Hu-5F9G4
to eliminate aging red cells prior to introducing therapeutic
intent dosing. Dose limiting toxicities not requiring treatment
discontinuation were reported in two subjects (pulmonary
embolism and grade 4 neutropenia requiring G-CSF) (163). A
third subject developed idiopathic thrombocytopenic purpura
treated with glucocorticoids and immune globulin and required
treatment discontinuation. Hu-5F9G4 is also being evaluated in
patients with solid tumors (NCT02216409), and acute myeloid
leukemia (AML) (NCT02678338) with and without azacitidine
(NCT03248479). Recent data has shown this combination
therapy leads to an increase in phagocytosis of AML blast
cells by human macrophages in vitro and clearance of
AML in vivo, leading to a prolonged survival compared
to Hu-5F9G4 or azacitidine alone (164). Since anemia and
neutropenia have been a concern for anti-CD47 therapies
(165), strategies for better priming and maintenance doses are
crucial. To this point, studies demonstrated that an initial
priming dose of Hu-5F9G4 resulted in a near complete loss
of CD47 antigen only on RBCs and not on white blood
cells and AML bone marrow blasts, suggesting that CD47
pruning (loss) is protective for RBCs and could decrease
the potential for toxicities (166). Hu-5F9G4 is also being
evaluated in combination with Cetuximab in patients with
solid tumors and advanced colorectal cancer in a Phase I/II
study (NCT02953782). Clinical trials for another anti-CD47
mAb, CC90002, was recently terminated in patients with AML
for unspecified hematologic toxicities described as reversible
(NCT02641002), but it is still being tested in a Phase I dose
escalation study in patients with other hematological cancers
and advanced/refractory solid tumors followed by combination
treatment with Rituximab (NCT02367196).

TTI-621, a SIRPα-Fc (human IgG1 Fc) fusion protein
that blocks the CD47-SIRPα interaction, is being tested in
patients with hematologic malignancies and solid tumors
(NCT02663518), while TTI-622 (a SIRPα-Fc (human IgG4 Fc)
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fusion protein is being evaluated in a Phase I clinical trial in
relapsed or refractory lymphoma or myeloma (NCT03530683).
Currently it is unknown whether the SIRPα fusion proteins will
have better efficacy and/or a better tolerability profile compared
to the anti-CD47 mAb therapies.

Immunosuppressive Adenosine Signaling
Other strategies to activate the myeloid cells in the TME include
the inhibition of their immunosuppressive functions, such as
blocking the arginase, CD39/CD73 ectonucleotidases, and the
adenosine A2A receptor (A2AR) pathways. Toward the latter,
the extracellular adenosine concentrations and downstream
signaling via the A2AR pathway has been shown to create a
highly immunosuppressive microenvironment by significantly
decreasing the immune responses in inflamed tissues and tumors
(167–169). Many companies are developing mAbs and small
molecules against these targets and some are being evaluated
in the clinic (Table 1), and were recently reviewed (169). CPI-
444 is a small molecule inhibitor targeting A2AR and is being
evaluated in a Phase I trial in patients with advanced cancers
(NCT02403193). Recent data from patients with refractory
renal cell carcinoma showed that CPI-444 was well tolerated
and prolonged survival as monotherapy and in combination
with Atezolizumab (170). In addition, the expression of a
novel adenosine biomarker signature in pre-treated tumor
biopsies was significantly associated with tumor response to
CPI-444 (171–173).

CD73 is the ectonucleotidase that catalyzes the irreversible
conversion of AMP to adenosine, leading to the high levels of
adenosine observed in the TME (174, 175). The monoclonal
antibody MEDI-9447 (Oleclumab) antagonizes the enzymatic
activity of CD73 through two distinct conformation-mediated
mechanisms, which allows it to block both soluble and cell-
surface CD73 in a non-competitive manner (176). MEDI-9477
can mediate changes in the infiltrating lymphoid and myeloid
populations in the TME of mouse models, such as activation
of macrophages and increasing CD8+ effector cells (177).
In advanced pancreatic or colorectal cancer patients treated
with Oleclumab (NCT0253774), free soluble CD73 and CD73
bound on peripheral T-cells were decreased across all doses
and patients, and tumoral CD73 expression was also decreased
(178). Oleclumab monotherapy and in combination with
durvalumab showed manageable safety profile and encouraging
clinical activity in colorectal and pancreatic cancer patients
[NCT0253774; (178)].While the adenosine pathwaymay be a key
immunoregulatory node, we have to be prudently cautious about
targeting specific members of the pathway without taking into
account the biochemical pathway redundancies and feedback
mechanisms that counter-regulate them.

TLRs and CD40 Agonists
Toll like receptors play important roles in the activation of
the innate immune response and have been pivotal targets in
cancer immunotherapy. They can selectively activate a subset
of DC and macrophage populations to take on stimulatory
and pro-inflammatory phenotypes (179–181). TLR3, TLR4,
TLR5, TLR7, TLR8, and TLR9 agonists are being clinically

evaluated (Table 1). The TLR7 agonist Imiquimod (topical
cream) was approved for the treatment of basal cell carcinoma
and showed additional efficacy in breast cancer skin metastases
and melanoma. Imiquimod is believed to stimulate cytokine
production, increase the infiltration of macrophages, DCs,
and lymphocytes, and directly induce apoptosis in the tumor
cells (182). Urogen Pharmaceuticals developed imiquimod
(UGN-201) in a reverse thermal hydrogel formulated with
the chemotherapeutic agent Mitomycin C (MMC), which is
being evaluated in a Phase II trial in patients with low grade
non-muscle invasive bladder cancer (NCT03558503). G100
is an intratumoral TLR4 agonist (composed of glucopranosyl
lipid A in stable emulsion) that creates a systemic immune
response when injected locally as a vaccine. G100 has been
evaluated in multiple clinical trials and data from Phase I
(NCT02501473) showed that it is well tolerated with clinical
activity as a monotherapy and in combination with the anti-PD-1
antibody Pembrolizumab (183, 184). In addition, patients with
TLR4 expression at baseline had a significant improved overall
response rate (185). In a proof-of-concept trial in Merkel cell
carcinoma patients (NCT02035657), intratumoral G100 induced
anti-tumor immune responses leading to tumor regression
without systemic toxicities (186). Based on encouraging results
from a small early phase data, advanced trials are ongoing
with intralesional SD-101 (a class c CpG Oligonucleotide
TLR9 agonist) in combination with Pembrolizumab (187).
The most advanced TLR9 agonist in the clinic is Lefitolimod
(MGN1703), which is a synthetic DNA-based agonist that
results in an antitumor immunomodulation, including increased
release of cytokines and chemokines from peripheral blood
mononuclear cells (PBMCs) and an increase in expression of
surface activation markers of cells on a variety of immune
cells (188–190). Lefitolimod is being evaluated in a pivotal
Phase III trial of first-line maintenance in 549 enrolled patients
with metastatic colorectal cancer (NCT02099868), following
promising data in previous Phase I and II trials, where MGN1703
showed therapeutic efficacy in multiple solid tumors and was
well-tolerated in long-term treatment with high doses (191–193).

The TNFR family member CD40 is expressed on the vast
majority of myeloid cells such as DCs, macrophages, monocytes,
and is also expressed on B-cells, tumor cells, and endothelial
cells. Signals transduced by CD40 result in upregulation of
multiple proteins critical to effector T-cell priming, including
immunostimulatory cytokines, major histocompatibility (MHC)
molecules, and the co-stimulatory ligands CD80 and CD86 (194–
196). Multiple CD40 agonists have been developed to activate
innate and adaptive immunity and some are being evaluated
in the clinic [(197), Table 1]. APX-005M is the most advanced
CD40 agonist in the clinic and is being tested in a Phase II
trial in patients with advanced sarcomas (NCT03719430) and in
Phase I/II in patients with metastatic melanoma [NCT02706353;
(198)] and metastatic pancreatic cancer (NCT03214250). Recent
preliminary data from the Phase Ib clinical trial in previously
untreated metastatic pancreatic cancer showed that 20 out
of the 24 patients had tumor shrinkage when treated with
standard of care chemotherapy with and without Nivolumab.
However, toxicity was a key concern as 13 out of the 24 patients
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experienced adverse effects and had to discontinue the treatment
combinations (199). This trial has now progressed to the Phase II
stage (NCT03214250).

Reprogramming Targets
Targets that are considered likely to induce switching in TAMs
from a pro-tumoral to a tumoricidal state include class I
and class II histone deacetylases (200–202), the macrophage
receptor with collagenous structure MARCO (203), CD11b
(204), and PI3Kγ (205, 206). Within these, PI3Kγ is a key
regulator of the pro-tumoral and immunosuppressive state of
TAMs and its genetic and pharmacological inhibition switches
the TAMs to a pro-inflammatory state and subsequent tumor
growth inhibition (205, 206). The selective small molecule PI3Kγ

inhibitor IPI-549 was evaluated in a Phase I/Ib clinical trial in
220 patients with advanced solid tumors as monotherapy and
in combination with Nivolumab (NCT02637531). IPI-549 was
shown to be well-tolerated at all the doses tested and showed
40 percent disease control and durable partial responses in
patients with indications not typically responsive to anti-PD1
therapy (207, 208). Data from peripheral blood from IPI-549
treated patients showed upregulation of IFN-gamma responsive
factors and an increase in proliferation of exhausted memory
T-cells (207, 208). In addition, paired tumor biopsies from
monotherapy IPI-549 treated patients showed a decrease in
CD163, sometimes called an “M2” macrophage marker (208),
consistent with the mechanism-of-action in the pre-clinical
studies of IPI-549 inducing immune activation and reducing
immune suppression (205).

Many of the above discussed targets and drugs used in the
clinic are not specific to specific subpopulations of myeloid
cells and might be contributing to some of the side effects
and toxicities discussed above. In order to identify novel
targets specifically expressed on unique myeloid subsets, such as
macrophages, neutrophils, and DCs, sophisticated technologies
need to be employed. These include single-cell RNA-sequencing
(scRNA-seq) and mass cytometry, and are discussed below.

IDENTIFYING NOVEL TME MYELOID
SUBPOPULATIONS

To improve the efficacy and safety of agents that target myeloid
subpopulations in the TME it will likely be necessary to
have a deeper understanding of the extent of the functional
diversity of intratumor myeloid subpopulations. Modern, high-
throughput scRNA-seq, and cytometry by time of flight
(CYTOF) technologies (209) have begun to revolutionize our
understanding of the TME, both in terms of intra- and inter-
tumoral variability. Historically, most efforts to understand the
architecture and complexity of the TME were confined to the
use of bulk RNA sequencing and microarray technologies which,
while providing some sample and indication level differentiation,
offer little insight into the cellular composition heterogeneity of
an individual tumor. Granularity of gene expression associated
with various stromal, malignant, and immune cell populations
as well as any heterogeneity existing within those populations is
lost upon averaging across cells to yield a single transcriptional

profile. A variety of cellular deconvolution methodologies (210–
214) were described to attempt to recapture this heterogeneity,
but they rely on the existence of specific cellular markers that
possess little or no collinearity between cell types. This approach
works well for the major cellular constituents of a tissue but
has limited efficacy in classifying subpopulations of cells or
identifying rare, novel subsets. The capacity for new scRNA-
seq methods to capture tens of thousands of unique, cellular
transcriptomes in a single experimental run, particularly when
combined with high-throughput flow cytometric sorting as an
a priori enrichment strategy, offers a unique and powerful
window into the TME. It enables not only the measurement
of relative abundances of diverse cell types, but also the
relationship, substructure and differentiation processes within
those cells. Single cell methodologies now exist to profile mRNA,
DNA, epitope levels, methylation, transcription factor binding,
chromatin accessibility, and in some cases even preserving spatial
information (215). Although insights and advances driven by
single cell sequencing of the intratumoral myeloid compartment
are, as of yet, limited, key lessons are beginning to emerge.

While a variety of human tumor ecosystems have been
profiled at single cell resolution (21, 22, 216–223) only a few
contain sufficient myeloid cells to adequately address questions of
subpopulation heterogeneity, lineage dynamics, or ontogeny. To
date, most studies interrogating the myeloid compartment of the
TME focused specifically on macrophages, as they are, by far, the
most abundant cell type in that milieu. In breast cancer, a positive
correlation of M1- and M2-derived gene signatures across the
aggregate of multiple subclusters of TAMs was shown (22)
and identified a concomitant increase of M2-markers, MARCO,
NRP2, and CD276 along with CCL3, sometimes associated with
antitumoral functions, across macrophage lineages derived from
trajectory-based analyses (22). These findings were corroborated
in a study that performed single cell profiling of human
gliomas, and correlated expression profiles of the M1-marker,
TNFα, and the M2-marker, IL10, as evidence that a binary
model of macrophage activation may not exist in vivo and
instead may be better examined according to a spectrum-based
model (222, 224). Similarly, the application of mass cytometry
in clear cell renal cell carcinoma (220) revealed 17 separate
TAM clusters, across which canonical in vivo differentiation
markers exhibited a range of expression, not the expected
binary distribution. Similar to activation status, macrophage
ontogeny has been sparsely examined in the context of human
single cell sequencing datasets. In IDH-mutant low-grade glioma
(219) researchers found a spectrum of differentiation based on
gene expression between tissue resident microglia and blood-
derived macrophages whereas in late stage glioma, primarily
glioblastoma, the two populations of macrophages appear quite
distinct (222). Utilizing the aggregation of tumor and healthy
cells to classify gene signatures or gene sets that differentiate
TAMs from their tissue-resident brethren in a single lung
adenocarcinoma patient, TREM2, MARCO, APOE, and CD81
were shown to be specifically upregulated in TAMs, relative to
alveolar macrophages (21).

Investigation into the intratumoral complement of
monocytes, dendritic cells, and granulocytes is, to this point,
sorely lacking from a single cell sequencing perspective. This
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will undoubtedly improve, however, as cellular encapsulation
technologies yield higher throughput and researchers begin to
focus specifically on individual cellular populations via flow
cytometric enrichment. This approach has already begun to yield
dividends in the periphery, particularly in various dendritic cell
populations with respect to ontogeny (46, 69) and the discovery
of novel cellular subtypes (64). To this point, most single cell
tumor studies have taken a macroscopic view of the tumor
microenvironment: either all cells or partially enriched subsets
are submitted for encapsulation and sequencing. Typically,
samples from multiple patients are aggregated to generate
sufficient numbers of cells to either differentiate between cell
type or to provide a more global, indication-specific view of the
tumor ecosystem. In this scenario, we urge researchers to also
provide patient-specific analyses as the aggregation of samples
homogenizes inter-patient variability in much the same way bulk
sequencing homogenizes expression profiles across cell types.
This issue is particularly important for human samples which,
compared to tumors from in-bred mouse strains, are marked by
extremely variable microenvironment composition.

Different issues arise when attempting to understand the
heterogeneity within and between closely related cell types.
Nearly all single cell technologies rely on the downstream
identification of discrete cellular clusters. As recently reviewed
by Andrew and Hemberg (225), these cluster identification
algorithms range between K-means, hierarchical, graph, and
density-based methods, each implemented in a variety of
different ways. For divergent cell types that possess disparate
functional programs, these methods generally converge.
However, in the context of cells with a shared ontogeny, it can
be quite difficult to arrive at a consistent pattern of clustering,
particularly in light of the fact that most algorithms require a
priori knowledge of resulting cluster number or require upfront
modulation of parameters that directly dictate cluster number.
In practice, this often means setting a fold-change cutoff that is
reached by a set number of markers as the defining criterion for a
cluster. The identification of a robust clustering of cells does not
mean that those clusters have different biological and functional
status. From an analytical standpoint, genes that differ between
clusters may be assessed via gene set enrichment techniques to
understand functional consequence and, of course, if those genes
allow flow cytometric-based sorting, those populations may be
compared with relevant experimental techniques.

CONCLUSION

The different myeloid tuning strategies we discuss in this
review describe the various myeloid targets and agents

being investigated in the clinic. Some of these agents
modulate the function of myeloid populations to inhibit
their immunosuppressive activities and make them more anti-
tumorigenic and some agents impact recruitment and survival
of myeloid subpopulations. Few myeloid targeting strategies in
the clinic have yielded promising results and many have been
terminated due to toxicities related to the specificity or lack of
tumor specificity of the target or to the properties of the agent
being used. It is too early for us to know how these agents
will play out in the clinic as many of the clinical trials are still
ongoing and we have to wait for the results to determine their
success or failure. However, the majority of the targets being
pursued are not exclusively expressed on just one population
of myeloid cells but rather they can be expressed on multiple
myeloid populations, and even at times on lymphocytes and
tumor cells.

While the understanding of intra- and intertumoral myeloid
composition is in its nascent stages, particularly in humans, single
cell sequencing technology will almost assuredly serve to identify
heretofore unknown cellular subsets that may yield actionable
targets in the fight against cancer. Additional pre-clinical studies
are needed to determine the function of those novel targets in the
TME and the pathophysiological relevance of the newly identified
cellular cluster subsets. Finally, a more granular understanding
of the kinetics and environmental queues that drive peripheral
monocyte transition to TAM phenotypes could yield upstream
targets designed to prevent the development of these type of
suppressive cells.
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