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Innate lymphoid cells (ILCs), defined as a heterogeneous population of lymphocytes, have

received much attention over recent years. They can be categorized into three subsets

according to the expression profiles of transcription factors and differing levels of cytokine

production. These cells are widely distributed in human organs and tissues, especially

in mucosal tissue. The ILCs are involved in various physiological and pathological

processes, including inflammation, worm expulsion, autoimmune disease and tumor

progression, many of which have been investigated and clarified in recent studies. In

the tumor microenvironment, group 2 innate lymphoid cells (ILC2s) have been proved to

be able to either promote or inhibit tumor progression by producing different cytokines,

recruiting diverse types of immune cells, expressing immunosuppressive molecules and

by regulating the expression of certain inflammatory factors. This review summarizes

recent research progress on the immunomodulatory functions of ILC2s in the tumor

microenvironment and puts forward some perspectives for future study.

Keywords: group 2 innate lymphoid cells, tumor microenvironment, cytokines, immunomodulation, cancer
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INTRODUCTION

Innate lymphoid cells (ILCs) are heterogeneous and highly conserved immune cell populations that
occur during organism development. These cells develop with negative lineage markers (Lin−).
They lack phenotypical markers, antigen specificity and recombination-activating gene (Rag)-
dependent rearrangement of antigen receptors (1, 2). A consensus has been reached in more
recent studies that ILCs can be generally divided into non-cytotoxic ILCs and cytotoxic ILCs.
Cytotoxic ILCs are named as conventional natural killer (NK) cells (3). Based on the differential
requirements for transcriptional factors and cytokine production, the non-cytotoxic ILCs can be
further categorized into three groups: group 1 innate lymphoid cells (ILC1s); group 2 innate
lymphoid cells (ILC2s); and group 3 innate lymphoid cells (ILC3s) (4, 5). Main phenotypic markers
of the different subsets of murine and human ILCs are well-summarized by Vivier et al. (6).

Non-cytotoxic ILCs exhibit similar functions to CD4+ helper T (Th) cells (7) including ILC1’s
constitutive expression of the transcriptional factor T-bet mirroring the function of Th1 cells. ILC1s
can secret interferon-γ (IFN-γ) and tumor necrosis factor (TNF-α) when stimulated by interleukin
12 (IL-12). ILC2s consist of nuocytes, natural helper cells (NH cells) and innate helper 2 cells
(IH2s). The development of ILC2s depends on the transcriptional factors GATA-3 and retinoic
acid receptor-related orphan receptor-α (RORα), mirroring the nature of Th2 cells. Furthermore,
these cells produce type 2 cytokines such as IL-4, IL-5, IL-9, IL-13, IL-15 in response to IL-33,
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IL-25, and thymic stromal lymphopoietin (TSLP). ILC3s,
resembling Th17 cells, are comprised of lymphoid-tissue inducer
cells (LTi cells), natural cytotoxicity receptors− (NCR−s) ILC3s
as well as NCR+ ILC3s. Collectively, ILC3s secrete cytokines
such as IL-17 and IL-22. The RORγ is expressed in ILC3s
when stimulated by IL-7 (4). The expanding family of ILC, like
ILC22, ILC17 have been identified (8). Due to their plasticity (9),
conversion of ILCs occur when they encounter distinct cytokines,
transcription factors or distribute diversely. Human ILC1s show
the potential capacity to convert into ILC3s in the presence of IL-
23. IL-1β and retinoic acid have both been shown to accelerate
that process (10). IL-25-responsive ILC2s populations in the
lungs can differentiate into ILC3-like cells and produce IL-17
(11). On the contrary, the conversion of ILC3s to ILC1s can be
induced by IL-2, IL-12, or IL-15 (12).

ILCs can be composed of cells of fetal, postnatal, or
adult origins (13), the transcriptional factors they depend
on are different (14). Adult ILCs are derived from the
common lymphoid progenitors (CLPs) expressing CD127 in
the bone marrow. CLPs give rise to early innate lymphoid
progenitors (EILPs), which express integrin α4β7 under the
participation of Notch signaling, transcription factors T cell
factor 1 (TCF-1), thymocyte selection-associated HMG box
protein (TOX) or nuclear factor interleukin-3 (Nfil3, also known
as E4BP4). Through GATA-binding protein 3 (GATA3) and
the inhibitor of DNA binding 2 (Id2) dependent pathways,
EILPs develop into the common helper-like innate lymphoid
progenitors (ChILPs), which are defined as lineage−IL-7R+Flt-
3−integrin α4β7+CD25−Id2high cells and have been shown
to express a high level of Id2 and promyelocytic leukemia
zinc finger (PLZF). ChILPs subsequently differentiate into
lineage−IL-7R+/−−Flt-3−integrin α4β7+Id2+GATA-3+PLZF+

common innate lymphoid progenitors (CILPs), and then give
rise to ILC precursors (ILCPs). NK progenitors are directly
derived from EILPs and LTi progenitors not expressing PLZF
come from ChILPs in a RORγt-dependent manner. In addition,
LTi progenitors express a lower level of Id2, thymocyte
selection-associated HMG box protein (TOX) and TCF-1, in
contrast to CILPs. ILCPs generate different branches of the
ILC family (15, 16). Human ILCs are more abundant in
fetal tissues and cord blood than those in adults, while in
ILC2s from bone marrow, compared with fetal and perinatal,
development may differ considerably (17, 18). Also, fetal ILC2s
are distributed to tissues before birth, postnatal ILC2s are
generated in the period from birth through weaning, and adult-
derived ILC2s slowly dilute the preexisting ILC2s (13). Fetal
ILC precursors reside in the intestine during Peyer’s patch
development, and become a localized source of ILCs (17). ILC2s
colonize tissues perinatally and are exceedingly long lived (19,
20), most of the ILC2s produced in bone marrow only are
colonized in peripheral tissues in response to inflammatory
signals (21–23).

ILC2s have receivedmuch attention in areas of allergies, worm
expulsion, tissue repair and adipose metabolism homeostasis (4,
24). In recent years, increasing studies have focused on the roles
of ILC2s in regulating tumor growth and cancer’s inflammatory
microenvironment. Here, we summarize the research progress

and new findings in clarifying the functions and significance of
ILC2s in the tumor microenvironment (TME).

THE PHYSIOLOGICAL CHARACTERS OF
ILC2s

ILC2s are mainly distributed in the mucosal tissues of the skin,
lungs and the gastrointestinal tract, with a small amount of
ILC2s also existing in peripheral blood. ILC2s are involved in
the regulation of many physiological and pathological processes
including asthma, allergies, atopic dermatitis, worm expulsion,
tissue repair, adipose tissue regulation, metabolic homeostasis,
and tumor growth (4). Moreover, ILC2s can be further classified
into natural ILC2 cells (nILC2) (which are sensitive to IL-33),
and inflammatory ILC2 cells (iILC2) (which are sensitive to IL-
25) (11). Immunological memory has long been described in the
adaptive immune system, and now has been related to ILC2s
and termed “trained immunity.” In this, naïve ILC2s become
memory ILC2s upon their encounter with alarmins, where they
remember previous activations and respond more vigorously
upon subsequent reactivations (25, 26).

The principal transcriptional factors, implicated in the
differentiation and development of ILC2s, are GATA3 and
RORα, which share the similar function acting in parallel (27).
Other transcription factors also take part in the regulation
of the development of ILCs, including B-cell CLL/lymphoma
11b (Bcl-11b) (28–30), TCF-1 (15), growth factor independent
1 transcription repressor (GFI1) (31) and E-twenty six 1
(ETS-1) (32).

ILC2s express surface molecules, including MHC II
(33), inducible co-stimulatory molecule ligand/inducible
co-stimulatory molecule (ICOSL/ICOS) (34), programmed
death-ligand 1 (PD-L1) (35), CRTH2 (36), NKp30 (37), killer
cell lectin-like receptor subfamily G member 1 (KLRG1) (11)
and OX40 (38). In response to IL-25, IL-33, and TSLP, which
are mostly derived from epithelial cells, ILC2s are activated
to produce the type 2 cytokines IL-4, IL-5, IL-9, IL-13, and
other factors such as methionine-enkephalin (Met-Enk) and
Amphiregulin (Areg), which suggests that ILC2s exhibit similar
functions as CD4+ Th2 cells (5). Some studies have reported
that ILC2s role in antigen presentation is having a dialog with
CD4+T cells via the expression of MHC II on the surface of
ILC2s (39).

Moreover, recent studies have described many new molecules
which play important roles in promoting the maturation
and development of ILC2s. E3 ubiquitin ligase Von Hippel-
Lindau (VHL)-deficiency in innate lymphoid progenitors cause
a decrease of mature ILC2s in peripheral non-lymphoid
tissues, and VHL-deficient ILC2s exhibit enhanced expression
of hypoxia-inducible factor 1α (HIF-1α) and subsequently
caused enhanced glycolysis. VHL-deficiency results in low
expressions of the IL-33 receptor ST2 and attenuated IL-33-
induced ILC2 development has also been described. HIF-1α
drives the expression of the glycolytic enzyme pyruvate kinase
M2, which downregulates the expression of ST2 via reduced
H3K4me3 modification at the Gata3 promoter and Il5 gene
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loci in VHL-deficient ILC2s (40). The Intercellular adhesion
molecule-1 (ICAM-1) is required for the development of ILC2s,
where ICAM-1−/− ILC2s show impaired ERK signaling which
leads to the diminished expression of GATA3 and production
of type 2 cytokines (41). In the gastrointestinal tract, murine
ILC2s were demonstrated to be co-localized with cholinergic
neurons expressing the neuropeptide neuromedin U (NMU) that
could be recognized by the receptor NMUR1 on ILC2s. NMUR1
is important for the stimulation of the secretion of the type 2
cytokines IL-5, IL-9, and IL-13 in ILC2s (42–44). In addition,
the aryl hydrocarbon receptor (Ahr) is expressed in gut ILC2s
and has been implicated in controlling chromatin accessibility at
the Ahr loci, playing a role in restricting the production of IL-
5, IL-13, and amphiregulin via intestinal ILC2s in a cell-intrinsic
manner. Ahr inhibits the expression of the IL-33 receptor ST2
in ILC2s, thereby suppressing the transcription factor—growth
factor independent 1 transcription repressor (GFI1) (45). Type
I interferon was reported to restrict type 2 immunopathology
by diminishing type 2 signature cytokine production, cell
proliferation and increasing cell death of ILC2s dependent on the
interferon stimulated gene factor 3 (ISGF3) (46).

THE FUNCTIONS OF ILC2s IN THE TUMOR
MICROENVIRONMENT

ILC2s-Derived Cytokines Regulate the
Growth of Tumors
As shown above, ILC2s can secrete cytokines IL-4, IL-5, IL-
9, and IL-13. When ILC2s respond to IL-33, the release
of high levels of IL-13 can lead to the occurrence of
cholangiocyte hyperplasia and epithelial repair. In the bile duct
of mice, the induction of the IL-33/ILC2/IL-13 pathway by
activated AKT and Yes-associated protein (YAP) further induces
cholangiocarcinoma (47). In addition, IL-13 from ILC2s plays
a critical role in recruiting myeloid-derived suppressor cells
(MDSCs) and M2 phenotype macrophages, which establish
an immunosuppressive microenvironment to restrain anti-
tumor responses (48). Dendritic Cells (DCs) are potent
professional antigen-presentation cells, linking innate immunity
with adaptive immunity by presenting tumor antigens to T cells
to elicit a specific anti-tumor immunity. IL-13 production by
ILC2s is critical for the migration of CD40+ activated DCs
from the lung to drainage in the lymph nodes inducing Th2
immunity (49, 50).

During tumor development, the IL-4 receptor α (IL-4α)
is overexpressed in many epithelial cancers. Recent studies
have found that the production of IL-4 by ILC2s enhances
the proliferation and metastasis of epithelial cancer cells (51–
55). Other cytokines derived from ILC2s such as IL-5, have
also been described to elicit an anti-tumor effect by recruiting
eosinophils, which further attract CD4+ T cells and CD8+ T
cells by producing chemokine (C-X-C motif) ligand 9 (CXCL9),
CXCL10, chemokine (C-C motif) ligand 5 (CCL5) (via STAT1),
CCL17 and CCL22 (via STAT6) (48, 56).

The role of IL-9 in tumors is controversial. Deficiency or
neutralization of IL-9 appears to promote melanoma growth

(57, 58). In contrast, overexpression of IL-9 is related to poor
prognosis in some hematopoietic carcinomas (59). Recent study
suggests that IL-9, as released by ILC2s, can induce specific
cytotoxic T lymphocyte (CTL) responses by enhancing the cross-
presentation of DCs and reduce tumor metastasis (60).

Epidermal growth factor receptor (EGFR) antagonists
are used in treating epithelial-derived cancers. Interestingly,
the ILC2-derived EGFR ligand, Areg, was found to support
the growth of lung cancer cells and to inhibit cell apoptosis
(12, 61). In the peripheral blood of gastric cancer patients,
the increased mRNA expression levels of arginase 1 (ARG1)
and inducible nitric oxide synthase (iNOS), which represent
immunosuppressive factors, are also correlated with the
increased expression of the ILC2-related markers RORα,
T1/ST2, IL-17RB, CRTH2, ICOS, CD45, and the signature
cytokines IL-13 and IL-5 (62). ILC2-derived Arg1 was also
reported to inhibit T cell responses (63). The role of IL-33 in
promoting hypoxic TME by inducing aberrant angiogenesis
has also been recently highlighted (64). Subsequent to this, the
high production of reactive oxygen species (ROS) elicits the
expression of chemokine (C-X-C motif) receptor 2 (CXCR2)
on tumor cells. Notably, ILC2s-derived CXCL2 has been shown
to induce the strong apoptosis of EL4 lymphoma cells via
CXCR2 (64).

ILC2s-Mediated Recruitment of
Immunosuppressive Cell Subsets
The number of ILC2s increases in TME, and increased IL-13
derived from ILC2s leads to the accumulation of monocytic
myeloid-derived suppressor cells (M-MDSCs) to support cancer
progression (36, 65). MDSCs can promote tumor growth by
expressing multiple pro-angiogenesis characteristics, and they
suppress T cells and NK cells by expressing a high level of
Arg1, iNOS, and reactive Oxygen species (ROS). IL-13 derived
from ILC2s helps to activate Monocytic-MDSCs (M-MDSCs)
after stimulation by IL-33 [8, 33], whilst, IL-33 itself can directly
elicit the expansion of M-MDSC (66–68). In addition, ILC2s
can also induce MDSCs to produce transforming growth factor-
β (TGF-β), which contributes to the alternative activation of
macrophages (69).

Regulatory T cells (Tregs) manifest their suppressive
characteristics by secreting immunosuppressive factors such
as IL-10, IL-35, and TGF-β (70), inducing the expression of
inhibitory receptors like cytotoxic T lymphocyte antigen 4
(CTLA-4) (70), killing effector cells via granzyme B (71, 72)
and perforin (73), interfering with the cellular metabolism,
and down-modulating expression of CD80 and CD86 on DCs
to support tumor metastasis and evasion from the immune
system (74). Previous studies have shown that ILC2s activate
Tregs to establish and maintain an immunosuppressive
microenvironment through producing Areg, the ligand of
epidermal growth factor receptor (EGFR) on Tregs (12, 48, 75).
Importantly, ILC2s promote the accumulation of Tregs via
the interaction of ICOSL and ICOS, which are both expressed
on the surface of ILC2s (76). Nonetheless, Tregs conversely
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inhibits the function of ILC2s through restraining the binding of
ICOS/ICOSL (34, 77).

Macrophages have critical functions in the stroma milieu
of tumors. They show clear heterogeneity with different
phenotypes appearing upon exposure to different stimuli.
Generally, macrophages can be classified intoM1 andM2 subsets.
Infiltration of M2-like tumor-associated macrophages (TAMs)
promotes tumor progression via the suppression of anti-tumor
immune responses. Activated ILC2s produce IL-13 which play a
key role in the induction of the polarization of the M2 phenotype
via the STAT6 signaling pathways, and which contribute to the
survival of tumors (12, 66, 77, 78).

Programmed Death-1 (PD-1)/PD-L1
Signaling Restrains the Activation of ILC2s
PD-1 is an inhibitory receptor expressed on the surface of T cells,
it is also expressed on the surface of ILC2s (79). The increased
PD-1 expression on ILC2s correlates with responses to IL-33.
The combination of PD-1 and PD-L1 provides a negative signal
which limits the proliferation and cytokine secretion of mature
ILC2s by inhibiting the phosphorylation of STAT5. In this way,
the immunoregulation functions mediated by mature ILC2s are

impaired (35, 80, 81). However, far too little attention has been
paid to ILC2-mediated immunomodulation in tumors by PD-
1 and PD-L1. More detailed studies are required to investigate
such relationships.

Prostaglandin Regulates the Functions of
ILC2s
The prostaglandin (PG) D2 receptor, chemoattractant
receptor-homologous molecule (CRTH2), is expressed on
Th2 lymphocytes and also exists on the surface of human ILC2s
(7). The activation and migration of ILC2s, together with the
production of type 2 cytokines by ILC2s, can be ascribed to
the binding of PGD2 to CRTH2 (24). In addition, ST2 (IL-33
receptor) and IL-17RA (IL-25 receptor) are also expressed on
ILC2s (82). Tumor-derived PGD2 and the natural cytotoxicity
receptor 3 (NCR3) ligand B7H6, respectively react with CRTH2
and NCR NKp30 expressed on ILC2s (83), inducing ILC2s,
to activate M-MDSC by secreting IL-13 which exhibits the
immunosuppressive functions mentioned above (4, 37). As for
patients with acute promyelocytic leukemia (APL), specifically
impairing the immunosuppressive axis PGD2/IL-13/NKp30
can partially decrease the numbers of ILC2s and M-MDSC

FIGURE 1 | Overview of the roles of ILC2s in the tumor microenvironment. ILC2s can directly regulate the growth and metastasis of tumor cells by secreting cytokines

or via the interactions of receptors and ligands expressed on the various types of cells, respectively. ILC2s can also indirectly influence the fates of tumors by recruiting

immune cells into the tumor microenvironment or promoting the process of tumor-antigen presentation. ILC2s, group 2 innate lymphoid cells; PD-1/PD-L1,

programmed death-1/programmed death-ligand 1; Treg, regulatory T cell; IL, interleukin; MHC, major histocompatibility complex; CXCL, chemokine (C-X-C motif)

ligand; CCL, chemokine (C-C motif) ligand; TCR, T cell receptor; DC, dendritic cell; YAP, Yes-associated protein; MDSC, myeloid-derived suppressor cell; M2, M2-like

macrophage; TGF-β, transforming growth factor-β; VEGF, vascular endothelial growth factor; PGD2, prostaglandin D2; CRTH2, chemoattractant receptor

homologous to the T helper 2 Cells.
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to ameliorate survival (36). However, PGE2 reduces the
proliferation of ILC2s by interacting with the receptors EP2 and
EP4 expressed on ILC2s, and so the expression of GATA3 and
the secretion of type 2 cytokines can also be restrained (84).
As discussed above, different prostaglandins act uniquely on
ILC2s to render distinct effects on tumor progression. Thus,
prostaglandins have emerged as the potential targets of cancer
therapy. However, the function of prostaglandins to control
the regulating effect of ILC2s on tumors still needs further
in-depth investigation.

PERSPECTIVES

In recent years, ILC2s have attracted much attention. They
are important players in the modulation of the tumor
microenvironment and regulate the host’s antitumor immunity
(Figure 1). Of note, tumor-associated ILC2 phenotypes have
been reported in various types of cancer. However, a better
understanding of the interaction between these ILC2s and
the TME is required (3). The expression of surface markers
on ILC2s is diverse in the context of the distinct TME,
indicating a high heterogeneity in ILC2s. It is essential
to identify the reliable and specific cell surface markers
and to understand how the TME influences the phenotypic
heterogeneity and functional diversity of ILC2s. Furthermore,
some issues related to the interaction of ILCs with the
TME remain to be addressed including those of distinct
origins and periods of tumor progression, metabolic cross-
talks between tumor and ILC2s, and the interaction between
ILC2s and other immune cells in the TME, especially
CD8+ T cells.

Understanding the phenotypic plasticity of ILC2s will be of
benefit toward answering many questions relating to conversions
among the three groups of the ILC family. When does the

ILC conversion occur? Do epigenetic modification mechanisms
exist during the process? Will the conversion be clinically
meaningful if tumor-promoting ILC2s can adopt an anti-
tumorigenic phenotype? Overall, little is known regarding how
epigenetic modifications control the unique gene expression
patterns and biological functions of ILC2s in the TME. Whether
tumor-associated ILC2-derived cytokines or exosomes lead to the
formation of the TME or pre-metastatic niche also still remains
ambiguous. Future work in the field is required to address these
key issues.

Given the preferential distribution of ILC2s in mucosal tissue,
and the important role the microbiota plays in homeostasis of
immunity, further research relating to crosstalk between ILC2s
and the microbiota that reside in the microenvironment of lung
cancer, colorectal cancer and gastric cancermay also pave the way
for a new strategies of cancer immunotherapy (85).

With the deepening of research, ILC2s may have the potential
to be a feasible immunotherapeutic target for optimizing the
tumor immunotherapy strategies. This highlights the need
to further identify their critical features in the inflammatory
tumor microenvironment.
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