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M-CSF and RANKL are two crucial cytokines stimulating differentiation of mature,

bone resorbing, multinucleated osteoclasts from mononucleated progenitor cells in

the monocyte/macrophage lineage. In addition to the receptors for M-CSF and

RANKL, osteoclast progenitor cells express receptors for several other pro- and

anti-osteoclastogenic cytokines, which also regulate osteoclast formation by affecting

signaling downstream M-CSF and RANKL receptors. Similar to many other cells

originating from myeloid hematopoetic stem cells, also osteoclast progenitors express

toll-like receptors (TLRs). Nine murine TLRs are expressed in the progenitors and all,

with the exception of TLR2 and TLR4, are downregulated during osteoclastogenesis.

Activation of TLR2, TLR4, and TLR9, but not TLR5, in osteoclast progenitors stimulated

with M-CSF and RANKL arrests differentiation along the osteoclastic lineage and keeps

the cells at a macrophage stage. When the progenitors are primed with M-CSF/RANKL

and then stimulated with agonists for TLR2, TLR4, or TLR9 in the presence of M-CSF, but

in the absence of RANKL, the cells differentiate to mature, bone resorbing osteoclasts.

TLR 2, 4, 5, and 9 are also expressed on osteoblasts and their activation increases

osteoclast differentiation by an indirect mechanism through stimulation of RANKL. In

mice, treatment with agonists for TLR2, 4, and 5 results in osteoclast formation and

extensive bone loss. It remains to be shown the relative importance of inhibitory and

stimulatory effects by TLRs on osteoclast progenitors and the role of RANKL produced

by TLR stimulated osteoblasts, for the bone resorbing effects in vivo.
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INTRODUCTION

Human body is constantly exposed to microorganisms. In addition to our own cells,
humans host a vast community of microbes, with an estimation of the number of
bacteria exceeding the number of host cells by a factor of 1.3 (1, 2). The majority
of these microorganisms populate the gastrointestinal tract and regulate processing and
absorption of nutrients and vitamin biosynthesis, which impacts the development and
remodeling of multiple organs, including bone (3). Recently, it has been demonstrated that
disturbances in normal microbial population are associated with effects on bone, not only
due to impaired uptake of nutrients, but also due to the activation of pattern-recognition
receptors (PRRs) expressed in immune cells by microbe-associated molecular patterns
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(MAMPs) released by microorganisms (4–6). The intestinal
microbiota modulates unexpected events distant to the mucosal
surface, such as sex steroid deficiency induced bone loss (7). In
contrast to wild type mice, sex steroid-depleted germ-free mice,
fail to increase osteoclastogenic cytokines and, consequently,
bone resorption is not increased and bone mass is preserved.
Microbial recolonization restores the capacity of sex steroid
depletion to induce trabecular bone loss. Interestingly, a shift
in the normal microbial population by supplementation with
probiotics protects mice from sex steroid depletion-induced bone
loss. Corroborating these observations in mice, a double blind,
placebo-controlled clinical trial demonstrated that daily intake of
Lactobacillus reuteri for 12 months reduces the loss of volumetric
bone mineral density (BMD) in 75–80 year old women who had
low BMD (8).

The effect of MAMPs in bone metabolism becomes evident
in infectious diseases close to the skeleton. In periodontitis,
a highly prevalent inflammatory disease afflicting more than
two thirds of Americans aging more than 65 years, bone
loss is clinically observed due to infection by pathogenic
bacteria and their recognition by the host immune system
(9). Bacteria-induced bone loss is also involved in the
pathogenesis of osteomyelitis (10). Bone resorption due to
excessive osteoclast formation is also observed in Staphylococcus
aureus septic arthritis (11, 12), an uncommon, but not
rare disease affecting 2–10 patients of 100,000 in the
general population (13). Not only MAMPs can activate
PRRs since these receptors recognize also endogenously
produced molecules such as danger-associated molecular
patterns (DAMPs).

To study the interactions between bone and immune cells,
the field of osteoimmunology emerged almost 50 years ago. In
1970, a breakthrough publication by Haussman et al. reported
that endotoxin from the microorganism commonly found in the
gingival sulcus, Bacteroides melaninogenicus, was as potent as
parathyroid hormone in its ability to induce osteoclastogenesis
and bone resorption (14). Two years later, Horton et al. described
a factor released by leucocytes exposed to dental plaque that
stimulated bone resorption in organ cultures of fetal rat radii
by increasing the number of osteoclasts (15). These were the
first evidence that bacterial components could indirectly affect
bone metabolism through activation of inflammatory cells.
Since then, the mechanisms underlying the interactions between
inflammatory cells and bone cells have been extensively studied,
particularly the role of cytokines in inflammatory bone loss (16).

A great advance in the field of osteoimmunology became
possible after the breakthrough discoveries in late 1990’s
related to the characterization of Toll-like receptors. Toll
protein, primarily related to dorso-ventral embryo patterning
of Drosophila melanogaster (17), was identified in 1996 as a
critical molecule for the response against the fungus Aspergillus
fumigatus (18). Its homologous in humans, once called hToll and
now Toll-like receptor 4 (TLR4), was shown 1 year later to be
linked also to cytokine production in humanmonocytes (19). The
identification of a mutation in the Tlr4 gene in mice that render
them resistant to endotoxin confirmed the participation of TLRs
in innate immunity (20).

Not surprisingly, osteoclasts, which are derived from the
hematopoietic stem cells, express TLRs and respond to MAMPs
(21). Thus, the effect of TLR activation in osteoclasts and
their precursors is an important aspect in the pathogenesis of
inflammation-induced bone remodeling. In this review, we aim
to dissect the molecular mechanisms underlying the effects of
TLRs in osteoclast biology.

OSTEOCLASTS, BONE CELLS EMERGING
FROM THE IMMUNE SYSTEM

The clinical observation of local and systemic bone loss in
a variety of inflammatory diseases demonstrates the influence
of inflammation on bone metabolism (22). These diseases
include rheumatoid arthritis, psoariatric arthritis, ankylosing
spondylitis, septic arthritis, periodontitis, inflammatory bowel
disease, osteomyelitis and loosening of joint prosthesis, and
dental implants. The effect by the inflammatory process is most
often locally in joints or jaw bones, but rheumatoid arthritis
and inflammatory bowel disease also cause systemic bone loss,
so called secondary osteoporosis. In periodontitis, failed dental
implants and septic arthritis, bone loss is associated with
infections by bacteria known to activate TLRs, but these receptors
can also be activated by endogenous substances produced by
cells in the inflamed joint in patients with rheumatoid arthritis.
The expansion of the knowledge in the osteoimmunology field
has helped us to understand how bacteria and tissue-produced
ligands can regulate bone remodeling by activating TLRs.

Mouse monocytes and macrophages from different origins,
such as bone marrow, spleen, thymus and peripheral blood, are
capable of differentiating to mature osteoclasts when co-cultured
with stromal cells in the presence of 1,25-dihydroxyvitamin
D3 (23). The common origin with inflammatory cells might
explain why osteoclast-induced bone resorption is triggered by
proinflammatory cytokines such as IL-1β, TNF-α, OSM, IL-6,
IL-11, and IL-17 (16). The mechanism underlying the action
of proinflammatory cytokines in bone loss is quite intricate
and involves direct mechanisms through binding of cytokines
to cytokine receptors expressed by osteoclast precursors, and
indirect mechanisms through production of osteoclastogenic
factors by inflammatory and resident cells.

Macrophages and osteoclasts share the same progenitor cells,
and differentiation of both cells is affected by a loss-of-function
mutation in the macrophage-colony stimulating factor (M-CSF)
gene (24). The essential role of M-CSF in osteoclastogenesis is
also evidenced inmice lacking its receptor c-FMS, encoded by the
Csfr1 gene, which develop severe osteopetrosis (25). The skeletal
phenotype caused by deficient M-CSF signaling is due to the
essential role of M-CSF on proliferation and survival of osteoclast
progenitors (26).

Among the cytokine receptors affecting osteoclastogenesis, a
crucial molecule is the receptor RANK (receptor activator of
nuclear factor (NF)-κB) (Figure 1). Mice deficient in Tnfrsf11a
(the gene encoding RANK) have impaired osteoclastogenesis
and display severe osteopetrosis (27). RANKL (the ligand for
RANK), a cytokine belonging to the tumor-necrosis factor
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FIGURE 1 | Physiological osteoclast differentiation. Osteoclast progenitors, express c-FMS, the receptor for M-CSF. Upon M-CSF binding to c-Fms, these cells

express RANK, which is activated by RANKL expressed by osteoblasts and osteocytes. Binding of RANKL to RANK, in cooperation with the signaling from

costimulatory receptors OSCAR/FcRgamma and TREM-2/Dap12, induce differentiation of the progenitor cells to osteoclast precursors, which eventually fuse to

latent, multinucleated osteoclasts. Continuous signaling by RANK induces their activation to mature, bone resorbing osteoclasts.

(TNF) superfamily, is expressed by resident bone cells such
as osteoblasts and osteocytes (16), and also by different T
cells (28), again indicating the active influence of the immune
system in osteoclastogenesis. Deletion of the Tnfsf11 (the gene
encoding RANKL) results in mice phenocopying Tnfrsf11a−/−

mice. Both the formation and activity of mature osteoclasts
are stimulated by ligation of RANKL to RANK in vitro (29–
31). To counteract RANKL action, a decoy receptor lacking a
transmembrane domain, osteoprotegerin (OPG), competes with
RANK for RANKL binding and blocks osteoclast differentiation
and activation (32, 33).

Not only immune cells require costimulatory signals for
activation but also osteoclasts require these signals for their
activation, in addition to the signaling induced by M-CSF
and RANKL (Figure 1). In fact, the immunoreceptor tyrosine-
based activation motif (ITAM)-harboring adaptors, Fc receptor
common gamma subunit (FcRγ), and DNAX-activating protein
(DAP)12 are essential for osteoclast terminal differentiation, as
demonstrated in osteopetrotic mice lacking these receptors (34).
In osteoclasts, the immunoglobulin-like receptors associated with
FcRγ and DAP12 are osteoclast-associated receptor (OSCAR)
and the triggering receptor expressed in myeloid cells 2 (TREM-
2), respectively (26). Although FcRγ/DAP12 are crucial for
osteoclastogenesis to occur, the ligands activating the receptors

in osteoclast progenitors are not known. Recently, it was
demonstrated that downstream of kinase-3 (DOK3), a protein
known to physically interact with DAP12 in macrophages to
inhibit TLR signaling (35), is an important negative regulator of
osteoclast formation. The mechanism involves inhibition of M-
CSF and RANKL-induced activation of Syk and ERK. In vivo,
DOK3−/− mice have reduced trabecular bonemass and increased
number of TRAP+ osteoclasts (36).

Since osteoclasts derive from hematopoietic precursors, it is
not surprising that TLRs affect osteoclast biology. Being a highly
specialized cell, however, activation of TLRs in osteoclasts and
their progenitor cells leads to complex outcomes that will be
further explored in this review.

THE TOLL-LIKE RECEPTOR FAMILY
IN OSTEOCLASTS

The TLR family is composed of 13 members in mammals, 10
of which are identified in humans (TLR1-10), among which
nine are expressed by osteoclast progenitors (TLR1-9) (37). The
members of this family are homologous of the Drosophila Toll
protein and consist of integral membrane glycoproteins with
extracellular domains of leucine-rich repeats (LRRs), a single
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transmembrane domain and a C-terminal intracellular domain
homologous to the intracellular domain of Interleukin-1 receptor
(IL1R), referred to as Toll/IL-1R domain (TIR domain) (38, 39).

Despite the conserved extracellular LRR domain, TLRs can
sense a broad range of MAMPs expressed by invading microbes
and danger-associated molecular patterns (DAMPs) expressed by
the host, probably by insertions of specific amino acids conferring
ligand specificity (40) (Figure 2). Interestingly, different ligands
can bind to the same TLR (Figure 2). Thus, TLR4, as an example,
can recognize MAMPs such as lipopolysaccharide LPS (41) and
lipid A (42), as well as DAMPs such as serum amyloid A
(43), S100A8/S100A9 (44), oxidized low-density lipoprotein and
amyloid β (45), in addition to several other MAMPs and DAMPs.
The capacity to recognize different structures by the TLRs
explains why endogenous TLR ligands, such as DAMPs secreted
by necrotic cells and extracellular matrix (ECM) in response
to tissue damage or injury, as well as MAMPs, such as LPS,
lipopeptides, CpG oligodeoxynucleotides, and flagellin, among
others, affect osteoclastogenesis. The effects and mechanism of
action of MAMPs and DAMPs in osteoclasts is summarized in
Table S1 and will be further addressed below.

For signaling, DAMPs and MAMPs associate with TLRs
mainly as homo and heterodimers (46). In the case of TLR4,
recognition of LPS requires binding to the accessory proteins
LPS-binding protein and CD14 before being transferred to
the TLR4/MD2 protein complex (47). In addition to TLR4;
TLR2, TLR5, and TLR9 are responsible for recognition of
bacterial components. TLR2, in association with either TLR1 or
TLR6, recognizes various bacterial cell wall components, such
as lipoteicoic acid (48) and lipoproteins/lipopeptides (49, 50),
while TLR5 mediates the response to flagellin (51) (Figure 2).
Similarly to TLR4, and in accordance with their functions, TLR2
and TLR5 are membrane bound. Among the intracellular TLRs,
TLR9 recognizes bacterial DNA through CpG motifs (52). The
cell response to viruses is manly triggered by the recognition
of viral components by the intracellular receptors TLR3, 7, and
8 (53), although it is reported that TLR4 can also recognize
viral proteins (54). TLR7 can also be targeted by the synthetic
compound imiquimod, used for topical treatment of skin cancers
and other cutaneous disorders (55).

Since the cloning of TLR4, it has been shown that TLR4
signals through NF-κB pathway to induce cytokine production
(19). Later, several molecules were identified as adapter proteins
upstream the activation of NF-κB and other signaling pathways,
such as MAPKs, as extensively reviewed elsewhere (56–59).

To induce effector gene expression, upstream of NF-κB,
TLRs use the canonical myeloid differentiation factor 88
(Myd88) pathway and the non-canonical Myd88-independent,
TIR-domain-containing adapter-inducing interferon-β (TRIF)
pathway (Figure 3). With exception of TLR3, all TLRs activate
the Myd88-dependent pathway, while the Myd88-independent
pathway can also be activated by TLR3, TLR4, and TLR5
(Figure 3).

Upon agonist binding, a hallmark of TLRs activation is
the production of cytokines, including interferons. Activation
of the Myd88 pathway leads mainly to the production
of pro-inflammatory cytokines, while engagement of TRIF

triggers interferon production (60). Since both pro-inflammatory
cytokines and interferons are known to affect bone metabolism
(16, 61), activation of TLRs can indirectly interfere with
osteoclast function.

TLR ACTIVATION IN OSTEOCLASTS,
FRIEND OR FOE?

Since the pioneering observation showing that LPS from
Bacteroides melaninogenicus (those days called endotoxin)
present in the biofilm in tooth pockets, as well as LPS from
Escherichia coli and Salmonella typhii, could stimulate osteoclast
formation, mineral release, and bone matrix degradation in
organ cultured fetal rat long bones (14), it has been shown
by several groups that LPS from different species of bacteria
can stimulate bone resorption ex vivo (62–64) and in vivo
(65–67). Following the discovery of TLRs, it has been found
that LPS from several bacteria stimulates osteoclast formation
and bone resorption in vivo through activation of TLR4
(68, 69), whereas P. gingivalis LPS utilizes TLR2 to induce
osteoclastogenesis (70, 71). It cannot, however, be determined in
these experimental systems if LPS increases osteoclastogenesis by
targeting osteoclast progenitor cells, or if osteoclast-supporting
cells mediate the effect. The fact that mouse bone marrow
macrophages express TLRs (TLR1-TLR9) (72), and that both
TLR and RANK recruit TRAF6 to the cytoplasmic tail of
the receptors and activate NF-κB, suggests that TLR agonists
may, similar to RANKL, stimulate osteoclastogenesis through
TLRs present in osteoclast progenitor cells. Using purified
bone marrow macrophages/osteoclast progenitors, however, it
has been shown that LPS can both inhibit and stimulate
osteoclastogenesis dependent on the differentiation level of the
progenitors (73). Other studies have demonstrated that LPS can
stimulate osteoclast formation also indirectly through enhancing
RANKL formation by targeting osteoclast-supporting cells (see
further below).

TLR ACTIVATION INHIBITS
OSTEOCLASTOGENESIS STIMULATED
BY RANKL

As mentioned above, mouse bone marrow macrophages express
TLR1-TLR9, but when these cells are induced to differentiate to
mature osteoclasts with RANKL, all receptors, with the exception
of TLR2 and TLR4, are downregulated (72). This observation
indicates that osteoclast progenitors in bone marrow could be
responsive to a variety of TLR agonists. However, despite the
fact that the TLR2 agonist P. gingivalis activates ERK1/2, p38,
JNK, and NF-κB in mouse bone marrow macrophages, similar
to RANKL, treatment of the macrophages with M-CSF and
P. gingivalis does not result in formation of osteoclasts (74).
Similar observation has been made by adding either E. coli LPS
or CpG-ODN to M-CSF-stimulated macrophages to activate
TLR4 and TLR9, respectively (75, 76). Interestingly, activation
of TLR9 induced the formation of TRAP+ mononucleated cells,
but no mature osteoclasts were formed. In contrast to RANKL,
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FIGURE 2 | TLR1-9 are expressed by cells belonging to the osteoclast lineage, of which TLR2, 4, 5, 7, and 9 have been shown to be functional. The figure represents

all the TLRs that have been described to be expressed in cells belonging to the osteoclast lineage and some of their ligands.

FIGURE 3 | Stimulation of TLRs activates multiple signaling pathways. With exception of TLR3, activation of TLRs results in recruitment of Myd88 to activate the

Myd88-dependent canonical pathway. Myd88 activates TRAF6 to form a protein complex capable of phosphorylating the IKK complex, resulting in NF-κB activation.

In parallel, the Myd88-dependent pathway results in activation of MAPK and AP-1. The Myd88-dependent pathway results in increased expression of proinflammatory

cytokines. The Myd88-independent, non-canonical pathway can be activated by TLR4, TLR3, and TLR5, causing recruitment of TRIF. Unlike TLR3 and TLR5, which

recruit TRIF directly to their TIR domain, TLR4 uses TRAM as an adapter protein. TRIF activates IRF3, which translocate to the nucleus to trigger expression of

interferon.
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activation of TLR2 with P. gingivalis stimulation did not induce
activation of c-Fos or Nfatc1. Given the crucial role of these
transcription factors for osteoclast formation, as demonstrated by
the lack of osteoclasts and the osteopetrotic skeleton seen in mice
with genetic deletion of Fos (77) orNfatc1 (78), it is apparent that
this difference in signaling downstream RANK and TLR2 is the
reason why TLR2 activation does not induce osteoclastogenesis.
In contrast to these observations, it has recently been reported
that the synthetic TLR7 agonist imiquimod stimulated osteoclast
formation in M-CSF treated human CD14+ monocytes cultured
for 21 days, an effect associated with enhanced expression of
Nfatc1 (79).

Surprisingly, activation of TLR in bone marrow macrophages,
simultaneously stimulated with RANKL, abolishes osteoclast
formation (Figure 4A). Thus, addition of either peptidoglycan
from S. aureus, S. aureus bacteria, lipoteichoic acid from
S. aureus, P. gingivalis bacteria, or P. gingivalis LPS, which
all activate TLR2, or addition of the synthetic TLR2 agonist
Pam2CSK4 (Pam2), to RANKL-stimulated macrophages,
completely blocks osteoclast formation (72, 74, 80–83).
Also addition of poly(I:c) dsRNA activating TLR3, E. coli
LPS activating TLR4, or CpG motif of unmethylated DNA
(Cpg-ODN) activating TLR9, blocks RANKL-induced
osteoclastogenesis in M-CSF-treated mouse bone marrow
macrophage cultures (72, 75, 76, 84). M-CSF/RANKL-stimulated
macrophages lose their capacity to phagocyte zymosan, but when
co-treated with the TLR agonists, the cells still can phagocyte
these particles, demonstrating that they are arrested at the
macrophage stage (72). Activation of these four TLRs, also
inhibits osteoclast formation in RANKL-stimulated human
peripheral blood monocyte cell cultures (72). In agreement with
these findings, activation of TLR2 with Pam3CSK4 (Pam3), or
TLR4 with E. coli LPS, inhibits osteoclast formation using human
CD14+ monocytes as progenitor cells, an effect associated
with decreased expression of RANK and TREM (84). The
TLR2-induced inhibition is dependent on MyD88, but not on
TRIF signaling (74). In contrast to activation of TLR2, TLR3,
TLR4, and TLR9, activation of TLR5 using flagellin from two
different bacteria does not inhibit RANKL-induced osteoclast
formation in mouse macrophages expressing TLR5 mRNA and
protein (85).

Since osteoclast progenitor cells might be challenged by
several agonists activating different TLRs during infectious
diseases, the interactions between different TLR agonists have
been assessed. Thus, synergistic inhibitory effects on osteoclast
formation have been observed when mouse macrophages have
been treated with TLR3 together with TLR4, or with TLR4
together with TLR9 (86). These synergistic inhibitions were
partially explained by decreased protein expression of the
receptor for M-CSF.

RANKL-Induced Signaling Pathways Are
Affected by Activation of TLRs
Similar to RANKL, peptidoglycan from S. aureus, poly(I:c)
dsRNA, E. coli LPS and Cpg-ODN activate NF-κB in mouse
macrophages (72), an observation also made in macrophages

stimulated with P. gingivalis (74). Also similar to RANKL, this
bacterium activates ERK1/2, p38 and JNK, both when added
alone and when added together with RANKL (74), indicating that
inhibition of osteoclastogenesis by TLR2 is not due to decreased
phosphorylation of MAPKs. Similarly, P. gingivalis did not affect
RANKL-induced activation of NF-κB (74). Nor does stimulation
of TLR4 with E. coli LPS affect RANKL-induced activation of
NF-κB, ERK1/2 or p38 (76). Importantly, however, activation
of TLR2 with P. gingivalis, or TLR4 with E. coli LPS, inhibits
RANKL-induced activation of Nfatc1, which explains why these
TLRs block osteoclastogenesis (74, 76). Activation of TLR2 also
inhibited c-Fos induction by RANKL, which is an additional
mechanism by which osteoclast formation is decreased. Since c-
Fos is a transcription factor upstream of Nfatc1 (87), it is likely
that regulation of c-Fos is the reason why Nfatc1 is decreased.
Also activation of TLR9 inhibits RANKL-induced c-Fos, by a
mechanism due to increased degradation of both c-Fos mRNA
and protein (88). This might be due to that the activation of
ERK1/2 by CpG-ODN is transient, whereas RANKL causes a
sustained activation of ERK1/2, a difference which is explained
by the finding that CpG-ODN, but not RANKL, induces the
expression of the phosphatase PP2A (88).

Serum amyloid A is a circulating, danger-associated, liver
protein which is upregulated by inflammatory processes
and which binds to TLR2 (89). This protein also inhibits
RANKL-stimulated osteoclast formation in mouse bone marrow
macrophage (BMM) cultures (90). The inhibition is associated
with decreased expression of RANKL-induced Fos and Nfatc1
mRNA expression, increased expression of the macrophage
transcription factors Mafb and Irf8, as well as with decreased
expression of c-Fms protein on the surface of the progenitor cells
due to enhanced ectodomain shedding.

Cytokines Involved in TLR-Induced
Inhibition of Osteoclastogenesis
In agreement with the fact that increased formation of
inflammatory cytokines is a well-known, Myd88-dependent,
phenomenon in macrophages stimulated by TLR agonist, it has
been observed that activation of BMMs with peptidoglycan,
poly(I:c)dsRNA, E. coli LPS, CpG-ODN results in increased
expression of TNF-α (72, 75). The expression of Tnfsf2 (encoding
TNF-α), as well as the mRNA expression of Il6, and Il12p40,
is upregulated after stimulation with P. gingivalis, whereas
RANKL does not affect the expression of any of these cytokines
(74). The expression of Il12p40 mRNA and IL-12 protein is
increased also by CpG-ODN (91). Since neutralization of IL-
12 partially rescued the inhibitory effect by CpG-ODN on
osteoclast formation, and since IL-12 is an inhibitor of osteoclast
differentiation (92), it seems induction of anti-osteoclastogenic
cytokines by TLR9 might partially explain the inhibitory effect
on osteoclastogenesis.

Not only inflammatory cytokines are induced by TLR
signaling, but also type I interferons are induced through the
TRIF-mediated pathway (Figure 3). Since IFN-β is a negative
feedback regulator of RANKL-induced osteoclast formation due
to decreased expression of c-Fos protein (93), the possibility
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FIGURE 4 | TLR activation at different stages of osteoclast differentiation results in different outcomes. (A) When TLR agonists are added at early stages of osteoclast

differentiation, concomitant with RANKL, osteoclastogenesis is arrested. (B) Committed osteoclast precursors primed with RANKL are capable to differentiate to

mature, functional osteoclasts when challenged with TLR agonists in the absence of RANKL.

exists that IFN-β may be important for decreased osteoclast
formation caused by activation of TLR2 and TLR4. The
observations showing that TLR2- and TLR4-induced inhibition
of RANK expression and human osteoclast formation is
independent of IFN-β (84) and that TLR2-induced inhibition
of human osteoclastogenesis is dependent on Myd88, but
not TRIF, argues for that IFN-β is not involved in the
decreased osteoclast formation caused by activation of TLR2
or TLR4. Most recently, however, it has been reported that
haptoglobin decreased osteoclast formation in vivo and in vitro
through activation of TLR4 and induction of IFN-β (94). Thus,
haptoglobin deficient mice have low trabecular bone mass and
increased numbers of osteoclasts, with no effect on osteoblast
numbers. Treatment of mice locally with haptoglobin results in
decreased osteoclast formation in mice co-stimulated by RANKL
injections. In mouse BMM cultures, haptoglobin decreases
osteoclast formation by a mechanism dependent on TLR4, but
not on TLR2 or TLR7, and associated with increased mRNA
and protein expression of IFN-β. The inhibitory effect was
abolished by antibodies neutralizing IFN-β. Similar to previous
findings (93) increased IFN-β and decreased osteoclast formation
was associated with unaffected mRNA expression of Fos but

decreased c-Fos protein expression. It was, however, surprising
that haptoglobin did not induce phosphorylation of IRF-3, which

is a well-known inducer of IFN-β in the TRIF pathway activated
by TLRs (Figure 3). It, therefore, remains to be understood
why TLRs and haptoglobin induce IFN-β by seemingly different
mechanisms in osteoclast progenitor cells. It also remains
to be understood why TLR-induced inhibition of osteoclast
differentiation in human osteoclast progenitors is independent

of IFN-β, whereas activation of TLR4 by haptoglobin in mouse
osteoclast progenitors is dependent.

IL-1 receptors, similar to TLRs, have a cytosolic TIR
domain, and also share several common downstream signaling
pathways. It has, therefore, been investigated how activation
of IL-1 receptors affect RANKL-induced osteoclast formation.
Lee et al., using human CD14+ monocytes, found that IL-1β
also inhibited RANKL-stimulated osteoclast formation, when
the cells were co-stimulated with the two cytokines (95). In
contrast, Chen et al., using mouse bone marrow macrophages,
found that IL-1α, in contrast to P. gingivalis LPS, enhanced
osteoclast formation induced by RANKL (81). IL-1α-induced
stimulation was observed with both stimulatory and permissive
concentrations of RANKL. Both the inhibitory effect by P.
gingivalis LPS and the stimulatory by IL-1α were dependent
on Myd88. The diverse responses were explained by the
observation that LPS abrogated the RANKL-induced expression
of Blimp1, a transcriptional repressor of the anti-osteoclastogenic
transcription factors IRF8 and MafB, whereas IL-1α potentiated
RANKL-induced expression of Blimp1.

Comparison of Effects by TLRs on
Osteoclast Formation in vitro and in vivo
The inhibitory effects by activation of TLRs on osteoclast
formation does not explain why infections with E. coli, S. aureus,
or P. gingivalis result in increased formation of osteoclasts
and bone resorption (96). It has been suggested, however, that
the inhibition of osteoclast formation by TLR may be part
of a homeostatic mechanism limiting bone resorption during
infection and inflammation (84). It might also be possible
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that the inhibitory effect is a mechanism to increase the
number of macrophages involved in the defense against the
bacterial infections.

The inhibition of osteoclastogenesis by TLR agonists seems
to be specific to un-committed purified mouse bone marrow
macrophages and human peripheral blood monocytes, since
P. gingivalis LPS, S. aureus and Pam2 do not inhibit bone
resorption in RANKL-stimulated mouse calvarial bones ex vivo
(82, 83). Nor do these agonists inhibit osteoclast formation in
RANKL-stimulated calvarial periosteal cell cultures containing
osteoclast progenitors. This may be of particular interest since
formation of mature osteoclasts only takes place on bone
surfaces, not in bone marrow. The reason why the osteoclast
progenitors in the periosteum is not inhibited by TLR agonists
is not known, but may be due that these cells do not express
TLRs, or that these cells are committed osteoclast progenitors,
or that surrounding non-osteoclastic cells make the osteoclast
progenitors insensitive to TLR-induced inhibition.

TLR ACTIVATION INDUCES
OSTEOCLASTOGENESIS IN
RANKL-PRIMED CELLS

In contrast to the inhibition of un-committed osteoclast
progenitors in bone marrow or peripheral blood, activation of
TLR in RANKL-committed osteoclast progenitors from bone
marrow results in stimulation of osteoclastogenesis (Figure 4B).
Zou et al. were the first to show that mouse bone marrow
macrophages primedwithM-CSF/RANKL, and then treated with
E. coli LPS and M-CSF, in the absence of RANKL, differentiate
to mature osteoclasts (97). Under these conditions, LPS induced
the expression of IL-1β and TNF-α, and addition of antibodies
neutralizing TNF-α inhibited osteoclast stimulation by LPS, in
agreement with previous studies showing that the stimulatory
effect of LPS in vivo on the numbers of osteoclast progenitors
in bone marrow is inhibited in mice deficient of the p55 TNF
receptor (67). In contrast, inhibition of IL-1β with the IL-1
receptor antagonist did not affect LPS-induced stimulation of
osteoclast formation in RANKL-primed cells. The effect of
commitment by RANKL is long-lasting and E. coli LPS is able
to induce osteoclastogenesis several days after priming (76).
Under these conditions, LPS does not decrease the expression
of Nfatc1, in contrast to the inhibition seen when LPS is added
together with RANKL to non-committed cells. Also addition of P.
gingivalis to RANKL-primed cells results in osteoclast formation
(74). Similar induction of osteoclast formation is obtained by
adding other TLR2 agonists, such as formaldehyde-inactivated
S. aureus, Pam2 and Pam3 (83, 98). At variance, Kassem et al.
found that UV-light inactivated S. aureus, P. gingivalis LPS and
heat-killed Listeria monocytogenes cause increased numbers of
TRAP+ mononucleated cells in RANKL-primed bone marrow
macrophage cultures. These cells expressed enhanced mRNA
levels of Acp5 (encoding TRAP), Ctsk (encoding cathepsin K),
c-Fos, and Nfatc1, but did not form multinucleated osteoclasts.
In contrast, Pam2 and Pam3 robustly stimulated formation

of multinucleated osteoclasts. Activation of TLR9 with CpG-
ODN in RANKL-primed cells also results in formation of
multinucleated osteoclasts and, similar to activation of TLR4,
activation by CpG-ODN is dependent on TNF-α (75). Synergistic
stimulation of osteoclastogenesis in RANKL-primed cells by
co-treatment with either TLR3/TLR9 agonists, or TLR4/TLR9
agonists, has also been observed (86).

Since TLR2 and TLR4 are not downregulated during
osteoclastogenesis (72), the role of these receptors in mature
osteoclasts has been assessed. Three studies have demonstrated
that activation of TLR2 with peptidoglycan from S. aureus, or of
TLR4 with E. coli LPS, increases the survival of mature osteoclasts
(72, 76, 99), an observation not seen by adding agonists activating
TLR3 or TLR9.

It is apparent that TLRs have dual effects on osteoclastogenesis
dependent on the differentiation status of osteoclasts or
their progenitors. The exact molecular mechanisms causing
osteoclast progenitors to respond to TLR agonists with enhanced
differentiation along the osteoclastic lineage, provided the cells
are primed with RANKL, and then exposed to TLR agonists
in the absence of RANKL remains to be shown. Another
important issue is if the dual actions also are occurring in
vivo. It is well-documented in several experimental systems
that LPS induces osteoclast formation and bone loss in vivo,
which means that the overall effect is that of a stimulation
of osteoclastogenesis.

Indirect Activation of Osteoclastogenesis
by TLRs
One mechanism by which TLR activation induces
osteoclast formation in vivo may be through the above-
described mechanism, where TLR agonists directly enhance
osteoclastogenesis in committed osteoclasts. Anothermechanism
may be due to increased expression of osteoclast-stimulating
cytokines (16). These cytokines induce osteoclast formation
indirectly by increasing the expression of production of RANKL
in osteoblasts/osteocytes (Figure 5, left part). The possibility
also exists that TLR agonists enhance osteoclast differentiation
indirectly by regulating the production of RANKL and OPG
in osteoblasts (Figure 5, right part). The fact that osteoblasts
express TLR2, TLR4, TLR5, TLR6, and TLR9 further support
such a possibility (82, 85, 100, 101).

Stimulation of TLR4 with LPS from either E. coli or
Actinobacillus actinomycetemcomitans increases the mRNA
expression of Tnfsf11 in mouse calvarial osteoblasts, the
osteoblastic cell line MC-3T3E1 and the stromal cell line ST-
2 (100). This effect was independent of TNF-α. In contrast to
activation of TLR4, activation of TLR9 with CpG-ODN does not
induce Tnfsf11 mRNA in osteoblasts, although both E. coli LPS
and CpG-ODN stimulated the expression of TNF-α and activated
NF-κB, ERK1/2 and p38 (101). Using co-cultures of osteoblasts
and bone marrow macrophages from wild type mice and mice
deficient in either Tlr4 or Tlr9, it has been shown that both LPS
and CpG-ODN stimulate osteoclast differentiation, but that the
effect of CpG-ODN is more dependent on TLR9 receptors in
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FIGURE 5 | Osteoclastogenesis can be induced indirectly by TLR agonists

TLR agonists induce the expression of proinflammatory, pro-osteoclastogenic

cytokines such as IL-1β, IL-6, and TNF-α by macrophages, which will bind to

cytokine receptors expressed in osteoblasts causing induction of RANKL

expression. Alternatively, TLR agonists bind to TLRs expressed by osteoblasts

to induce RANKL expression. In both cases, RANKL will induce differentiation

of osteoclast precursors to mature osteoclasts.

macrophages than those in osteoblasts (102). In contrast, the
effect of LPS was dependent on TLR4 in osteoblasts.

Activation of TLR2 in mouse calvarial osteoblasts by a variety
of agonists (P. gingivalis LPS, S. aureus, Pam2, Pam3, heat-
killed Listeria monocytogenes, and lipoprotein from Mycoplasma
salivarium) increases Tnfsf11 mRNA expression, depending on
Myd88, but independent of IL-1β, IL-6 or TNF-α, without
affecting the mRNA expression of Tnfrsf11b (encoding OPG)
(82, 83). The agonists activated NF-κB and the effect on Tnfsf11
expression could be inhibited by Celastrol, an inhibitor of IκB
kinase. A similar stimulation of Tnfsf11 mRNA and RANKL
protein, with no effect on Tnfrsf11b mRNA and OPG protein,
was observed in mouse calvarial bones ex vivo stimulated by
P. gingivalis LPS, S. aureus and Pam2, which resulted in increased
osteoclast formation and bone resorption in the calvarial bones,
independent of the IL-1β, IL-6 and TNF-α (82, 83). Treatment
of mice in vivo with P. gingivalis LPS or Pam2 also resulted in
increased mRNA expression of Tnfsf11, no effect on Tnfrsf11b
mRNA, enhanced osteoclast formation and bone loss, effects
which were absent in Tlr2−/− mice (82). Increased mRNA
expression of Tnfsf11 and soluble RANKL protein has also been
observed in synovial fibroblasts from patients with rheumatoid
arthritis (79).

Further support for a TLR-dependent indirect mechanism
stimulating osteoclast formation comes from experiments
showing that LPS, stimulating TLR4, and diacyl lipopeptide,
stimulating TLR2, enhances osteoclast formation in cocultures
of mouse osteoblasts and bone marrow macrophages (103). The
effect on both LPS and diacyl lipopeptide, but not osteoclast
formation induced by 1,25(OH)2-vitamin D3, was dependent

on Myd88, but not TRIF, and associated with increased mRNA
expression of Tnfsf11, which most likely was the reason for
the stimulatory effect on osteoclast formation although not
formally shown.

Activation of TLR5 in mouse calvarial osteoblasts with
flagellin from two different bacteria also results in increased
mRNA expression of Tnfsf11, but, in contrast to activation of
TLR2, flagellin decreases Tnfrsf11b mRNA in the osteoblasts
(85). Stimulation of Tnfsf11 mRNA by flagellin was dependent
on Myd88, but independent on IL-1β, IL-6, and TNF-α.
Similar to activation of TLR2, flagellin activated NF-κB and
stimulation of Tnfsf11 mRNA was inhibited by two different
IκB kinase inhibitors. Increased Tnfsf11 mRNA and RANKL
protein, and decreased Tnfrsf11b mRNA and OPG protein,
was also observed in mouse calvarial bones ex vivo, and
treatment with flagellin increased osteoclast formation and
bone resorption in the calvaria. A similar increase of Tnfsf11
mRNA and decrease of Opg mRNA can be seen in mice
treated with flagellin, causing increased osteoclast formation
and extensive bone loss in wild type, but not in Tlr5−/−

mice (85).
Another indirect mechanism by which TLRs can stimulate

osteoclastogenesis is through TLR2-induced upregulation of
the chemokine CXCL10 (104). Stimulation of mouse calvarial
osteoblasts with Pam3 results in increased mRNA expression
of Cxcl10 and CXCL10 protein. When supernatants from
Pam3-stimulated osteoblasts were added to RANKL-stimulated
cultures of the RAW264.7 cell line it was observed that
the supernatants potentiated the osteoclastogenic effect of
RANKL by a mechanism that could be inhibited by antibodies
neutralizing CXCL10.

CONCLUSION

Altogether, observations on osteoclast progenitors and
osteoblasts, as well as findings in organ cultures and in
vivo, demonstrate that TLRs can increase osteoclast formation
and bone resorption by several mechanisms. In cell cultures,
TLRs also can arrest osteoclast differentiation when acting on
un-committed progenitors cells by interfering with RANKL-
induced signaling. The importance of TLRs in osteoblasts
and osteoclast progenitors in vivo must await studies using
mice with cell specific deletions of different TLRs in these
bone cells.
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