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Pharmacologically, glucocorticoids, which mediate their effects via the glucocorticoid

receptor (GR), are a most effective therapy for inflammatory diseases despite the fact

that chronic use causes side-effects and acquired GC resistance. The design of drugs

with fewer side-effects and less potential for the development of resistance is therefore

considered crucial for improved therapy. Dimerization of the GR is an integral step

in glucocorticoid signaling and has been identified as a possible molecular site to

target for drug development of anti-inflammatory drugs with an improved therapeutic

index. Most of the current understanding regarding the role of GR dimerization in GC

signaling derives for dimerization deficient mutants, although the role of ligands biased

toward monomerization has also been described. Even though designing for loss of

dimerization hasmostly been applied for reduction of side-effect profile, designing for loss

of dimerization may also be a fruitful strategy for the development of GC drugs with less

potential to develop GC resistance. GC-induced resistance affects up to 30% of users

and is due to a reduction in the GR functional pool. Several molecular mechanisms of

GC-mediated reductions in GR pool have been described, one of which is the autologous

down-regulation of GR density by the ubiquitin-proteasome-system (UPS). Loss of GR

dimerization prevents autologous down-regulation of the receptor through modulation of

interactions with components of the UPS and post-translational modifications (PTMs),

such as phosphorylation, which prime the GR for degradation. Rational design of

conformationally biased ligands that select for a monomeric GR conformation, which

increases GC sensitivity through improving GR protein stability and increasing half-life,

may be a productive avenue to explore. However, potential drawbacks to this approach

should be considered as well as the advantages and disadvantages in chronic vs. acute

treatment regimes.

Keywords: glucocorticoid receptor dimerization, acquired glucocorticoid resistance, Compound A, GRdim mutant,

GRmon mutant, ubiquitin proteasomal system, biased ligands, half-life

INTRODUCTION

Pharmacologically, glucocorticoids are a cost-effective effective therapy for inflammatory
and autoimmune diseases and are widely prescribed (1–3). Despite the effectiveness of
glucocorticoids in treating inflammation chronic use causes side-effects (4) and acquired
glucocorticoid resistance (5, 6). The design of drugs with fewer side-effects and less potential for
the development of resistance is therefore considered crucial for improved therapy (7).
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Glucocorticoids mediate their effects via the glucocorticoid
receptor (GR) a ligand activated transcription factor. The GR
has a domain structure that consists of an N-terminal domain
(NTD), a DNA-binding domain (DBD) separated from the
ligand binding domain (LBD) by a hinge region (Figure 1A)
(10). The DBD contains two zinc fingers both of which are
involved in DNA-binding, while the second zinc finger is also
involved in dimerization. Binding of ligand to the LBD induces
the cytoplasmic GR to dimerize and translocate to the nucleus
where it can enhance transcription by binding cooperatively as
a homodimer to glucocorticoid response elements (GREs), a
consensus DNA sequence consisting of two hexameric half-sites
separated by a 3-bp spacer. The monomeric GR can also repress
transcription by binding directly to negative glucocorticoid
response elements (nGREs) or GRE half-sites or by tethering to
DNA-bound transcription factors such as NFκB or AP-1 (11–15).

The ability of the GR monomer to repress pro-inflammatory
genes activated by NFκB or AP-1, while activating genes
that result in the metabolic side-effects of glucocorticoids via
the dimer binding to GREs suggested that separation of the
transrepression and transactivation functions of the GR could
give rise to safer drugs and resulted in the development of
selective GR agonists (SEGRAs) or modulators (SEGRMs),
collectively referred to as SEGRAMS (16–21). Despite the fact
that the usefulness of this paradigm has been challenged as being
outdated and oversimplifying the complexity of GR-signaling by
negating the role of GR dimers in curbing inflammation and the
role of GR monomers in eliciting side-effects (19, 22), it may still
hold promise for drugs tailored to specific diseases phenotypes
(18, 23, 24).

Although dimerization of the GR is an integral step in
glucocorticoid signaling and fundamental to the concept of
SEGRAMs it has only relatively recently been explicitly identified
as a possible molecular site to target for drug development of
anti-inflammatory drugs with an improved therapeutic index
(23). In this review we thus discuss the identification of the GR
dimerization interfaces, the use of GR dimerization mutants and
conformationally biased ligands to further our understanding of
the role of GR dimerization in GC signaling and the implications
of loss of GR dimerization for reduction of side-effects, while
highlighting the recent finding that loss of dimerization may
also be a fruitful strategy for the development of drugs with less
potential to develop glucocorticoid resistance.

GR DIMERIZATION

Although the ability of GR to form dimers in solution has
been debated (8, 25–31) several studies have shown that the
GR, liganded or unliganded, can dimerize in solution (32–
36) and that dimerization may already be present in the
cytoplasm (35, 37–39).

X-Ray Crystallography of GR Domains
Identifies Amino Acids Involved in
Dimerization
Two interfaces in the GR have been identified that mediate
receptor dimerization, the DBD and the LBD dimerization

interfaces. Although no crystal structure of the full-length GR has
been reported to date, separate crystal structures of the DBD and
LBD have been reported, which identified specific amino acids
involved in the dimerization interfaces and for the orientation of
binding to DNA.

The first crystal structure of the rat GR DBD (amino acid
residues 440–525) complexed to a canonical GR-binding element
(GRE) identified a dimerization interface (Figure 1A) in the
second zinc finger of the GR consisting of 7 amino acids (rat
residues L475, A477, R479, D481, I483, I487, N491, which
corresponds to the human residues L456, A458, R460, D481,
I483, I487, N491) with three of the inter-subunit contacts in
a region referred to as the D-box (C476–C482) (8). The two
molecules of the DBD bind cooperatively to one face of the
DNA (Figure 1B) when the two hexameric sites are separated
by a 3-base pair spacer in a head-to-head fashion so that their
dimerization loops (D-box) are aligned and contacting each
other (8, 25). Furthermore, crystal structures of the DBD bound
to different GREs were virtually super-imposable except for
the lever arm, a loop region in the DBD between the DNA
recognition helix (first zinc finger) and the dimerization loop,
where different GREs dictate discrete alternate conformations
(40). In addition, human residue H472 in the lever arm adopts
one of two conformations: packed in the first monomer, which
binds to the initial conserved half-site, and flipped in the second
monomer, which binds to the second variable site in the GRE.

In contrast to the head-to-head binding of the DBD to
GREs, crystal structures indicate that at a nGRE (Figure 1B),
in the TSLP gene, which is like the canonical IR-GBS sequence:
CTCC(n)0−2GGAGA (41), GR binds as two monomers
orientated tail-to-tail in an everted repeat orientation on
opposite sides of the DNA (42). This prevents DNA-mediated
dimerization as the D-loops are directed away from each other
and results in binding that is characterized by strong negative
cooperativity, where binding of the first GRmonomer to the high
affinity site hampers binding of the second monomer to the low
affinity site. The two-site binding event (Table 1) characterized
by two non-identical, monomeric binding events has a lower
binding affinity (363 nM and 63µM) than positive cooperative
binding to a GRE site (73 nM) (42). This suggests that the nGRE
sequence not only preferentially binds GR monomers but that
it contributes to a repressive conformation, which may involve
a distinct lever arm conformation where H472 (rat residue)
is flipped in both monomers (42). Crystal structures of GR
DBD bound to AP-1 response elements (TREs: TGA(G/C)TC)
(46) (Figure 1B) suggest a similar binding orientation and
comparable binding affinities (Table 1). In contrast, crystal
structures of GR DBD bound to NF-κB response (κBRE)
elements (45) (Figure 1B) indicate that binding is head-to-head
as for binding to the GREs but resembles those of the nGRE in
that it presents with a two site-binding curve which, like for the
nGRE (44), is abolished by the S425G human mutant. Although
only one monomer binds to the conserved AATTY sequence (Y
represents a pyrimidine base), it binds as a “D-loop” engaged
dimer with high and low binding affinities in the same range
as binding of the DBD to nGREs (Table 1). Collectively, the
negative cooperativity of DNA binding as well as results with
GR dimerization deficient mutants suggest that monomeric GR
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FIGURE 1 | (A) Domain structure of the human GR. Above the figure is indicated the position of the post-translational modifications required for proteasomal

degradation. Below the figure the DBD and LBD residues involved in the dimer interface are expanded. For the DBD, the underlined residues indicate the D-box, while

red residues are those identified as important for the dimerization interface by Luisi et al. (8). In addition, in green is H472 in the lever arm that adopts one of two

conformations: packed or flipped depending on whether binding to GREs or nGREs occur. For the LBD black residues are those involved in hydrogen bonds, while

the green residues form hydrophobic interactions to stabilize the dimer interface as identified by Bledsoe et al. (9). (B) DNA-binding motifs determine orientation and

GR monomer vs. dimer binding. Faded monomer indicates binding to low affinity site.

is likely sufficient at repressive GR binding elements (nGRE,
TRE, and κBRE) in vivo. Occupancy of GR monomers at GRE
half-sites has also been confirmed in vivo (14).

Comparison of initial structural studies of the free GR DBD
solved by NMR (48–51) with that of the crystal structure of
DNA bound GR DBD (8) suggested that the largest difference
occurred in the D-box and led to the assumption that DNA
binding was required for dimerization. However, comparison of a
recent crystal structure of the free humanGRDBD (residues 418–
517) (52) with that of previously determined crystal structures
of the GR DBD bound to a GRE or a nGRE reveal a very
similar core structure with a similar D-loop conformation and
indicates that the largest difference is located in the lever arm.
Molecular dynamic simulations of the lever arm suggest that it is
most mobile in the free state sampling the most diverse number
conformations, while in the nGRE-bound state an intermediate
number of conformations are present, which is further reduced
in the GRE-bound state. Thus, binding to DNA constrains the
number of conformations that the lever arm can sample, which

is further reduced upon dimerization, however, the D-loop is
accessible in solution for dimerization via the DBD.

The crystal structure of the GR LBD lagged behind because of
solubility problems, however introduction of a single mutation
(human residue F602S) significantly improved solubility without
affecting function and allowed for crystallization of the
LBD (human residues 521–777) in the presence of ligand
dexamethasone (DEX) and TIF2, a coactivator peptide (9). This
led to the identification of a dimerization interface (Figure 1A)
stabilized by hydrophobic interactions, specifically reciprocal
interactions between P625 and I628 in the H5–H6 loop, and
hydrogen bonds, from particularly residues between 547 and 551
(extended strand between helices 1 and 3) and Q615 (last residue
in helix 5) from each LBD, that allows formation of four hydrogen
bonds (9). Subsequent GR LBD crystal structures (53–58) in
the presence of agonist or antagonist, focused mainly on the
ligand-binding pocket rather than on the dimerization interface
and generally conform to the crystal structure of the Bledsoe
group (9), besides identifying differences in the ligand-binding
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TABLE 1 | DNA-binding affinity (Kad) of domains and full-length wild-type and

GRdim dimerization deficient mutant (Hill-slope added in brackets).

GRwt DBD mutant: bGRdim

DBD GRE • 73 nM (42)

• 1.6 – 5.7 nM

(1.8 – 2.1) (43)

• 80–890 nM (40)

• 73 nM (44)

• 5.7 nM (25)

• 7.14 –

25.7 nM (37)

• 370 nM (42)

• 16 – 28 nM (1.3 –

1.4) (43)

nGRE • 360 nM and

63µM (42)

• 363 nM and

63.2µM (44)

• 1.1µM (42)

κBRE • 215 – 239 nM

and 17 –

>50µM (45)

TRE • 12 – 402 nM

and 1 – 12µM

(46)

Full-

length

GRE • 50 nM (36)

• 0.5 nM (25)

• 1.2 – 2.56 nM

(37)

• 34 nM (46)

• 35 nM (45)

• 32 – 490 nM

(47)

• 140 nM

(2.5) (30)

• 300 nM (36)

κBRE • 51 nM (45)

TRE • 42 nM (46)

GRE ½
sites

• 1,210 nM (36)

• 185 nM

(1.08) (14)

• 1,260 nM (36)

a(Kapp ), determined using the Langmuir binding model, is given as only some investigators

(30, 47) determined Ktot, the total affinity for assembling two GR monomers at the

palindromic GRE.
bGRdim = human GRA458T , mouse GRA465T , and rat GRA477T .

pocket and helix 12. Recently Bianchetti et al. (59) evaluated the
physiological relevance of the GR LBD dimerization interface by
analyzing 20 published GR LBD crystal structures using estimates
of dimer stability (surface area in Å2 buried upon dimerization
and estimated free energy variation (1iG) upon formation of
the interface) coupled to evolutionary sequence conservation
analysis of the interface. One GRα LBD homodimer structure,
the apH9 dimer, consistently stood out as being more stable, by
having the largest contact surface area (850Å2) and the lowest
binding free energy variation upon formation of the interface
(1iG: −42.9 kcal/mol), and as having highly (82%) conserved
residues at the interface (27 of the 33 residues that contributed
to binding were conserved), however, this structure was formed
by only one of the crystal structures investigated (PDB ID:4P6W)
(53). In contrast, the other dimerization structures observed
in GR LBD crystals were less stable and not significantly
conserved, with the bat-like structure for the GR LBD, suggested
by Bledsoe et al. (9), which was observed in 6 PDB entries

(28%) (9, 53–55, 57, 58), being amongst the least stable (surface
area buried is 288Å2 and 1iG: −20 kcal/ mol) and conserved
(7/16 = 44%), while the most frequent H1 structure, observed
in 9 entries (43%) (9, 53–58), had a slightly higher stability
(332Å2 and 1iG−30 kcal/ mol) and lower number of conserved
residues (2/5) (59). In summary, this suggests that the GR
LBD dimers are generally weaker and less conserved than the
nuclear receptor LBD dimer through H9-H10-H11 (also called
the butter-fly like structure with 1494Å2 and 1iG: −77.5 kcal/
mol and 73% of conserved residues at the interface), which
is found in the ER LBD, a sentiment supported by Billas and
Moras (60). Despite the fact that the bat-like dimer structure was
found to be physiologically the least stable by Bianchetti et al.,
of the residues suggested to be important for stabilization of the
dimer interface, three residues involved in the hGR hydrophobic
interface core (Y545 in H1-loop-H3, P625 in S1-turn-S2 and
I628 in S2) and one (Gln 630 in H5) identified as part of the
hydrogen-bond network, were previously identified by Bledsoe
et al. (9). Interestingly, the surface area buried originally reported
for the bat-like structure (1623Å2) by Bledsoe et al. (9) is much
higher than that reported by Bianchetti et al. (59) (288Å2)
for this structure.

GR Dimerization Mutants Confirm Role of
GR Dimerization Interfaces
Genetic strategies have also been used to verify the GR interfaces
involved in dimerization and the relevance of specific amino
acids identified from crystal structures. Although, these GR
dimerization deficient mutants have been studied extensively for
their role in the regulation of gene expression (12, 61–63), here
mainly effects on dimerization will be discussed.

Mutants That Target the DBD

Most of the GR dimerization mutation studies focused of the
DBD dimerization interface (64), specifically the three amino
acids in the D-loop (Figure 1A), with the GRdim mutant (human
GRA458T, mouse GRA465T, and rat GRA477T) the most widely
characterized and extensively studied (64–66). A backbone
hydrogen bond is formed between the carbonyl of A777 and
the amide of I483 on the associated dimer partner (8) and
mutation of the Ala to Thr has been shown disrupt this
interaction (43, 65, 66).

Effects on dimerization
There has been much controversy surrounding the dimerization
potential of the GRdim mutant with several publications
suggesting that dimerization equal to that of GRwt occurs. Most
of the studies showing similar dimerization as the GRwt were
semiquantitative: co-immunoprecipitation (62) and Numbers &
Brightness (N&B) assay (31).

However, quantitative studies at the single-cell level, using
fluorescence correlation spectroscopy (FCS) combined with a
microwell system, have shown that GRdim has a dissociation
constant (Kd) of dimerization (Table 2) in the presence of DEX
that is only slightly lower than that of the GRwt in the absence of
ligand [370 nM for GRdim(+DEX) vs. 410 nM GRwt(−DEX) in vitro
(36) and 6.11µM for GRdim(+DEX) vs. 7.4µM for GRwt(−DEX)
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TABLE 2 | Dimerization dissociation constants (Kd) of domains and full-length

wild-type and select mutant GRs (aMethod used and DEX concentration in

brackets).

GRwt DBD mutant: LBD mutant:

bGRdim cGRI628A

DBD • 13 – 21 nM (EMSA) (37)

LBD Liganded:

• 1.5µM (AU; 10µM) (9)

Liganded:

• 15µM (AU;

10µM) (9)

Full-length Unliganded:

• 410 nM (FCS) (36)

• 3.9 nM (EMSA) (37)

• 100µM (AU) (30)

• 416 nM (FCS) (35)

• 7.4µM (FCS*) (35)

Unliganded:

• 390 nM (FCS) (36)

Liganded:

• 140 nM (FCS; 500 nM) (36)

• 139 nM (FCS; 100 nM) (35)

• 3µM (FCS*; 100 nM) (35)

• 107 nM (FCS; 500 nM) (67)

Liganded:

• 370 nM (FCS;

500 nM) (36)

• 379 nM (FCS;

100 nM) (35)

• 6.11µM (FCS*;

100 nM) (35)

aMethods to determine dimerization:

• EMSA, electrophoretic mobility shift assay

• AU, analytic ultracentrifugation

• FCS, fluorescence correlation spectroscopy (only method also done in intact live cells

and indicated as FCS*).
bGRdim = human GRA458T , mouse GRA465T , and rat GRA477T .
chuman GRI628A, mouse GRI634A, and rat GRI646A.

in vivo (35)], but significantly higher than that of GRwt in
the presence of DEX [370 nM for GRdim(+DEX) vs. 140 nM
GRwt(+DEX) in vitro (36) and 6.11µM for GRdim(+DEX) vs. 3µM
for GRwt(+DEX) in vivo (35)]. This indicates that the dimerization
potential of the mutant GRdim is substantially lower than that of
the GRwt in the presence of DEX and closer to the dimerization
potential of GRwt in the absence of ligand. Although it is evident
that the GRdim can form dimers, it is also clear that themonomer-
dimer equilibrium of the mutant is shifted in the direction of
monomers and it is clearly deficient in dimerization potential
when compared to GRwt.

The dimerization equilibrium may also be influenced by
receptor concentration. At low concentrations of GR (335
fmol/mg protein or 26200 GR/cell) the extent of DEX-induced
dimerization of GRdim (37%) is much less than that of the
GRwt (100%), but similar to that of uninduced GRwt (43%),
while at about a 4-fold higher receptor concentration (1,420
fmol/mg protein or 111,000 GR/cell), the extent of DEX-induced
dimerization of GRdim (90%) approaches that of the induced
GRwt (100%) and uninduced GRwt (102%) (38).

Effects on DNA binding
Binding to diverse GR binding motifs could also support dimer
vs. monomer GR conformations especially if the Hill-slope1

is reported as a measure of cooperativity (Table 1). Positive

1If the Hill slope is = 1, binding is additive, if >1, binding displays positive
cooperativity, while if >1, binding displays negative cooperativity.

cooperative DNA-binding requires binding of a GR dimer, where
binding of the first monomer facilitates binding of the second
monomer, and exhibits an increased binding affinity with a Hill-
slope larger than 1. Although it was initially reported that the
GRdim could not bind to DNA (65, 66) it is now clear that
maximal DNA-binding of the GRdim mutant, both as DBD and
as full-length receptor, to a GRE is not affected (43). However,
the mutant binds with a lower affinity (Table 1) (36, 42, 43).
Furthermore, the A477T mutant dissociates faster that the wild
type receptor (5–12x faster in vitro for DBD with a dissociation
half-life (t½) of 23–55 s for GRwt vs. 4.7–4.8 s for the GRdim

(43) and 10x faster in vivo for the full-length receptor with a
residence time for GRwt that is 1.45 s vs. 0.15 s for GRdim (68) due
to a reduction, but not abrogation, in positive cooperative DNA
binding (Hill-slope for GRwt 1.8–2.1 and for GRdim 1.3–1.4) (43).
Interestingly, in addition to GRdim, other salt bridge mutations
(rat GRR479D or GRD481R) disrupting the DBD dimer interface
also result in lower binding to a single GRE but higher binding
to paired GREs and thus enhanced transcriptional synergy at
reiterated GREs (69–71).

Comparison of binding affinities of the GRwt to that of GRdim

to other GR DNA-binding motifs (Table 1) is also informative in
terms of probing a more monomeric binding configuration for
GRdim. Thus, although GRdim substantially decreases the overall
affinity of the DBD for a GRE, for a nGRE, it binds with a similar
affinity as the GRwt binding to a nGRE (42). Furthermore, the
full-length receptor GRdim mutant binds to a GRE half-site with
an equivalent affinity as that of the GRwt (36). Additionally, ChIP-
exo in liver and in primary bone marrow–derived macrophages
(15) or human U2OS osteosarcoma cell lines (14, 72) indicates
that GRwt, but not GRdim, binds to GRE sequences as a dimer,
while both receptors bind to tethered and half-site motifs
as monomers.

Mutants That Target the LBD

There is a paucity of GR dimerization mutation studies focusing
on the LBD dimerization interface, most probably as this
dimerization interface was characterized (9) almost 10-years later
than that of the DBD interface (8). Although the dimerization
affinity of the liganded human GR LBD (1.5µM) is already
low in comparison to that of the DBD or the full-length
receptor (Table 2), it was reduced 10-fold by the LBD mutant,
hGRI628A, which displays a phenotype very similar to that
of the GRdim mutant (9). However, in contrast, using the
N&B assay it was shown that the mouse GRI634A mutant
displayed reduced dimerization relative to GRwt and GRdim at
equivalent DEX concentrations, suggesting that the LBD plays
a potentially larger role than the DBD in GR dimerization (31).
Furthermore, a combination mutant involving both the DBD
and LBD domains (mGRA465T/I634A called GRmon) has recently
been described and comparison of the dimerization potential
with that of liganded GRwt and single mutants using N&B
assays indicate that the order of DEX dimerization efficiency is
GRwt

= GRdim > GRI634A > GRmon, however, at higher DEX
concentration (1µM) significant dimerization of the GRmon is
still seen (31).

Frontiers in Immunology | www.frontiersin.org 5 July 2019 | Volume 10 | Article 1693

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Louw GR Dimerization Impacts Protein Stability

FIGURE 2 | Schematic representation of the monomer-dimer equilibrium for GRwt, the DBD-dimerization deficient mutant, GRdim, and the LBD-dimerization deficient

mutant, GRI628A, bound to either, DEX, 21OH-6,19OP, or CpdA. In the equilibrium, green arrows represents quantitative data, while orange arrows represents

semiquantitative or qualitative data (see Table 2). Dotted orange arrows represents hypothesized equilibria not yet determined.

Small Molecules Displaying Loss of GR
Dimerization (Conformationally Biased
Ligands)
Despite the fact that one would assume that the search
for SEGRAMs would have yielded several small molecule
ligands that perturb the GR monomer-dimer equilibrium
as the concept is underpinned by the idea that targeting
for loss of GR dimerization would reduce the side-effect
profile (23), it appears that the guiding principle in this
search has rather been to assay for a preference to induce
transrepression rather than transactivation and that very few
SEGRAMs have been evaluated for their effects on GR
dimerization (18, 73–77). Two conformationally biased ligands
that perturb the GR monomer-dimer equilibrium have, however,
been identified: CpdA (Compound A: 2-(4acetoxyphenyl)-
2- chloro-N-methylethylammonium chloride), an analog of a
naturally occurring compound found in the Namibian shrub
Salsola tuberculatiformis Botsch (78), and 21-hydroxy-6,19-
epoxyprogesterone (21OH-6,19OP), a progesterone derivative
(79, 80).

CpdA not only prevents dimerization of the full-length GRwt

receptor in vitro and in vivo (Figure 2), but abrogates basal
(uninduced) GR dimerization (31, 38, 81, 82). In contrast, 21OH-
6,19OP does not prevent dimerization of the full-length GR
or the LBD dimerization mutant, GRI634A (Figure 2), but does
prevent dimerization of the DBD GRdim mutant, suggesting that
it prevents dimerization via the LBD (31), which is supported by
molecular dynamics simulations that suggests this ligand triggers
a conformational change in the H1–H3 loop dimerization
interface that differs substantially from that induced by DEX (83).

Despite the fact that it is clear that the GR monomer-dimer
equilibriummay be modulated by changes in receptor and ligand
concentrations (31, 38), by dimerization deficient mutants (31,
66) and by conformationally biased ligands (80, 81), there is
still a controversy regarding the relative contributions of the
DBD (60, 84) and LBD (31) to dimerization of the full-length
receptor and whether other regions, such as the hinge region
(39) and the N-terminal-domain (37), play a substantial role in
dimerization. In addition, it seems unlikely that a single point
mutation in either the DBD or the LBD would fully abrogate
the ability of the GR to dimerize. Quantitative analysis in live
cells (29) comparing the dimerization affinity of different GR
dimerization mutants, such as done for GRdim (35, 36), could,
however, help to resolve the relative contributions of point
mutations to the dimerization potential of the GR. Dimerization
assays in intact live cells clearly deliver dimerization affinity
constants that differ significantly from those obtained in cell
lysates as seen in the study of Tiwari et al. (35), where for example,
the Kd of dimerization of the liganded GRwt is significantly
lower in vitro (139 nM) than in vivo (3µM) (Table 2). The most
parsimonious explanation for this phenomenon entails that an
increase in free GR monomer concentration or a decrease in free
dimer concentration occurs in vivo after ligand-binding, which
would be sufficient to favor a higher Kd

2. In support of this, it
has recently been suggested that in mouse livers the GR binds
predominantly as a monomer under physiological conditions
but that after addition of exogenous glucocorticoid there is a
ligand-dependent redistribution of GR from monomer to dimer

2(Kd =
[GR monomer]x[GR monomer]

[GR dimer] ).
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at GR binding sites (15), thus effectively decreasing free dimer
and increasing free monomer concentrations in the nucleus.
Furthermore, the implications of higher order GR tetramers
bound to DNA, that are produced from GR dimers preformed
in the nucleoplasm, recently described (29, 85), in terms of the
GR monomer-dimer equilibrium still remains to be elucidated as
do the individual amino acids involved in this interaction.

IMPACT OF GR DIMERIZATION ON THE
THERAPEUTIC INDEX OF
GLUCOCORTICOIDS

Despite their wide-spread use the therapeutic index (TI3) of
glucocorticoids remains low (86), especially in the chronic long-
term (>6 months), high-dose (>2.5–10 mg/day) scenario (87,
88), with side-effects (4, 89, 90) and loss of glucocorticoid
sensitivity or glucocorticoid resistance (5, 91), respectively,
affecting the numerator and denominator of the TI.

The discussion in this section will focus on in vivo studies
of loss of GR dimerization achieved using either the GRdim

mutation or CpdA. 21OH-6,19OP, which affects dimerization
of only the LBD and as such does not affect dimerization
of the full-length GRwt receptor (31), was originally described
as a specific passive antiglucocorticoid (92, 93) but displays
dissociated activity in vivo (94), However, as very few in vivo
studies (79, 80) have been conducted this molecule will not be
discussed further.

Glucocorticoid-Induced Side-Effects
Evaluation of the impact of GR dimerization on glucocorticoid
signaling has focused mainly on the modulation of the side-effect
profile elicited by glucocorticoids (23, 95).

Generally, loss of GR dimerization, whether through the use
of the GRdim mutant and/or the GRdim/dim mouse model (66), or
the monomeric favoring ligand, CpdA, has resulted in effective
inflammatory control with a reduction in side-effects (96–98).
For example, in a recent systemic review comparing the efficacy
and safety of SGRMs to that of glucocorticoids in arthritis it was
found that CpdA generally displays an improved TI with a similar
efficacy but a better safety profile than glucocorticoids (17).

To illustrate, the effect of loss of GR dimerization on two side-
effects of systemic use of glucocorticoids for severe asthma in
the UK with an increased hazard ratio (HR), namely diabetes
(HR:1.20) and osteoporosis (HR: 1.64) (99), will be discussed.
Diabetogenic effects, which include increased blood glucose
levels, gluconeogenesis, glycogen storage, insulin secretion
and/or liver metabolic enzyme transcription are mediated by GR
transactivation and requires GR dimerization, were not observed
with GRdim (63, 100, 101) or with CpdA (82, 97, 102–104).While,
osteoporosis, mediated by both transrepression (osteocalcin
transcription) and transactivation (osteoblast differentiation)
and thus requiring both GR monomers and dimers (95), was
not induced by CpdA, either in vitro or in vivo (105–109), while
the GRdim mice still developed osteoporosis concomitant with a

3TI =
TD50 (dose of drug that causes severe side effects in 50% of subjects)

EC50 (dose of drug that has desired pharmacologivcal effect in 50% of subjects)

potent suppression of osteoblast differentiation both in vitro and
in vivo (110–112).

Interestingly, loss of GR dimerization through use of GRdim

mice also appears to limit gastrointestinal side-effects of DEX
such as enhanced glucose transport in the small intestine (63)
and an increase in gastroparesis (delayed stomach emptying)
and gastric acid secretion (113). However, some side-effects of
glucocorticoids still occur in GRdim mice (95, 114). For example,
DEX induced a similar degree of atrophy in the tibilialis anterior
and gastrocnemius muscles of GRwt and GRdim mice (115).
Investigation involving a key regulator of muscle atrophy, the E3-
ubiquitin ligase, MuRF1, suggests that GR-binding is stabilized
by the binding of an adjacent FOXO1 on a composite DNA-
binding element in the proximal promotor of the gene, as GRdim

alone, in contrast to GRwt, did not induce the MuRF1 promoter
but did result in a modest induction in the presence of FOXO1,
which itself is upregulated by DEX via GRwt (116), but not
GRdim (115). CpdA has not been evaluated in this model and
it would be interesting to establish if, like for osteoporosis,
loss of dimerization through CpdA administration has a more
favorable outcome than seen with GRdim. Tantalizingly, in the
mdx mouse model of Duchenne muscular dystrophy CpdA,
unlike prednisolone, did not reduce gastrocnemius muscle
mass (117).

However, as an important caveat it should be noted that loss
of GR dimerization through the GRdim mutation can impair
the effect of glucocorticoid treatment in some inflammatory
conditions and as discussed may still display some DEX-induced
side-effects (95, 114). For example, in skin, inhibition of the
swelling response during the challenge phase, upon re-exposure
to the hapten, 2,4-dinitrofluorobenzene, by exogenous intra-
peritoneal or oral DEX administration in contact dermatitis, a
T cell–dependent delayed-type hypersensitivity reaction, is not
observed in GRdim mice (118), yet in phorbol ester-induced
inflammation, a classic model of acute irritant inflammation and
epidermal hyperplasia, topical DEX-treatment was as effective
in GRdim mice (96). For CpdA, results in acute irritant
inflammation of the skin are conflicting and may depend on
the topical dose used. At low doses [µg range (119, 120)]
CpdA not only inhibited irritant-induced skin inflammation and
hyperplasia but also did not induce skin atrophy, an important
side-effect of topical glucocorticoid treatment. However, at
higher doses (mg range) CpdA increased, rather than decreased,
epidermal thickness (121).

In two models of arthritis in mice, antigen-induced arthritis
(AIA), a mouse model of human rheumatoid arthritis, and
glucose-6-phosphate isomerase-induced arthritis, a severe
form of polyarthritis, GRdim mice were, respectively, fully
or partly resistant to intravenous Micromethason (liposomal
encapsulated DEX) treatment (122). In contrast, CpdA
administered intraperitoneally showed similar or slightly
reduced efficacy compared to DEX in attenuating collagen-
induced arthritis (82, 123, 124) and repressed the inflammatory
response as effectively as glucocorticoids in ex-vivomodels using
fibroblast-like synoviocytes (FLS) from rheumatoid arthritis
or osteoarthritis patients (108, 123, 125, 126), while displaying
less side-effects, such as hyperinsulinemia (82), bone-loss

Frontiers in Immunology | www.frontiersin.org 7 July 2019 | Volume 10 | Article 1693

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Louw GR Dimerization Impacts Protein Stability

(108, 124) and homologous down-regulation of the GR (123),
than glucocorticoids.

Both GRdim (127) and CpdA (104, 128) was as effective as DEX
treatment in experimental autoimmune encephalomyelitis, a
mouse model of multiple sclerosis, while CpdA, unlike DEX, did
not elicit hyperinsulinemia or hypothalamic-pituitary-adrenal
axis suppression (104). However, in allergic airway inflammation
(AAI), a mouse model of allergic asthma, GRdim mice, unlike
GRwt mice, did not respond to intraperitoneal injection of DEX
(129), while CpdA was as effective as DEX in this model (130).

In acute systemic inflammatory settings GRdim mice are
highly vulnerable and resistant to glucocorticoid treatment. For
example, in two mouse models of sepsis, cecal ligation and
puncture and lipopolysaccharide (LPS)-induced septic shock,
GRdim mice are highly susceptible to sepsis and their bone
marrow-derived macrophages are resistant to DEX treatment
in vitro (131). Interestingly, even low dose LPS treatment
resulted in GRdim mice displaying exaggerated sickness behavior
compared to GRwt mice (132). Furthermore, in TNF-induced
acute lethal inflammation GRdim mice displayed increased TNF
sensitivity and resistance to DEX treatment (133, 134). Acute
graft- vs.-host disease, a severe complication of hematopoietic
stem cell transplantation, is another severe inflammatory disease
characterized by a cytokine storm in which GRdim mice presented
with exacerbated clinical symptoms and increased mortality
relative to GRwt (135). To our knowledge CpdA has not been
evaluated in these acute inflammatory models although it has
been suggested that it would be as ineffective as the GRdim mice
as for full resolution of the inflammatory response dimerization
of the GR is required (22, 23).

In addition, concerns regarding specifically the use of CpdA
as a therapeutic agent have been raised (102, 124, 128, 130)
as it degrades to an aziridine in solution (78) thus mediating
cytotoxic effects independent of the GR that may severely narrow
its therapeutic window.

Glucocorticoid-Induced Resistance
Glucocorticoid resistance is characterized by impaired sensitivity
to glucocorticoid treatment and may be inherited (136) or
acquired, which is more common and may result from disease
progression or chronic high-dose glucocorticoid treatment (5,
91). One of the main drivers of acquired glucocorticoid resistance
is homologous down-regulation of the GR (5, 137, 138).

Mechanism-based pharmacodynamic models use the
term drug tolerance to describe the decrease in expected
pharmacological response after repeated or continuous drug
exposure (139) and modeling of the pharmacogenomic
responses of glucocorticoid-induced leucine zipper (GILZ)
(140) and tyrosine aminotransferase (TAT) (141) mRNA
induction by both acute and chronic glucocorticoid regimes
in diverse rat tissues indicate that drug tolerance is primarily
controlled by the cytosolic free receptor density, which is
substantially down-regulated.

Receptor density is modulated by de novo receptor synthesis
and receptor degradation, which may be described by a simple
“push” vs. “pull” mechanism (5), where the “push” mechanism

includes transcription initiation and mRNA stability, while the
“pull” mechanism involves degradation of the receptor.

Already 30 years ago, it was established that ligand-mediated
down-regulation of the GR occurs at the level of both
transcription initiation and GR protein degradation, but not
at the level of mRNA stability (142). Further elucidation of
the process has established that inhibition of transcription is
mediated through binding of the liganded-GR to a nGRE in exon
6 of the GR gene and assembly of a repressive complex, consisting
of the GR, the coregulator NCoR1, and histone deacetylase
3 (HDAC3), at the transcriptional start site through DNA-
looping (143), while ligand-dependent GR protein degradation
has been localized to the ubiquitin-proteasome system (UPS)
through the use of the proteasome inhibitors (144). Proteasomal
degradation requires ligand-induced phosphorylation of the
human GR at S404 (Figure 1A) by glycogen synthase kinase
3β (GSK3β) (145), which is required for ubiquitination of the
human GR at the upstream K419 (mouse GR K426) in a PEST
sequence (144, 146). Ubiquitin is attached to the GR in a three
step pathway involving ubiquitin activating (E1), conjugating
(E2), and ligase (E3) enzymes to produce a polyubiquitylated
receptor for targeting to the 26S proteasome (147). Several E2-
conjugating enzymes, such as ubiquitin-conjugating enzyme 7
(UbcH7) (148), susceptibility gene 101 (TSG101) (149), and
Ubc9 (150–152) and E3-ligases, such as E6-AP (encoded by the
Ube3a gene) (153, 154), carboxy-terminus of heat shock protein
70-interacting protein (CHIP)(155–157), murine (Mdm2), or
human (Hdm2) double minute (158–160), UBR1 (161), and F-
box/WD repeat-containing protein 7 (FBXW7α) (162), have been
shown to interact with the GR. Recently, however, micoRNAs
(miRNAs), upregulated by glucocorticoids (163, 164), have been
implicated in the ligand-induced reduction of the GR mRNA
pool (5, 10), suggesting that the initial study indicating that
receptor density is not regulated by the stability of mRNA levels
has to be re-examined.

The relative contributions of GR mRNA and protein down-
regulation may be dependent on the dose of glucocorticoid
and/or the duration of treatment. For example, in podocytes GR
protein, but not RNA, is down-regulated during both short (1 h)
high (100µM) dose and long-term (5 days) low (1µM) dose
DEX regimes (165), while in HeLa S3 cells, 24 h, 2 weeks or a
2-year low (1µM) dose DEX regime suggests that at 24 h, GR
protein is more profoundly down-regulated than mRNA, while
at 2 weeks both protein and mRNA is down-regulated, while
by 2-years no detectable protein or RNA was observed (166).
Furthermore, in FLS derived from patients with rheumatoid
arthritis a short (7 h) vs. long (30 h) protocol of low (1µM) dose
DEX indicates substantially more GR protein down-regulation at
the longer time point (123).

Although little to no work has been done on the implications
of GR dimerization for GR resistance, some tantalizing results
with GR ligands have been noted. For example, RU486
(mifepristone), a GR antagonist shown to cause significantly
less dimerization than DEX (167), was unable to down-regulate
nascent GR RNA (143) and was less effective than DEX at down-
regulating GR protein levels (168), while ZK216348, a SEGRA
(169) for which no data on GR dimerization is available, did not
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down-regulate GR protein levels (102). CpdA, which abrogates
GR dimerization (31, 81, 82, 170), does not result in GR down-
regulation at either protein (102, 123, 171–175) or RNA (123,
172) level.

Recently, our laboratory investigated the hypothesis that GR
dimerization may be required for homologous down-regulation
of the GR by employing conditions that either promote or
reduce GR dimerization (176). Promotion of GR dimerization
through the use of dimerization promoting ligands, such as
DEX and cortisol, induced significant down-regulation of GRwt,
both transiently transfected and endogenous in HepG2 cells,
while reduction of dimerization, through the use of either CpdA
or GRdim, severely restricted GR turn-over. Receptor down-
regulation was primarily mediated by increasing the rate of
receptor protein turnover by the proteasome as (1) promotion
of GR dimerization significantly increased the rate of turnover
and decreased receptor half-life relative to the unliganded
receptor and (2) inhibition of the proteasome by MG132, but
not protein synthesis by cycloheximide, abolished GR turn-
over. Interestingly, the GRwt half-life with CpdA was very
similar to that of the half-life of the unliganded receptor, a
finding previously reported (171). Mechanistically, degradation
of the GR by the proteasome requires hyperphosphorylation
of the GR at S404 by GSK3β (145), which enables binding
of the E3 ligase FBXW7α (162). Loss of GR dimerization
restricted hyperphosphorylation at S404 and interaction with
FBXW7α. Furthermore, inhibition of DEX-mediated S404
hyperphosphorylation through the use of the pharmacological
GSK3β inhibitor, BIO, restored GR levels. In summary, GR
dimerization is required for ligand-induced post-translational
processing and downregulation of the receptor via the UPS
system. Subsequently, the requirement of GR dimerization for
autologous down-regulation of the GR was confirmed in a study
in arthritic mice indicating that DEX does not down-regulate the
GR in GRdim mice, in contrast to GRwt mice (164).

Although, loss of GR dimerization has been generated by
using either dimerization deficient mutants such as GRdim, or
monomerization biased ligands such as CpdA, and it has been
suggested that the behavior of DEX-induced GRdim equates
to that of CpdA-induced GRwt (81), results show that the
two scenarios do not always produce exactly the same results.
At a molecular level, for example, although both GRdim and
CpdA prevent homologous down-regulation of the GR the
two conditions differ in terms of the extent of the repression
of the post-translational modifications (PTMs) required for
the process, with CpdA reducing S404 phosphorylation, while
no discernible, not even basal, phosphorylation is observed
with GRdim (176). Nuclear translocation of the GR is another
area of potential difference as some studies show that CpdA
does not allow for nuclear translocation of the GRdim (176),
while others suggest that both GRdim and CpdA can cause
nuclear translocation albeit with diminishedmaximal import (81,
170). Furthermore, in disease models, although glucocorticoid-
induced metabolic side-effects may be attenuated under both
conditions, GRdim can still induce osteoporosis, while CpdA
does not, which has been ascribed to the ability of GRdim, but
not CpdA, to suppress interleukin-11 via interaction with AP-1

(108, 111, 177). Additionally, in terms of efficacy in disease
models loss of dimerization through CpdA administration often
had a more favorable outcome than seen with GRdim mice, in
for example, arthritis (82, 108, 122–126) and allergic asthma
(128–130) models. Although it may be tempting to ascribe these
differences to the extent of GR dimerization elicited, with total
abrogation of dimerization by CpdA (31, 81) and no (31, 62), to
partial (38), to almost full (35, 36) loss of dimerization via GRdim,
this would probably be an oversimplification. More likely is that
CpdA, in contrast to GRdim that impacts only the DBD (65), also
elicits a differential conformation of the LBD upon binding (97),
which could impact on GR PTMs (97, 171, 176) and interaction
with cofactors (178, 179). Despite the fact that both CpdA and
GRdim modulate GR dimerization there are few comparative
studies directly comparing implications for molecular aspects of
GR signaling or the impact on the therapeutic index in mouse
models of disease.

CONCLUSION

Monomeric GR, like the dimer, binds to DNA and is
transcriptionally functional (101), thus these two receptor species
may represent distinct drug targets to tailor for improved
glucocorticoid treatments. Rational design of conformationally
biased ligands that select for a monomeric GR conformation,
may be a productive avenue to explore in the pursuit of drugs
that lessen the side-effect profile and increase glucocorticoid
sensitivity through improving GR protein stability and increasing
half-life, yet the optimal conformational and gene expression
signatures to either drive the monomer-dimer equilibrium
toward a particular state or evaluate its implications remain
elusive, as does the question of whether this would be feasible or
even desirable in the clinic.

For rational structure-based drug optimization strategies
the field needs to look at both methods to accurately
measure and quantify GR dimerization bias and an updated
theoretical framework or model to evaluate the implications of
GR dimerization.

Biased signaling is well-developed in the field of GPCR
signaling (180) and offers quantification approaches (181) that
yield useful empirical parameters, such as the transduction
coefficient (τ /KA) that incorporates ligand efficacy and potency
as well as receptor density, to compare extent of bias relative
to a reference ligand, usually the endogenous ligand (182).
However, in the GR field there have been only isolated reports
that harnessed classical analytical pharmacology approaches to
generate quantitative information about the pharmacodynamic
properties of GR ligands (183, 184). In addition, although
mechanistic pharmacokinetic and pharmacodynamic models for
the GR (140, 185, 186) and mathematical models to increase
drug specificity (187–189) are being developed their uptake by
most investigators has been slow. This is unfortunate as they
provide a much-needed new perspective and are an essential
component for understanding the quantitative behavior of biased
GR ligands and to provide tractable design strategies such as
functional selectivity fingerprints for drug development.
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FIGURE 3 | Simulated dimerization curves for unliganded and liganded GRwt

and liganded GRdim and GRI628A. Simulations were done using GraphPad

Prism version 7. Kd values from Oasa et al. (36) were used, except for

liganded GRI628A, where a 10-fold increase in the Kd of the unliganded GRwt

was used as per Bledsoe et al. (9). The figure clearly shows that ligand-binding

to the GRwt results in a left shift of the dimerization curve, while mutations in

either the DBD or the LBD dimerization interfaces result a right shift of the

curve relative to GRwt, with a more pronounced shift in the case of the

mutation to the LBD dimerization interface.

The importance of quantitative, rather than semiquantitative
analysis is illustrated by the recent commotion around the
usefulness of the GRdim model to investigate effects of loss
of dimerization. The initial study by Presman et al. (31)
using the N&B assay that demonstrated dimerization by the
GRdim was semiquantitative yet several reviews since then
have given this evidence underserved prominence. Mass action
dictates that increasing GR levels would force the steady state
to dimerization even in the case of a GR species poorly
able to elicit dimerization, such as the GRdim. Thus, a valid
evaluation and comparison of the dimerization potential of
the GRdim requires a quantitative approach that measures

dimerization affinity such as done by the group of Kinjo (35, 67).
Furthermore, it has recently been pointed out that the N&B
assay may suffer from drawbacks, which could be avoided by
using the two-detector number and brightness analysis (TD-
N&B) (190), whereby it was shown that the GRdim is poorly
dimerized in the nucleus, with a concentration ratio between
monomers and dimers of 1:0.66 as compared to GRwt that
has a concentration ratio between monomers and dimers of
1:19.1. Finally, simulated dimerization curves using the Kd values
obtained from the literature (Figure 3) clearly shows that the
GRdim is indeed poor at eliciting dimerization in comparison
to GRwt.

Despite optimism regarding the potential of biased ligands
such as SEGRMs to improve on the therapeutic potential
of glucocorticoids, to date none have entered the market
(191). For biased ligands promoting GR monomers there are
indeed legitimate concerns raised that for full resolution of
inflammation transactivation by GR-dimers of genes such as
mitogen-activated protein kinase phosphatase-1 (MKP-1), GC-
induced leucine zipper (GILZ), and IL10 are required (22).
Notwithstanding these concerns a strong argument has been
made for the tailoring of ligands that favor GR monomer
formation for chronic long-term use (23), a scenario where the
additional ability of these ligands to prevent resistance would be
most relevant.
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