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In cancer, T cells become dysfunctional owing to persistent antigen exposure.

Dysfunctional T cells are characterized by reduced proliferative capacity, decreased

effector function, and overexpression of multiple inhibitory receptors. Due to the presence

of various inhibitory signals in the complex tumor microenvironment, tumor-specific T

cells have distinct dysfunction states. Therapeutic reactivation of tumor-specific T cells

has yielded good results in cancer patients. Here, we review the hallmarks of T cell

dysfunction in cancer. Also, we discuss the relationship between T cell dysfunction and

cancer immunotherapy.
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INTRODUCTION

T cells can take part in a variety of immune responses that arise in various diseases, including
infection, cancer, autoimmune diseases, and allergic diseases. In acute infections, naive T cells,
upon antigen stimulation, are rapidly activated and differentiate into effector T cells (Teff). Teff
differentiation involves transcriptional, epigenetic and metabolic reprogramming as well as the
acquisition of effector features. After antigen clearance, most Teff die, but a small fraction of them
differentiate into memory T cells, which quickly respond when the same antigen reappears (1).
Memory T cells downregulate their effector program and own self-renewal ability driven by IL-7
and IL-15 in an antigen-independentmanner (2). By contrast, during chronic infections and cancer,
the function of T cells becomes compromised, termed T cell dysfunction, due to persistent antigen
exposure (3–7). Previous studies have demonstrated that the severity of dysfunction is associated
with the level of antigen stimulation (8, 9). Furthermore, specific T cell receptor (TCR)-dependent
pathways, for instance, those mediated by nuclear factor of activated T cells (NFAT) and sprouty
homolog 2 (SPRY2), have been shown to be involved in T cell dysfunction, in line with the effects of
ongoing TCR stimulation (10–12). In addition, chronic antigen stimulation also results in persistent
expression of programmed cell death protein 1 (PD-1) by NFAT cytoplasmic 1 (NFATc1) (13). PD-1
may further regulate the level of TCR signaling (14, 15). Therefore, the extent and persistence of
antigenic stimulation appear to be vital factors leading to T cell dysfunction and are associated with
the severity of dysfunction.
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T cell exhaustion is a representative of T cell dysfunction.
Exhausted T cells (Tex) differ from other dysfunctional T
cells, including anergic T cells and senescent T cells (16–
18). Anergic T cells are induced by suboptimal stimulation,
whereas senescent T cells enter a terminally differentiated state
due to repeated stimulation, which involves irreversible cell
cycle arrest and telomere shortening (Figure 1). In this article,
we mainly discuss the exhausted T cells. T cell dysfunction
was first discovered in mice infected with chronic lymphocytic
choriomeningitis virus (LCMV), which is characterized by a
progressive loss of function including proliferation, cytokine
production and the ability to lyse target cells (3). Subsequently,
T cell dysfunction was described in humans with chronic viral
infections and cancer (9, 19–21). The acquired dysfunction was
related to the co-expression of multiple inhibitory receptors (IRs)
including PD-1, cytotoxic T lymphocyte antigen 4 (CTLA-4),
T-cell immunoglobulin domain and mucin domain-3 (Tim-3),
lymphocyte activation gene 3 (LAG-3), T cell immunoreceptor
with Ig and ITIM domains (TIGIT), and others (4, 6, 9, 22–
25). Interestingly, studies in mice and humans have shown that
dysfunctional CD8+ T cells coupregulate multiple IRs, and the
type and amount of IRs are associated with the severity of the T
cell dysfunction (4, 9, 26, 27). It is worth noting that dysfunctional
T cells are not completely useless. Instead, these cells retain
a certain level of residual function, and this residual function
may be critical in vivo, limiting persistent pathogen infection
and tumor progression. However, dysfunctional T cells fail to
effectively eliminate infection and cancer.

Reversal of T cell dysfunction is becoming more important in
improving immunity to cancer. Immune checkpoint blockade, as
one modality of cancer immunotherapy, is designed to enhance
T cell function and thus exert an effective anti-tumor T cell
response (28, 29). One of the major markers of T cell dysfunction
is the overexpression of PD-1. Blocking PD-1 or its ligand
PD-L1 successfully reactivates T cell function, emphasizing
the importance of the PD-1/PD-L1 axis in reversing T cell
dysfunction (22). Encouraging results have been observed in a
variety of cancer types, such as melanoma, urothelial cancer and
non-small-cell lung cancer (NSCLC), with the use of antibodies
targeting PD-1/PD-L1 (30–33). However, most patients do not
maintain sustained responses to this therapy. The lack of a long-
lasting response may be partly explained by the presence of other
inhibitory receptors in T cells.

Here, we review the hallmarks of T cell dysfunction in cancer.
Also, we discuss the relationship between T cell dysfunction and
cancer immunotherapy.

TRAITS AND MECHANISMS OF T CELL
DYSFUNCTION IN CANCER

Inhibitory Receptors in Dysfunctional T
Cells
One of the traits of dysfunctional T cells is the increased and
sustained expression of multiple inhibitory receptors, including
PD-1, CTLA-4, Tim-3, and LAG-3 (Figure 3a). In general,
the number of inhibitory receptors expressed by dysfunctional

T cells is positively associated with T cell dysfunction. In
other words, the greater the number, the more serious
the dysfunction. Additionally, functional effector T cells can
transiently express inhibitory receptors upon activation. For
instance, PD-1 expression rapidly increases after T cell activation
and may remain at moderate levels in healthy individuals
(34, 35). To control autoreactivity and immunopathology,
inhibitory receptors play a key negative regulatory role (36).
In healthy adults, for example, circulating PD-1+CD8+ T cells
are not representative of dysfunctional T cells, but instead are
representative of effector memory cells (35). In addition, IR
expression patterns in dysfunctional T cells also have differences
between cancer and infection, albeit with many common features
(5). B- and T-lymphocyte attenuator (BTLA) is upregulated
in dysfunctional CD8+ T cells in cancer, but is absent in
dysfunctional CD8+ T cells in LCMV (4, 27). This finding shows
that the molecular mechanisms that cause IR upregulation and
T cell dysfunction may be somewhat different between chronic
infections and cancer.

Moreover, each IR binds to its ligand, which is typically
expressed by antigen presenting cells (APCs) and tumor cells in
the tumor microenvironment (TME), to affect T cell survival,
proliferation and function (Figure 2). In view of this, the
availability and amount of ligands in the TME is critical
for IR to play a negative regulatory role in CD8+ T cells.
As one of the ligands for PD-1, the expression of PD-L1
in the TME relies on exposure to inflammatory cytokines
(37). Conversely, CD155 and CD112, as TIGIT ligands, are
continuously expressed in the TME by most melanoma cells
and APCs (25). In addition, Tim-3 directly binds to Galectin-9
and CEACAM1 to inhibit T cell function (38, 39). Also, Tim-
3 can bind to phosphatidylserine and the DNA binding protein
HMGB1 (40, 41).

The molecular mechanisms of IR-mediated
immunomodulation of T cells have not been fully elucidated.
There are several possible mechanisms to support IR-mediated
immune regulation. First, IR competes with costimulatory
receptors for binding to its ligand to prevent the formation of
microclusters and lipid rafts (25). For instance, CTLA-4 can
compete with the costimulatory molecule CD28 to bind to
CD80 and CD86 (42), while TIGIT can compete with CD226
to bind to the same ligands CD112 and CD155 (43, 44). The
imbalance in the expression levels of IR and costimulatory
receptors affects the same ligand binding (45). In patients
with metastatic melanoma, CD8+ TILs upregulate TIGIT and
downregulate CD226, leading to an imbalance of TIGIT/CD226
expression (25). This imbalance may be conducive to inhibiting
T cell responses to tumors in the TME, besides T cell inhibition
mediated by TIGIT itself (46). Second, activation of T cells by
TCR or costimulatory receptors is disrupted by negative signals
mediated by PD-1 and CTLA-4 (45, 47). When TIGIT/CD155
is ligated, APCs produce IL-10, which also inhibits T cell
function (44). In addition, CD28 can also be expressed by
PD-1+ T cells. CD28, as a costimulatory molecule, stimulates
the activation of naive T cells and promotes cytokine secretion.
Recent studies have revealed that the PD-1/PD-L1 axis inhibits
T cell function through inactivation of CD28 signaling (48).
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FIGURE 1 | Classification of dysfunctional T cells.

FIGURE 2 | Inhibitory receptors in dysfunctional T cells. Dysfunctional T cells in the tumor microenvironment (TME) express multiple inhibitory receptors, including

PD-1, CTLA-4, Tim-3, LAG-3, and TIGIT. They bind to their respective ligands, which are typically expressed by antigen-presenting cells (APCs) or tumor cells in the

TME. PD-1, as the major inhibitory receptor, has two ligands PD-L1 and PD-L2. CTLA-4 can compete with the costimulatory molecule CD28 to bind to CD80 and

CD86. Additionally, TIGIT can compete with CD226 to bind to CD112 and CD155. In addition, Tim-3 directly binds to Galectin-9 and CEACAM1 to inhibit T cell

function. These inhibitory receptors contribute to T cell dysfunction in cancer.
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FIGURE 3 | Traits of T cell dysfunction in cancer. (a) Inhibitory receptors in dysfunctional T cells. One of the traits of dysfunctional T cells is the increased and

sustained expression of multiple inhibitory receptors, including PD-1, CTLA-4, Tim-3, LAG-3, and TIGIT. In general, the greater the number of inhibitory receptors

coexpressed by dysfunctional T cells, the more severe the dysfunction. (b) Inhibitory cells in the TME. The TME contains various cell types involved in multiple

biological processes that promote or inhibit tumor progression. Immunosuppressive cells are present in the TME, which contribute to T cell dysfunction. These

inhibitory cells include Treg cells, TAMs, MDSCs, cancer-associated fibroblasts and adipocytes, and endothelial cells. (c) Suppressive soluble mediators. Some

soluble molecules exist in the TME and mediate T cell dysfunction. These molecules include IL-10, type I IFNs, IDO, adenosine, VEGF-A, TGF-β, and IL-35. (d)

Metabolic pathways in the TME. The activation of T cells and the exertion of antitumor immunity depend on some common metabolic pathways, such as aerobic

glycolysis, amino acid metabolism, glutaminolysis, and de novo fatty acid synthesis. These metabolic pathways are also important preconditions for cancer cell

proliferation and survival. Hence, within the TME, T cells compete with cancer cells to obtain adequate nutrients. In addition to nutrients, various metabolites are also

involved in T cell dysfunction, such as lactic acid, low pH, and hypoxia. (e) Epigenetic imprinting of T cell dysfunction. Epigenetic imprinting of dysfunctional T cells

differs from that of effector/memory T cells. Persistent PDCD1 demethylation and unique changes in chromatin accessibility occur in dysfunctional T cells. (f)

Transcriptional regulation of T cell dysfunction. Transcriptional regulation of T cell dysfunction involves changes in the expression patterns and transcriptional

connection of some important transcription factors, such as T-bet, Eomes, Foxo1, Blimp-1, NFAT, and TOX. TME, tumor microenvironment; Treg cells, regulatory T

cells; TAMs, tumor-associated macrophages; MDSCs, myeloid-derived suppressor cells; IDO, indoleamine 2,3-dioxygenase; TGF-β, transforming growth factor-β.

In a mouse model, conditional knockout of CD28 abolishes
the effects of PD-1 blockade (49). This suggests that the
CD28/B7 pathway may act as an important role in the efficacy of
anti-PD-1 therapy.

Accumulated evidence shows that simultaneous blockade of
multiple inhibitory receptors is more effective than single IR
blockade in reversing dysfunctional CD8+ T cells in vitro and
in vivo. For example, blockade of PD-1 combined with blockade
of CTLA-4, Tim-3, LAG-3, or TIGIT blockade, to some extent,
can reverse T cell dysfunction and enhance antitumor immunity
(23, 25, 26, 50, 51). These inhibitory receptor molecules are
derived from different structural families and have different
intracellular signaling domains. They can bind to ligands with
different expression patterns.

Inhibitory Cells in the Tumor
Microenvironment (TME)
The TME contains a variety of cell types that participate in
various biological processes, which promote or inhibit tumor
progression. Immunosuppressive cells are present in the
TME and contribute to T cell dysfunction. These inhibitory
cells include regulatory T cells (Treg cells), tumor-associated
macrophages (TAMs), myeloid-derived suppressor cells
(MDSCs), cancer-associated fibroblasts and adipocytes, and
endothelial cells (Figure 3b).

Treg cells, as a major group of infiltrating CD4+ T cells in the
TME, can significantly inhibit the antitumor immunity mediated
by T cells (52, 53). Treg cells usually disrupt the activation,
proliferation, and survival of effector T cells by producing
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immunosuppressive molecules, including transforming growth
factor-β (TGF-β) and interleukin-10 (IL-10) (6, 54). Notably,
multiple IRs are upregulated in highly inhibitory Treg cells,
including PD-1, CTLA-4, Tim-3, and TIGIT (55–57). Of course,
they also upregulate molecules associated with T cell dysfunction
or trafficking, including CCR4, CD39, and CD73, as well as
members of the TNF receptor superfamily, such as GITR and
OX40 (58–60). Therefore, antibodies targeting CTLA-4, CCR4,
and/or GITR on Treg cells can deplete Treg cells, reverse T cell
dysfunction, and restore T cell antitumor immunity and immune
surveillance on cancer cells (61–63).

TAMs suppress T cell antitumor immunity and promote
tumor development, involving functions such as the sustained
accumulation of Treg cells and dysregulation of the vasculature
due to the expression of chemokines and amino acid-degrading
enzymes, such as arginase 1 and indoleamine-2,3-dioxygenase
(IDO) (64–66). Similarly, MDSCs enter TME aberrantly, produce
nitric oxide and reactive oxygen species, and express arginase
1 and IDO, thereby effectively promoting T cell dysfunction
(67, 68). In a mouse model, targeting MDSCs with monoclonal
antibodies has been demonstrated to restore the antitumor
immune responses and tumor killing ability of tumor-infiltrating
T lymphocytes (TILs) (69).

Cancer-associated fibroblasts can secrete cytokines and
chemokines, and disrupt the deposition of the extracellular
matrix, which shapes the structure of the TME and thus
contributes to tumorigenesis (70, 71). T cell dysfunction can also
be caused by cancer-associated fibroblasts via the production
of TGF-β and vascular endothelial growth factor (VEGF) (72,
73). Moreover, recent findings have also shown that cancer-
associated adipocytes impair antitumor immunity and promote
tumor malignancy in several cancers (74–76). The mechanism
may be mediated by the metabolic and paracrine regulation of
tumor infiltrating immune cells and cancer cells.

Endothelial cells may promote T cell dysfunction by
improving the production of prostaglandin E2 (PGE2) and
CD95L, while impairing T cell recruitment by reducing the
expression of vascular cell adhesion molecule 1 (VCAM1) (77–
79). The underlying mechanisms of these changes are mediated
by hypoxia and VEGF signaling in endothelial cells. In addition,
metabolic communication between cancer and endothelial cells,
as well as lymphatic endothelial cells, may help impede antitumor
T cells and mediate immunosuppression (80–82).

Suppressive Soluble Mediators
Some soluble molecules are present in the TME that mediate
T cell dysfunction. These molecules include IL-10, type I IFNs,
IDO, adenosine, VEGF-A, TGF-β, and IL-35 (Figure 3c).

IL-10 is produced by various immune cells and serves as an
effective antiinflammatory molecule (83). For instance, natural
killer cells, APCs, T cells, and B cells can generate IL-10 (84–87).
Interestingly, the dose of IL-10 and the state of T cell activation
can affect the effects of IL-10 on T cells in vivo (88). On the one
hand, IL-10 impairs antitumor immunity and promotes tumor
growth in mouse models (89). Simultaneous blockade of PD-1
and IL-10 results in increased survival and delays tumor growth
in ovarian cancer, leading to an enhanced antitumor immune

response and reduced infiltration of immunosuppressive MDSCs
(90). On the other hand, high doses of IL-10 and PEGylated IL-
10 hamper the progression of tumors in animals and increase
the expansion and function of CD8+ TILs expressing elevated
IL-10R (88, 91). Thus, IL-10 may have a paradoxical effect on T
cells in vivo.

Type I IFNs including IFNα and IFNβ may be typical
cytokines with a dual role. As key pro-inflammatory cytokines,
type I IFNs inhibit viral replication by directly inducing antiviral
activity and activating innate immune cells (92). Additionally,
type I IFN signaling facilitates the optimal priming of T cells
and production of functional effector T cells and memory T
cells (93). However, some studies have also shown that IFNα

promotes the persistence of viruses in chronic infections and
induces T cell dysfunction (94). During the first few days of
LCMV infections, blockade of IFNα can effectively prevent
the occurrence of T cell dysfunction (94). The mechanism by
which IFNα promotes T cell dysfunction may be through the
production of immunosuppressive molecules, such as IL-10, PD-
L1, and IDO, as well as the stimulation and maintenance of PD-1
expression on T cells (95). Notably, IFNα blockade combined
with PD-1 blockade effectively enhances antitumor immune
responses in tumor-bearing mice (95).

IDO is expressed by tumor cells, APCs and CD8+ T cells in
the TME (96–99). IDO activates Tregs by producing kynurenine
and inhibits T cell function by depleting the essential amino
acid tryptophan (100). In addition, resistance to anti-PD-1 and
anti-CTLA-4 mAbs is closely related to IDO (101). Adenosine
exerts an inhibitory role and directly impedes effector T cell
function by activating the adenosine receptor A2aR (102).
Indirect destruction of effector T cell function is induced by
increased Treg function, decreased APC activation, and MDSC
induction (103). Moreover, VEGF-A is generated by tumor cells
in the TME. In addition to its proangiogenic properties, VEGF-
A inhibits dendritic cell maturation, increases the accumulation
of MDSCs and induces Tregs, all of which contribute to the
formation of an immunosuppressive TME milieu (104, 105).
Coexpression of various IRs is increased by VEGF-A in a VEGF-
R2- and NFAT-dependent manner, including PD-1, CTLA-4, and
Tim-3 (106). In addition, TGF-β is involved in T cell dysfunction
in cancer (107). TGF-β inhibits antitumor immunity and shapes
the TME by impeding T cell infiltration (108).

IL-35 is expressed by activated Treg cells and regulatory
B cells (109–111). A recent study showed that Treg-derived
IL-35 could promote T cell exhaustion (112). The underlying
mechanism was direct regulation of Blimp1 expression in CD8+

T cells, increased IR expression and restricted differentiation of
central memory CD8+ T cells (112). In addition, neutralization
of IL-35 promotes CD8+ TIL proliferation and production
of inflammatory cytokines (113). Neutralization of IL-35 also
decreases tumor growth in a mouse tumor model (113). These
results indicate that IL-35 favors the immunosuppressive TME.

Metabolic Pathways in the TME
The activation of T cells and exertion of antitumor immunity
depend on some common metabolic pathways, such as aerobic
glycolysis, amino acid metabolism, glutaminolysis and de novo
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fatty acid synthesis (114). These metabolic pathways are also
important for cancer cell proliferation and survival. Hence,
within the TME, T cells compete with cancer cells to obtain
adequate nutrients (Figure 3d).

Recently, some studies have demonstrated that cancer cells
compete with TILs to acquire the essential glucose, which results
in less availability of glucose to T cells (115). The reduction or
deprivation of glucose induces T cell dysfunction and impairs
the immune response (116, 117). Therefore, restraining the
metabolic activity of tumor cells may have potential value in
increasing the amount of glucose available to T cells, thereby
improving the antitumor activity of T cells. Moreover, glycolysis
is required for T cell maturation, expansion and effector function
(114, 118). The CD28 signaling pathway can facilitate the
transition of T cell metabolism to glycolysis. Therefore, both PD-
1 and CTLA-4 can restrict T cell glycolysis by interfering with
CD28 signaling. Compared to CTLA-4, PD-1 can also induce
the fatty acid β-oxidation (FAO) rate-limiting enzyme carnitine
palmitoyl transferase (Cpt1a) to simultaneously promote FAO
(119). Notably, the role of PD-1 in inducing FAO relies on
the simultaneous inhibition of the PI3K/AKT and MEK/ERK
signaling pathways, which regulate glucose metabolism (119).
Blocking PD-1 or CTLA-4 restores the glycolytic ability of
TILs in a mouse model, which promotes glycolysis in T cells
(115). It is noteworthy that PD-L1 derived from tumor cells
can facilitate tumor glycolysis through AKT/mTOR signaling
(115). Thus, blocking the PD-1/PD-L1 axis can lead to a range
of synergistic antitumor effects: restoring tumor-specific T cell
function, reducing tumor glycolysis, and improving glucose
availability to T cells in the TME.

Of course, certain amino acids, including arginine, glutamine
and tryptophan, are also important nutrients that stimulate T
cell activation and promote cancer cell proliferation and survival.
For instance, arginine is a nutrient necessary for T cell activation
and proliferation (120). TAMs and MDSCs express arginase 1,
which decomposes and reduces arginine in the TME, and results
in impaired effector T cell function (121–123). Interestingly,
for T cell activation and differentiation, glutamine is essential
(124). However, cancer cells exert a strong intake of glutamine,
which is conducive to tumor development (125). It is well known
that the rate-limiting enzyme for glutamine decomposition is
glutaminase. In a mouse model, targeting glutaminase is effective
in controlling tumor occurrence (126). Therefore, we can infer
that excessive glutaminolysis in the TME is due to cancer cells,
which restricts the utilization of glutamine by T cells and thereby
promotes T cell dysfunction. Moreover, because tumor cells and
suppressive immune cells secrete the tryptophan metabolism
enzyme IDO, tryptophan is catabolized into kynurenine, an
immunosuppressive metabolite (127). Accumulated kynurenine
facilitates regulatory T cell production (128). Collectively, these
results indicate that in the TME, T cells can effectively exert
antitumor immunity, which is inseparable from some important
nutrients. These essential nutrients may be controlled by cancer
cells and immune regulatory cells.

In addition to nutrients, various metabolites are also involved
in T cell dysfunction, such as lactic acid, low pH, and hypoxia
(Figure 3d). Tumor-derived lactic acid can induce apoptosis in

naive T cells, which may support tumor immune escape, due to
the loss of the 200 kDa FAK family interacting protein (129).
Lactic acid induces pH alterations and a loss of cytosolic NAD+

regeneration, which further limits T cell activity and cytokine
production (130). Thus, neutralizing acidic components in the
TME may contribute to enhancing T cell antitumor immunity
(131). Notably, hypoxia is another metabolic parameter in the
TME due to rapid tumor growth. Different studies have shown
that hypoxia improves or impairs T cell immune responses. In
murine chronic infections and tumor models, results indicate
that hypoxia can enhance the cytotoxic function of T cells as well
as lead to more effective viral and tumor control (132, 133). By
contrast, increased expression and activity of the transcription
factor hypoxia-inducible factor 1α (HIF-1α) is induced by
hypoxia, which increases the expression of inhibitory receptors
on T cells and reduces T cell effector function (132, 134).

Epigenetic Imprinting of T Cell Dysfunction
The epigenetic imprinting of dysfunctional T cells differs from
that of effector/memory T cells (Figure 3e). Normally, PDCD1
(encoding PD-1) is temporarily demethylated in activated T cells,
after which normal methylation levels are restored. In chronic
viral infections, results indicate that the PDCD1 demethylation
levels persist in activated T cells, leading to long-term expression
of PD-1 and T cell dysfunction (135–137). Even after the
virus is cleared to levels that cannot be detected by current
technologies, this demethylation pattern of the PDCD1 locus is
still sustained, suggesting that this epigenetic program has been
fixed. Interestingly, one study reported the presence of two T cell
clones with different affinities inMelan-A-specific TILs in human
melanoma (138). Low avidity T cell clones, due to the sustained
methylation of the PDCD1 promoter, do not express PD-1 even
when stimulated by TCR. Conversely, antigen-specific T cells
with high functional avidity express PD-1. These phenomena
suggest a relationship among expression of PD-1, modification
of the PDCD1 locus and intensity of TCR signaling (138).
Aside from the continued demethylation of the PDCD1 locus,
dysfunctional T cells gradually undergo de novo methylation of
genes involved in effector functions during persistent infections
and tumor progression, limiting T cell expansion and clonal
diversity (139). This cannot be reversed by PD-1 blockade.
However, during PD-1 blockade, blocking dysfunction-related
methylation imprinting has a synergistic effect in a murine tumor
model, as manifested by increased T cell immune responses and
tumor control (139).

In addition, unique changes in chromatin accessibility occur
in dysfunctional T cells. For example, in chronic LCMV
infection, additional accessible regions of PDCD1 appeared in
dysfunctional T cells (140). However, some open regions of the
IFNG locus were present in functional T cells and were absent
in dysfunctional T cells. It is worth noting that after anti-PD-
1 treatment, these accessible areas specific to the dysfunctional
state did not significantly change, showing that the epigenetic
program was only minimally remodeled (141). Similarly, tumor
antigen-specific and bystander T cells were adoptively transferred
in a murine tumor model (142). Gene expression and chromatin
accessibility were then compared. The results showed that only
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tumor-specific T cells were characterized by dysfunction and
exhibited increased effector functions after anti-PD-L1 therapy,
with little change in chromatin accessibility (142).

Moreover, epigenetic imprinting begins in the early stages of
dysfunction. Many changes in dysfunctional T cells in advanced
tumors of mouse liver cancer models are also present in T cells
from precancerous lesions (7). Two different chromatin states
can mirror the process of moving from mild dysfunction in early
tumor lesions to more severe dysfunction in late-stage tumors.
On the one hand, the chromatin state of early dysfunctional
TILs shows partial plasticity and can be reprogrammed by
anti-PD-1 therapy. On the other hand, the advanced state is
fixed and cannot be changed by anti-PD-1 therapy (143). It is
noteworthy thatmost of the overlap exists between the chromatin
accessibility state of PD-1hi CD8+ TILs from human non-small-
cell lung cancer and the chromatin accessibility state of late TILs
in mice. Thus, PD-1/PD-L1 blockade in human tumors may only
cause transcriptional rewiring rather than altering the chromatin
accessibility pattern itself.

Transcriptional Regulation of T Cell
Dysfunction
Transcriptional regulation of T cell dysfunction involves changes
in the expression patterns and transcriptional connection of
some important transcription factors. Some transcription factors
are expressed in both functional Teff and dysfunctional T cells
(Figure 3f). However, in dysfunctional T cells, these transcription
factors are linked to different genes and transcriptional loops,
showing activity in specific contexts (144, 145).

T-bet and Eomes, as T-box family transcription factors, play a
crucial role in the development of effector and memory CD8+ T
cells (146, 147). In acute infection, T-bet promotes the formation
of Teff cells and the development of KLRG-1+ terminal Teff
cells, while Eomes promotes the expression of IL-15Rβ and
the development of memory T cells in a homeostatic manner
(2, 144, 147–149). However, in chronic infection, the role of T-
bet and Eomes is different from their function in Teff and Tmem
cells (145). For example, the formation of a dysfunctional T cell
population requires the participation of both T-bet and Eomes.
And if either transcription factor is genetically deleted, the
dysfunctional T cell population cannot form (144). Furthermore,
due to its potential ability to inhibit the transcription of the
IR genes (e.g., Pdcd1 encoding PD-1), upregulated expression
of T-bet favors the formation of progenitor PD-1int Eomeslo

Tex subpopulation (144). As for Eomes, its high expression in
the terminal Tex subpopulation differs from that in the self-
renewal Tmem cells in acute infection (144). In view of this,
transcriptional network analysis is performed, and it has been
shown that Eomes participates in almost completely different
transcription networks in functional Teff and Tmem cells
compared with Tex cells (145). Therefore, the functions of T-bet
and Eomes are rewiring in Tex cells.

Other transcription factors are also involved in T cell
dysfunction. Foxo1, Blimp-1, NFAT, IRF-4, and BATF can
promote or antagonize T cell dysfunction by modulating
dysfunction or effector-specific genes, respectively (12, 150–154).

The expression level of these transcription factors directly affects
their capability of driving distinct transcriptional programs. For
instance, dysfunctional T cells upregulate Foxo1 and Blimp-
1, which act as positive regulators of T cell dysfunction (150,
152, 155). Also, metabolic-related transcription factors, including
hypoxia-inducible factor (HIFs) and von Hippel-Lindau (VHL)
complexes, may promote T cell dysfunction in some cases
(156). In addition, recent research has found that TOX, as
a new transcription factor, promotes T cell dysfunction in
cancer (157–159).

HETEROGENEITY IN DYSFUNCTIONAL T
CELLS

Dysfunctional T cells are heterogeneous. Firstly, PD-1 and CD44
are utilized to distinguish subpopulations of dysfunctional T cells
with various biological functions. Studies have revealed that PD-
1intCD44hi T cells had a lower degree of dysfunction than PD-
1hiCD44int T cells, which may be partially explained by lower
coexpression of IRs (9). Furthermore, the PD-1int T cells can
produce a therapeutic response to PD-1 blockade. Conversely,
PD-1hiCD44int T cells are in a terminally dysfunctional state and
have no therapeutic response to immune checkpoint blockade
(9). Subsequent studies have also shown that the PD-1intCD44hi

T cell subpopulation is mainly composed of T-bethi and Eomeslo

cells, and as a progenitor cell population, can persistently
generate PD-1hiCD44intEomeshi T cell population with terminal
dysfunction state (144).

In addition, the understanding of dysfunctional T cell
heterogeneity is further improved due to the recognized role
of CXCR5 and the transcription factor Tcf-1. The CXCR5+Tcf-
1+Tim-3− T cell subpopulation can respond to PD-1 blockade
and produce a more terminal CXCR5−Tcf-1−Tim-3+ T cell
subpopulation (160). Interestingly, there is no difference in the
expression of the transcription factors T-bet and Eomes between
the two subpopulations (160). These results may reveal the
heterogeneity in the original PD-1int progenitor cell populations.

Therefore, the heterogeneity of dysfunctional T cells is
complex. Identifying progenitor populations that respond to
checkpoint blockade may be more beneficial to the development
of cancer immunotherapy and to cancer patients.

REVERSAL OF DYSFUNCTIONAL T CELLS
BY IMMUNOTHERAPY

Single or Combined Immune Checkpoint
Blockade
Immunotherapy for treating tumor-induced T cell dysfunction
has provided hope to patients with cancer. Currently,
immunotherapy has focused on blocking immune checkpoints in
patients with various solid and hematological tumors (161–164).
The most commonly targeted immune checkpoints are PD-1 and
CTLA-4. Generally, PD-1 impedes T cell function by interfering
with T cell receptor (TCR) signaling, whereas CTLA-4 impedes
T cell function by competing with the costimulatory molecule
CD28 to bind to CD80/CD86 (165, 166). Since Treg cells also
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express CTLA-4, antibodies targeting CTLA-4 can inhibit Treg
cell function or enhance antitumor immunity by selectively
eliminating Treg cells in a mouse model (62). The CTLA-4
targeting agent, ipilimumab, was the first immune checkpoint
inhibitor. With the use of ipilimumab, overall survival was
significantly increased in patients with advanced melanoma
(167, 168). Of note, in patients with melanoma treated with
anti-CTLA-4, the melanoma-reactive CD8+ T cell response in
peripheral blood was found to be significantly increased (169).
This result suggests that enhanced T cell priming also plays
a role. Also, PD-1 pathway blockade can effectively reverse
dysfunctional T cells and increase antitumor activity in patients
with various cancers, especially in viral infection-driven cancers
or carcinogen-induced cancers (170–174). In addition, as
mentioned above, recent studies have revealed that the PD-
1/PD-L1 axis inhibits T cell function through the inactivation of
CD28 signaling instead of TCR signaling (48). In a mouse model,
conditional knockout of CD28 abolished the effects of PD-1
blockade (49), suggesting that the CD28/B7 pathway may act as
an important role in the efficacy of anti-PD-1 therapy. Currently,
five anti-PD-1 or anti-PD-L1 antibodies have been approved
by the FDA for the treatment of a variety of cancers, including
hepatocellular carcinoma, renal cell carcinoma and Hodgkin’s
disease (175).

Moreover, compared with monotherapy, the combined use
of anti-CTLA-4 and anti-PD-1 has demonstrated prolonged
progression-free survival and significant tumor regression in
clinical trials of cancer patients (176, 177). Also, PD-1 blockade
combined with other checkpoint blockades, such as Tim-3,
LAG-3, or TIGIT, significantly reverses T cell dysfunction
and enhances antitumor immunity in patients with cancer,
compared to individual checkpoint blockade (25, 26, 178, 179).
At present, humanized anti-TIM3 (TSR-022), anti-LAG3 (MK-
4280), and anti-TIGIT (BMS-986207) antibodies against various
cancers are under clinical trials. However, the underlying precise
mechanisms to explain the efficacy of immune checkpoint
blockade have not been fully described.

Immune Checkpoint Blockade in
Combination With Other Immunotherapies
The combination of inhibitory receptor blockade and
costimulatory molecule targeting exerts a synergistic effect
in re-activating tumor-specific T cells. CD137 (or 4-1BB), a
member of the TNFR family, is expressed on activated T cells
(180). In a murine model, the combination of agonistic anti-
CD137 antibodies and PD-1 blockade effectively controls tumor
growth (181). This combination therapy also improves the T
cell response to tumor antigens and promotes effector/memory
CD8+ T cell formation (182). Another member of the TNFR
family, OX40, is primarily expressed on activated CD4+ T cells.
And its expression on CD8+ T cells is at a lower level upon TCR
triggering (183). The research results show that OX40 agonists
play an antitumor immunity-promoting role in immunogenic
mouse tumor models, but do not play an effective role in
tumor control in a poor immunogenic tumor model (184, 185).
Strikingly, in a vaccination setting, the addition of PD-1 blockade

to OX40 agonists virtually eliminates the antitumor effect of
OX40 monotherapy due to the reduced TIL infiltration and
enhanced cell death of tumor-reactive CD8+ T cells (186). This
effect deserves close attention because it is uncertain whether
a similar harmful effect will occur in human cancers. Also,
this phenomenon underscores the importance of the timing of
different immunotherapeutic interventions to avoid the negative
effects of T cell overstimulation.

Furthermore, anti-CTLA-4 therapy in combination with
anti-VEGF antibodies has been shown to increase antitumor
immune responses and achieve encouraging clinical results in
patients with metastatic melanoma (187). Moreover, in mice with
melanoma, researchers have demonstrated that the use of PPARα

agonists can promote fatty acid catabolism in vaccine-induced
CD8+ TILs. The addition of anti-PD-1 antibodies obviously
enhanced the antitumor efficacy (188).

Therefore, future research should focus on how combination
therapies should be applied and which dysfunctional states may
be best for them.

CAR-T Cell Therapy
A CAR-T cell is genetically modified to express an antigen-
specific, non-MHC restricted receptor, which consists of
the single-chain variable fragment (scFv) of an antibody, a
transmembrane domain and an intracellular signaling domain
(189, 190). Thus far, CAR-T cell therapy has achieved great
success in treating hematological malignancies (191, 192).
However, some patients still lack response and relapse after
receiving CAR-T treatment, possibly due to the poor proliferative
capacity and the short duration of T cells. Therefore, a
transcriptomic analysis was conducted to compare T cells
from chronic lymphocytic leukemia (CLL) responders and non-
responders after CAR-T treatment (193). The results showed that
T cells from non-responders upregulated pathways associated
with exhaustion and apoptosis compared to T cells from
responders (193). Inhibitory receptors were also upregulated on
these CAR-T cells, indicating that these inhibitory molecules
may result in dysfunction and poor persistence of CAR-T cells
(194, 195).

Recently, CRISPR-Cas9 technology has been applied to
knock out IR itself, and studies have been conducted on PD-
1 and LAG-3 in CD19-BBζ CAR-T cells (196, 197). In mouse
xenograft models, knockout of IR-derived CAR-T cells effectively
eradicated tumors (196, 197). This method has also been applied
to solid tumors. CRISPR-Cas9 was utilized to knock out PD-
1 in CD133-specific CAR-T cells. In a mouse glioma model,
CD133-specific CAR-T cells with PD-1 knockout enhanced the
control of tumor growth compared to control CD133-CAR-T
cells (198). Based on the encouraging results obtained above,
CAR-T cells edited by CRISPR-Cas9 have entered clinical trials.
For example, CD19-specific CAR-T cells with PD-1 knockout are
being investigated in PhaseIclinical trials (NCT03298828).

Additionally, CAR-T cells are designed to secrete immune
checkpoint antibodies themselves. In CD19+ lung cancer
xenograft models, CAR-T cells have been engineered to secrete
anti-PD-1 antibodies and significantly improved antitumor
activity, manifested by enhanced T cell proliferation, increased
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cytotoxicity, and prolonged overall survival (199). Compared
with standard CAR-T cells, anti-CAIX CAR-T cells secreting
anti-PD-L1 antibodies significantly increase antitumor activity,
as evidenced by enhanced cytokine production and immune cell
recruitment and the significant reduction in tumor size in the
humanized ccRCC mouse model (200). Whether these CARs are
likely to succeed in the body is still unknown. Currently, CAR-
T cells, which are designed to secrete PD-1, CTLA-4 or PD-
L1 antibodies, have entered clinical trials for cancers expressing
MUC1, EGFR, EGFRVIII, and mesothelin (201).

In addition, other strategies have been used to enhance CAR-
T cell function in TME, including inhibition of inhibitory soluble
molecules such as IDO, adenosine and VEGF, and protection
from immunosuppression of non-tumor cells, such as MDSCs
and TAMs. Interestingly, the combination of EGFRVIIICAR-
T cells with the blockade of IDO1 significantly reduces tumor
growth in a xenograft colon cancer model (202). In HER2 CAR-
T cells, blockade of adenosine 2A receptor enhances CAR- T
cell activation and cytokine production, which contributes to
the improved antitumor efficacy of CAR-T cells (203). The
addition of PD-1 blockade further enhanced T cell immunity
(203). Also, VEGF blockade has achieved success in solid tumors
including melanoma, and VEGF-targeted CAR-T cells have
achieved good results in a variety of preclinical solid tumor
models (187, 204, 205).

CHALLENGES AND POSSIBLE SOLUTIONS

Resistance to therapy is a major challenge in cancer
immunotherapy. Defects involved in IFNγ signaling and
antigen presentation pathways, as tumor-intrinsic alterations,
can lead to resistance to cancer immunotherapy, which explains
why immunotherapy is not effective in some cancer patients
(206, 207). In melanoma patients treated with PD-1 blockade, for
example, the acquired resistance is attributed to the inactivation
of IFNγ signaling and defects in the antigen presentation
mechanism (206).

Moreover, alterations in the functional state of TILs are
also among the reasons for resistance to immunotherapy (208).
Interestingly, after adoptive transfer of MART-1 TCR-transduced
T cells in advanced melanoma patients, the T cell functional
phenotype was altered during relapse, which was characterized
by a complete loss of initial cytotoxic activity or an acquired
inflammatory cytokine secretion but lack of cytotoxicity (209).
Therefore, to assess whether changes in the dysfunctional state
are also critical in mediating the immunotherapeutic resistance
of cancer patients, it will be of value to compare monotherapy
and combination therapy at the beginning of treatment and at
the moment of resistance.

In addition, reactivation of treatment-induced tumor-specific
T cells may unexpectedly promote the further progression
of T cell dysfunction. By comparing longitudinal samples
of colon cancer models in both immunocompetent and
immunodeficient mice, we found two important tumor escape

mechanisms involving the accumulation of immunosuppressive
cell populations (e.g., Tregs) and enhanced expression of
multiple inhibitory receptors on T cells, which contribute to the
deterioration of T cell function (210). Given this, Chauvin et al.
discovered that, after PD-1 blockade in vitro, TIGIT expression
was increased on TA-specific CD8+ T cells (25). Dual TIGIT and
PD-1 blockade could promote the effector function of CD8+ T
cells. Similarly, Tim-3 was upregulated on TILs in a PI3K/AKT-
dependent manner upon PD-1 blockade. Notably, the combined
blockade of the two receptors significantly improved antitumor
immunity (211). In a mouse lung cancer model, several other
immune checkpoints, such as CTLA-4, Tim-3, and LAG-3, were
also found to be upregulated upon resistance to PD-1 blockade
(212). Therefore, upregulation of other immune checkpoints
also provides a potential resistance mechanism after anti-PD-
1 treatment.

CONCLUSIONS

Dysfunctional T cells have various cellular states and different
characteristics in cancer. Both persistent TCR triggering
and T-cell internal and external factors can affect the fate
of dysfunctional T cells. Although the characteristics of T
cell dysfunction in cancer are similar to those of T cell
dysfunction in chronic viral infection, there are various
factors in the complicated TME that promote the process of
immunosuppression, which can further shape T cell dysfunction
in cancer. Gradually, it is conceivable that dysfunctional T cells
in cancer differ from those found in chronic infection sites.
However, heterogeneous dysfunctional T cell states still exist
among different tumors and even within tumors. To reverse
dysfunctional T cells and restore antitumor immunity, immune
checkpoint blockade and related combination therapies have
been applied. However, some challenges still remain to be solved,
such as how to maintain long-lasting efficacy and how to
choose the best combination therapy. Moreover, it is essential to
understand the processes that drive and maintain these different
dysfunctional T cell states. Continued advances in technology
will help achieve this goal, supporting the development of
personalized strategies for targeting dysfunctional T cells to
achieve precise treatment for cancer patients.
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