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Cancer cells, particularly in solid tumors, are surrounded by non-neoplastic elements,

including endothelial and stromal cells, as well as cells of immune origin, which can

support tumor growth by providing the right conditions. On the other hand, local

hypoxia, and lack of nutrients induce tumor cells to reprogram their metabolism in order

to survive, proliferate, and disseminate: the same conditions are also responsible for

building a tumor-suppressive microenvironment. In addition to tumor cells, it is now

well-recognized that metabolic rewiring occurs in all cellular components of the tumor

microenvironment, affecting epigenetic regulation of gene expression and influencing

differentiation/proliferation decisions of these cells. Nicotinamide adenine dinucleotide

(NAD) is an essential co-factor for energy transduction in metabolic processes. It is

also a key component of signaling pathways, through the regulation of NAD-consuming

enzymes, including sirtuins and PARPs, which can affect DNA plasticity and accessibility.

In addition, both NAD-biosynthetic and NAD-consuming enzymes can be present in the

extracellular environment, adding a new layer of complexity to the system. In this review

we will discuss the role of the “NADome” in the metabolic cross-talk between cancer and

infiltrating immune cells, contributing to cancer growth and immune evasion, with an eye

to therapeutic implications.
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COMPOSITION OF THE TUMOR MICROENVIRONMENT:
SUPPORTIVE AND IMMUNOREGULATORY CELLS

The solid tumor microenvironment (TME), as well as the lymphoid niche, is a dynamic and
multicellular ecosystem with complex interactions (1, 2). Intercellular crosstalk within this
niche is driven by multiple receptor-ligand systems, as well as by locally synthesized soluble
proteins, including chemokines/cytokines, interleukins, interferons, growth, and angiogenic factors
(3, 4). This unique environment is essential for tumor growth, metastatic dissemination, and
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drug-resistance. Furthermore, the cellular and soluble
components of the TME have an important role in shaping
metabolic reprogramming of cancer cells, an established
hallmark of cancer, and in creating an immunosuppressive
environment (5–8), as showed in Figure 1.

The formation of the TME and the regulation of immune
responses are orchestrated by different types of host cells,
including endothelial cells (ECs), mesenchymal stem/stromal
cells [MSCs, including cancer-associated fibroblasts (CAFs)
and tumor-associated MSCs (TA-MSCs)], and tumor-infiltrating
immune cells [i.e., tumor-infiltrating lymphocytes (TILs), tumor-
associated macrophages (TAMs), myeloid-derived suppressor
cells (MDSCs), and tumor-associated neutrophils (TANs)].
Their concerted action promotes tumor growth and spreading
(1, 2, 9, 10) (Figure 1).

Endothelial Cells (ECs)
ECs support blood supply, nutrient transport, metabolic
homeostasis, and immune cell trafficking, and are involved in
inflammatory response (11).

To provide nutrients to the growing tumor, ECs form tumor-
associated (angiogenic) vessels originating from locally pre-
existing vessels or recruiting bone marrow-derived endothelial
progenitors. They also represent the first interface between
circulating blood cells, tumor cells, and the extracellular matrix,
thereby playing a central role in regulating leukocyte recruitment,
tumor cell features, and metastasis dissemination (12). Tumor-
associated EC are dysfunctional, partly as a consequence
of local hypoxia, which induces the production of soluble
factors promoting neo-angiogenesis and contributing to tumor
dissemination and chemoresistance (13, 14). Among these
factors, vascular endothelial growth factor A (VEGF-A) can also
play a critical role in the control of immune tolerance, linking
immune suppression with angiogenesis (15).

Mesenchymal Stem/Stromal Cells (MSCs)
MSCs strongly affect the development and progression of various
cancers (16). Stromal cells represent the main cell component
with both supportive and immunoregulatory functions; they
derived from multipotent cells of mesodermal origin which
virtually reside in all tissues with an important role in tissue
regeneration (16). MSCs have been found to migrate to tumors
and to evolve into TA-MSCs and CAFs with an active role
in tumor survival, proliferation, migration and drug resistance,
and therefore, recently emerged as attractive targets or tools for
anticancer approaches (17, 18).

CAFs are the most abundant resident cells of the TME.
Numerous studies have demonstrated that CAFs have prominent
roles in cancer pathogenesis (19, 20). Mechanistically, CAFs
shape the extracellular matrix (ECM) structure, which supports
the tumor cells (i) to invade and interact with stromal
cells through the secretion of growth factors, cytokines and
chemokines including interleukin-6 (IL-6), transforming growth
factor-β (TGF-β) and CC-chemokine ligand 2 (CCL2); (ii) to
amplify immune evasion recruiting immune cells, especially
immunosuppressive cells into the tumor stroma; (iii) to promote
the establishment of an intratumoral vascular network through

proinflammatory and proangiogenic mediators (21). CAFs also
activate epithelial-mesenchymal transition (EMT) in cancer cells,
conferring their pro-invasive and stem-like features (22). In
addition, CAFs are plastic cells that co-evolve with cancer cells
and acquire a pro-tumor phenotype, contributing to tumor
evolution (23). Due to the pro-tumor role of CAFs in support
cancer development they become promising therapeutic targets
for cancer therapy (21).

Tumor-Infiltrating Lymphocytes (TILs)
TILs are additional immune components, crucial in driving
immune responses within the TME, adding more complexity
in the composition of the TME (3). TILs are white blood
cells, including T and B cells, that have left the bloodstream
and migrated toward a tumor or tissue resident (1, 24).
Their abundance varies according to tumor type and stage
and in some cases relates to disease prognosis, tumor
progression, and response to anticancer therapy (1, 25, 26).
T cell differentiation status, survival, activation or “stemness
properties” are determining factors of antitumor potency (27)
and functions of TILs dynamically change within the TME
(28). Sometimes TILs, specifically cytotoxic CD8+ memory
T cells and CD4+ T helper 1 (Th1), which are normally
antigen “experienced,” kill tumor cells (29), and the presence
of lymphocytes in tumors is often associated with a better
prognosis during immunotherapy treatment, including the
adoptive transfer of naturally- TIL or genetically-engineered T
cells and the use of immune-checkpoint inhibitors (26, 30).
However, very often, during cancer progression and chronic
inflammation, T cells become exhausted due to the persistent
antigen exposure. T cell exhaustion is a state of T cell dysfunction
defined by poor effector function, sustained expression of
inhibitory receptors, such as programmed cell death protein
1 (PD1) and cytotoxic T lymphocyte antigen 4 (CTLA4),
and transcriptional programs altered compared with functional
effector or memory T cells (31).

Regulatory T (Treg) cells are another TME cell type that has
immunosuppressive functions in cancer, inhibiting recognition,
and clearance of tumor cells by the immune system (30, 32, 33).
Tregs are characterized by the expression of CD4, CD25, and
forkhead box P3 (FOXP3) as their master regulator. Foxp3þ Treg
can originate in the thymus (naturally occurring Treg) or can
be induced (iTreg) in the periphery by soluble cytokines and
cell-cell contact (34) and are essential for maintaining peripheral
tolerance and limiting auto-immune diseases. However, the
proportions of Tregs are much higher in the circulation
of patients with solid and hematologic malignancies and
accumulation of Tregs in the tumor microenvironment is
associated with disease progression and reduced survival (35, 36).
From a functional point of view, Tregs inhibit both cellular
and humoral immune responses by suppressing expansion and
activation of conventional CD4+ and cytotoxic CD8+ T cells, and
natural killer cells, mainly through the secretion of suppressive
cytokines, such as TGF-β and IL-10. The development of
agents that specifically inhibit Treg functions or remove them
from the TME will permit new approaches for anticancer
immunotherapy (37).
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FIGURE 1 | The tumor microenvironment. A schematic view of the tumor microenvironment components. Established cancers are usually surrounded by a wide array

of stromal cells and infiltrating immune cells of both innate and acquired immunity, such as MDSCs, macrophages, dendritic cells, neutrophils, NK cells, and

lymphocytes. They form a complex regulatory network that supports tumor growth by creating a tolerogenic environment that enables cancers to evade immune

surveillance and destruction. TAN, tumor-associated neutrophils; TAM, tumor-associated macrophages; MDSC, myeloid-derived suppressive cells; CAF,

cancer-associated fibroblasts. Figure arrange using BioRender software https://biorender.com/.

Tumor-Associated Macrophages (TAMs)
TAMs are important mediators of tumorigenesis, resident in
the tissue or deriving from peripheral reservoirs such as the
bone marrow (BM) and spleen (2). Macrophages are functionally
plastic and can be polarized into the immune stimulating
and antitumor M1 subtype, or into “alternatively activated”
M2 macrophages producing type II cytokines, promoting anti-
inflammatory responses, and having pro-tumorigenic functions
(38, 39). Macrophage polarization is finely tuned in response to
different microenvironmental stimuli (40). For example, hypoxia
may mediate this transition from tumor suppressing to tumor
promoting macrophages (41). Furthermore, it has been shown
a reciprocal regulation between CAFs and M2 macrophages:
CAFs promote monocyte recruitment and polarization toward
the M2 phenotype, leading to the enhancement of proangiogenic
features, in parallel M2 macrophages are able to induce fibroblast
activation (42). It is well-known that TAMs have a clear
role in supporting multiple aspects of tumor progression (43).

For example, TAMs promote tumor cell invasion through a
paracrine loop that involves tumor-derived colony-stimulating
factor 1 (CSF-1) and macrophage-derived epidermal growth
factor (EGF) (43, 44). Moreover, TAMs induce immune
suppression [reviewed in (45)] mediated by (i) expression
of inhibitory receptors, including human leukocyte antigens
(HLA)-E and HLA-G and T cell immune checkpoint ligands,
such as PDL1, PDL2, CD80 and CD86, which directly
inhibit T cell functions and NK cells; (ii) release of several
cytokines, such as IL-10 and transforming growth factor-β
(TGFβ), that contribute to feed a strong immunosuppressive
microenvironment by inhibiting CD4+ (Th1 and Th2 cells)
and CD8+ T cells and inducing Treg cell expansion and
recruitment through CCL2, CCL3, and CCL20. Lastly, they
induce depletion of essential amminoacids for cytotoxic activity
of T cells including l-arginine and tryptophan, or production of
kynurenine by indoleamine 2,3-dioxygenase (IDO) that inhibits
T cell cytotoxicity.
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Reversion of TAMs back to an M1 phenotype has also been
reported (46), highlighting a potential therapeutic opportunity
in which re-education of TME-resident macrophages might have
beneficial anti-tumorigenic effects (45).

Myeloid-Derived Suppressor Cells
(MDSCs)
Along with TAMs, MDSCs are considered major promoters
of tumor immune evasion (47). This population of myeloid
cells, functionally defined as immunosuppressive, arises as a
consequence of aberrant myelopoiesis typical of cancer (48).
During tumorigenesis, MDSCs are mobilized from BM, via
CXCR4/CXCL12 axis (49) and infiltrate tumors, where they
promote tumor neoangiogenesis, producing endothelial growth
factors [e.g., VEGF, basic fibroblast growth factor (bFGF)] (47).
At the same time, they disrupt the major mechanisms of
immunosurveillance, including antigen presentation by dendritic
cells (DCs), T cell activation, M1 macrophage polarization and
NK cell cytotoxicity, as reviewed in Safari et al. (50) and
Wang et al. (51). Pharmacological inhibitors of CXCR4, are
now under clinical investigation for the mobilization of immune
and hematopoietic stem cells (52). Noteworthy, depletion
of MDSCs by chemotherapeutic agents (e.g., gemcitabine,
cyclophosphamide) can efficiently contribute to their anticancer
action (48, 50, 53).

Tumor-Associated Neutrophils (TANs)
More recently, a population of neutrophils, known as TANs,
has been identified as tumor supporter promoting growth,
invasion, and angiogenesis of cancer cells, although they have
been classically considered to exhibit a defensive response
against tumor cells. Like all other leukocytes, they migrate into
tissues under the effect of specific chemokines, cytokines and
cell adhesion molecules for example TGF-β and IL-8 induce
the formation of a pro-tumorigenic (N2) phenotype capable
of supporting tumor growth and suppressing the antitumor
immune responses (54, 55). Accordingly, TGF-β blocking results
in the recruitment and activation of TAN with an anti-tumor
phenotype (54). The main tumor-promoting mechanisms of
TANs include secretion of chemokines and/or cytokines, reactive
oxygen species (ROS), and matrix-degrading proteinases, among
others, conditioning tumor immune surveillance, metastasis,
invasion, angiogenesis, and cellular proliferation (55, 56).

TUMOR-STROMA METABOLIC
CROSS-TALK IN TME

It has been shown that the environment surrounding tumor
cells is characterized by low oxygen tension (i.e., hypoxia) due
to the abnormal blood vessel formation, defective blood
perfusion, and unlimited cancer cell proliferation (14).
The progression of hypoxia over time is a consequence of
increased oxygen consumption and high glycolytic rate of
aberrantly proliferating cancer cells (aerobic glycolysis or
Warburg metabolism), leading to lactate dehydrogenase (LDH)
activity, lactate excretion and TME acidosis, which alters the

tumor-stroma “metabolic cross-talk” (Figure 1). Vice versa,
hypoxia rapidly fosters energy production in tumor cells via
glycolysis through hypoxia-inducible factor 1-alpha (HIF-1α)-
mediated transcriptional control (57, 58). In addition, a hypoxic
environment also modulates tumor-associated immune and
stromal cells metabolism and fate. The rapid consumption of
extracellular glucose and glutamine by tumor cells, especially in
hypoxic conditions, leads to the accumulation of extracellular
lactate, which was shown to affect several cell types within the
TME (59). Increased lactate levels promote the insurance of
an immune-permissive microenvironment by attenuating DCs
and T cell activation, monocyte migration, and polarization
of resident macrophages to TAMs (60–63). Furthermore,
lactate accumulation promotes angiogenesis, stabilizes HIF-1α
and activates NF-kB and PI-3 kinase signaling in endothelial
cells, as well as inducing secretion of the proangiogenic
factor VEGF from tumor-associated stromal cells (64–66).
The secretion of lactate via the monocarboxylate transporter
(MCT3) is coupled to the cotransport of H+, which supports
acidification of the cellular microenvironment (59). The
surplus of CO2 generated in mitochondrial decarboxylation
reactions contributes to extracellular acidification as well (67).
Then, a class of extracellular carbonic anhydrases (CA) can
convert CO2 to H+ and HCO3−. Accordingly, expression
of CAIX isoforms is elevated during hypoxia and can be
considered a proxy for HIF-1α signaling (68). A consequence
of increased extracellular acidification is the stimulation of the
proteolytic activity of MMPs that promotes the degradation
of the extracellular matrix components enhancing tumor
invasion (69).

Lactate in TME can be also recycled, as occurs in the
Cori cycle in the liver. In this reciprocal metabolite changes
between cancer cells and immune/stromal cells, lactate produced
under hypoxic conditions by glycolytic cells can be re-uptaken
by aerobic cells, via MCT1, and utilized for mitochondrial
tricarboxylic acid (TCA) cycle and oxidative phosphorylation
(OXPHOS) (70, 71). This well characterized mechanism is
known as the “reverse Warburg effect” (70, 72). In a model
of epithelial cancer, tumor cells instruct the normal stroma to
transform into a wound-healing stroma, providing the necessary
energy-rich microenvironment for facilitating tumor growth and
angiogenesis (72, 73). This metabolic cross-talk is evident in
breast, prostate and ovarian cancer (74–76).

Both innate and adaptive immune cells increase their
metabolic capacity upon stimulation, promoting energy
generation, and biosynthesis supporting proliferation, effector
molecule production, and differentiation (77). The impact of
such altered metabolic state and levels of metabolites in TME on
immune cell function is emerging. For example, a competition
between tumor cells and T cells for the glucose pool in the
aerobic microenvironment is linked to suppressed effector T-cell
functions. In fact, activated T cells rely on glucose metabolism,
up-regulating GLUT1 transporter via T cell receptor (TCR) and
CD28-induced Akt activation (78, 79). Critical concentrations
and/or lack of two amino acids, glutamine and arginine,
necessary for T-cell activation, differentiation and proliferation,
are therefore inhibitory to T cell functions (79).
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The TME shows high levels of immunosuppressive metabolic
byproducts, including a turnover in the TME release of adenosine
triphosphate (ATP) and nicotinamide dinucleotide (NAD) which
are metabolized by the ectoenzymes CD39, CD73, and the
NADase CD38 to adenosine (80, 81). Adenosine binds to
the T-cell adenosine A2R receptor inhibiting effector T-cell
functions and stimulating Treg cells (82, 83). Furthermore,
the adenosinergic axis is over-functional in hypoxic conditions,
connecting adenosine-mediated immunesuppression to low
oxygen tension (84, 85).

Overall, a better understanding of the critical players within
the TME and their specific roles in immune regulation will
help design of metabolism-targeted therapeutic strategies for
improving immunotherapy regimens in cancer.

Recently, NAD pathway enzymes and metabolites were
shown to affect immune-cell functions and fate and alter
the cancer cell-TME crosstalk. The following paragraphs are
focused on describing these molecular circuits and their
therapeutic implications.

NAD HOMEOSTASIS: AN OVERVIEW

NAD is a vital molecule governing many metabolic processes.
It is used as a redox coenzyme by several dehydrogenases, and
as a co-substrate by various NAD-consuming enzymes (86, 87).
Among them are (i) mono- or poly-ADP ribosyltransferases
(including ARTs and PARPs), which transfer the ADP ribose
moiety to acceptor proteins resulting in their modification
and function regulation, (ii) sirtuins, which catalyze the NAD-
dependent deacetylation of metabolic enzymes and transcription
factors, thus controlling their activity; (iii) NAD glycohydrolase
that generates different NAD metabolites, including ADP
ribose (ADPR), cyclic ADP ribose (cADPR) and nicotinic acid
adenine dinucleotide phosphate (NAADP), with calcium (Ca+2)
mobilizing activity. These enzymes are involved in the control
of a wide range of biological processes, including transcription,
DNA repair, cell adaptation to stress signals, and immune
response (88). By catalyzing their reactions, they render NAD
continuous re-synthesis an indispensable process. Various NAD
biosynthetic routes guarantee the coenzyme regeneration, in
different combination and with different efficiency depending on
the cell-type and metabolic status (89, 90). A schematic overview
of NAD homeostasis is shown in Figure 2 and reviewed in Sharif
et al. (87), Magni et al. (91), and Houtkooper et al. (92).

The route which recycles nicotinamide (Nam), produced
by the breakage of the N-glyosidic bond in the various NAD-
consuming reactions, back to NAD that is considered the
major pathway ensuring NAD homeostasis. It involves the
phosphoribosylation of Nam to nicotinamide mononucleotide
(NMN) by the enzyme Nam phosphoribosyltransferase
(NAMPT) and the subsequent adenylation of NMN to NAD
by NMN adenylyltransferase (NMNATs). This same route also
salvages extracellular Nam that can be of dietary origin or can
be formed in the extracellular space by the NAD glycohydrolase
activity of the CD38 ectoenzyme acting on extracellular NAD
and/or NMN. NAD can also be synthetized from exogenous

nicotinamide riboside (NR) and nicotinic acid (NA) through
distinct routes that are initiated by NR kinase (NRK) and
NA phosphoribosyltransferase (NAPRT), respectively. The
former enzyme phosphorylates NR to NMN, whereas the latter
enzyme phosphoribosylates NA to nicotinate mononucleotide
(NAMN). NMNATs convert NMN to NAD, and NAMN to
nicotinate adenine dinucleotide (NAAD). NAAD is finally
amidated to NAD by the enzyme NAD synthetase. A de novo
biosynthetic route, which starts from tryptophan and enters
the amidated route from NA, is also operative in several
tissues and cell-types. The first and rate- limiting step in this
pathway is the conversion of tryptophan to N-formylkynurenine
by either IDO or tryptophan 2,3 -dioxygenase (TDO). Four
reactions are then required to transform N-formylkynurenine
to an unstable intermediate, α-amino-β-carboxymuconate-ε-
semialdehyde (ACMS), which undergoes either decarboxylation,
directed toward oxidation, or spontaneous cyclization to
quinolinic acid (QA) directed toward NAD formation. Indeed,
QA is phosphoribosylated to NAMN by the enzyme QA
phosphoribosyltransferase (QAPRT), and the formed NAMN
enters the NA salvage pathway. Among the enzymes involved
in NAD homeostasis, NAMPT, CD38, sirtuins, and IDO are
overexpressed in different types of cancer (93) and have been
shown to play a role in cancer immune tolerance (94, 95). In
the following sections, we will review what is known about their
expression and function in the TME.

NAMPT IN METABOLIC REGULATION AND
ACTIVATION OF MYELOID CELLS

As the first and rate-limiting enzyme, NAMPT plays a
pivotal role in the biosynthesis pathway of NAD from its
nicotinamide precursor. It converts Nam and 5-phosphoribosyl-
1-pyrophosphate (PRPP) into NMN in a complex reaction
that can be significantly improved by a non-stoichiometric
ATP hydrolysis (96). NAMPT is found both intracellularly
and extracellularly (97, 98). Intracellular NAMPT (iNAMPT) is
primarily located in the nucleus and cytosol. Previous studies
reported NAMPT in mitochondria as well (99), but this remains
a controversial finding (100, 101). As one of the main regulators
of NAD intracellular level, NAMPT plays a crucial role in
cellular metabolism (102). Conversely, the extracellular form
of NAMPT (eNAMPT) has emerged as an important mediator
of inflammatory programs (103). eNAMPT has been found in
plasma and other extracellular fluids, including the supernatants
of numerous cell types (103); however, while the mechanisms
behind eNAMPT secretion remain unknown, they do not seem
to rely on the classic pathway (104). Notably, the cytokine-like
functions appear independent of the protein catalytic activity
(105). In keeping with this view, NAMPT’s substrates PRPP
and ATP are apparently unavailable in the extracellular space to
sustain the enzymatic activity (106).

eNAMPT was originally found to be secreted by activated
lymphocytes and bone marrow stromal cells by Samal
et al. (107) and called pre-B-cell colony enhancing factor
[PBEF (107). In 2005, Fukuhara (108) identified eNAMPT
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FIGURE 2 | NAD metabolism overview. Schematic representation of mammalian NAD metabolism including biosynthetic (left side, in green) and consuming (right

side, in orange) pathways. Na, nicotinic acid; NAD, nicotinamide adenine dinucleotide; NAPRT, nicotinate phosphoribosyltransferase; NAMN, nicotinate

mononucleotide; NAAD, nicotinate adenine dinucleotide; Nam, nicotinamide; NAMPT, nicotinamide phosphoribosyltransferase; NADS, NAD synthetase; NMN,

nicotinamide mononucleotide; NMNAT, NMN adenylyltransferase; Nr, nicotinamide riboside; NRK, nicotinamide riboside kinase; QA, quinolinic acid; QAPRT,

quinolinate phosphoribosyltransferase; IDO, indoleamine 2,3-dioxygenase; TDO, tryptophan 2,3-dioxygenase; Trp, tryptophan; OAADPR, 2’-O-acetyl-ADP ribose;

ART, ADP-ribosyltransferases; PARP, poly-ADP-ribose polymerase; ADPR, ADP-ribose; cADPR, cyclic ADPR; NAADP, nicotinic acid adenine dinucleotide phosphate.

as an adipokine and called it visfatin. These different
names reflect its role in immune system and adipose
tissue regulation.

Independent studies have conclusively shown that NAMPT
expression and secretion can be induced by inflammatory signals
in immune cells, in particular neutrophils, monocytes and
macrophages (109). Both pathogen-derived lipopolysaccharide
(LPS) and host-derived inflammatory stimuli, including tumor
necrosis factor-α (TNF-α), IL-1β, IL-6, and leptin, can up-
regulate NAMPT transcription in macrophages and other several
types of cells (110–113). Several studies showed stimulation of
cytokine release after exposure of cells to exogenous NAMPT,
highlighting a role of eNAMPT as an inflammatory mediator as
reviewed in Garten et al. (103). Following NAMPT treatment,
IL-1β, IL-6, TNF-α, and IL-10 are up-regulated in peripheral
blood mononuclear cells (PBMCs) and CD14+ monocytes (114).
Co-stimulatory molecules such as CD54, CD40, and CD80 are
also up-regulated in response to NAMPT treatment, an effect
mediated through PI3-kinase and MAPKs p38, MEK1, and JNK
(114). Furthermore, in macrophages NAMPT increases MMPs
expression and activity (115). In vitro, eNAMPT promotes cell
survival in macrophages subjected to endoplasmic reticulum
(ER) stress, a frequent event in obesity and obesity-associated
diseases. eNAMPT induces IL-6 secretion, followed by IL-6-
mediated autocrine/paracrine activation of the prosurvival signal

transducer STAT3, with a mechanism that is independent of the
enzymatic activity (112).

Emerging evidence supports a role of NAMPT in regulating
the differentiation program and the metabolic adaptation of
myeloid cells. As described previously, activated macrophages
can be divided in two subgroups in vitro: those with pro-
inflammatory activity (M1) involved in first line of defense
against bacterial infection, and those with anti-inflammatory
activity (M2) that regulate tissue repair and wound healing (116),
even if this is an oversimplification of the functional diversity
occurring in vivo. Metabolic reprogramming of immune cells is
required for both pro- and anti-inflammatory responses and a
vast spectrum of metabolic statuses accompanies the complexity
of phenotypes [reviewed in (117, 118)]. In general, an increase
in glycolysis and in glucose uptake is typically associated to an
M1 phenotype (119), while M2 macrophages rely on intact TCA
cycle and OXPHOS as major source of ATP via electron transport
chain and ATP synthase (120, 121). However, in addition to
an augmented mitochondrial metabolism, alternatively activated
macrophages can also use glycolysis when OXPHOS is disrupted
(122). Another important pathway is the pentose phosphate
pathway (PPP), which generates pentoses, 5-ribose phosphate
and nicotinamide adenine dinucleotide phosphate (NADPH).
NADPH is essential in activated M1 macrophages because
it fuels ROS production by NADPH oxidase (123), even if
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other groups demonstrated that NADPH and NADPH oxidase
play a role even in M2 differentiation (124). Concerning lipid
metabolism, fatty acid synthesis is coupled to pro-inflammatory
activity of macrophages, while beta-oxidation is typical of anti-
inflammatory macrophages (117).

The increase of glycolysis associated with M1 activation of
macrophages is orchestrated by the transcription factor HIF-1α.
When cells experience low oxygen levels HIF-1α is stabilized and,
upon binding of the HIF-1β subunit, initiates the transcription
of genes such as glucose transporter and glycolytic enzymes
(125, 126). NF-kB is required for transcriptional activation of
HIF-1α (127); whereas, in M2 macrophages, genes involved in
metabolic reprogramming are largely controlled by STAT6 and
peroxisome proliferator-activated receptor gamma coactivator-1
beta (PGC-1β) (128).

Both iNAMPT and eNAMPT influence fundamental
monocyte/macrophages processes such as differentiation,
polarization and migration, even if the exact role of
iNAMPT/eNAMPT in the process of myelopoiesis is
incompletely elucidated so far (129–131) as summarized in
Figure 3. For example, NAMPT has a role in the induction of an
immunosuppressive and tumor-promoting microenvironment
in chronic lymphocytic leukemia, where eNAMPT is important
for the differentiation of monocytes toward tumor-supporting
immunosuppresive M2 macrophage, promoting their
differentiation, and polarization in tumor-supportive cells
including TAMs (130). Recently, it was demonstrated that
iNAMPT acts also on MDSCs, where NAMPT inhibits CXCR4
transcription, via NAD/SIRT1/HIF-1α axis, and this, in turn,
leads to a mobilization of MDSCs and enhances their production
of suppressive nitric oxide (132).

Changes in NAD levels characterize different stage of
macrophage polarization: in general, higher levels of NAD are
typical of classically activated pro-inflammatory macrophages
(M1), while NAD levels are lower in alternatively activated anti-
inflammatorymacrophages (M2). The NAMPT/NAD/SIRT1 axis
seems to play a relevant role in myeloid cell functions as shown
by the fact that efficient activation of M1 macrophages needs
an increase of both NAMPT expression and cytosolic NAD
(133). NAMPT-dependent generation of NAD is also crucial
in the metabolic switch characterizing the transition from the
early initiation phase of acute inflammation, which is anabolic
and primarily requires glycolysis, to the later adaptation phase
which is catabolic and relies on fatty acid oxidation (FAO)
for energy (134). During these processes, also NAD-consuming
deacetylases enzymes SIRT1 and SIRT6 have a role in regulating
metabolism, increasing fatty oxidation and reducing glycolysis,
respectively, coupling metabolic polarity with the inflammatory
response, as described with more details later (135, 136). These
data support the notion that NAD homeostasis has a crucial
role in connecting bioenergetics and inflammation (134). A
further feedback loop that links NAD to polarization of myeloid
component has been suggested in monocytes, where NAMPT
expression is induced by TNF-α via HIF-1α. In turn, NAMPT
signaling involving NF-kB pathway activates activating protein
1 (AP1), inducing IL6 and TNFA transcription modulating
myeloid cell activation (137).

In congenital neutropenia, a disorder in which patients
display accumulation of granulocytic progenitors and no
mature neutrophils in bone marrow, it has been shown that
granulocyte colony-stimulating factor (G-CSF) is effective as
it up-regulates NAMPT, which in turn triggers NAD/SIRT1
dependent granulopoiesis via CCAAT/enhancer-binding protein
α/β (C/EBPα/β) up-regulation (129). On the contrary, GM-
CSF is not effective in congenital neutropenia because it is
unable to activate iNAMPT upregulation and NAD/SIRT1 axis
(138). Following the induction of myeloid differentiation with G-
CSF, the NAD-consuming enzyme SIRT1 deacetylase C/EBPα at
position Lys 161 (129, 138). NAMPT inhibition with FK866 led to
the dramatic elevation of acetylated C/EBPα levels and reduced
amounts of total C/EBPα protein, accompanied by diminished
mRNA expression of C/EBPα target genes (G-CSF, G-CSFR, and
ELANE).Moreover, treatment of acutemyeloid leukemia cell line
HL-60 with recombinant NAMPT or transduction of HL-60 cells
with NAMPT-expressing lentiviral construct induced myeloid
differentiation of these cells per sé (138).

An open question is whether the cytokine-like actions that
eNAMPT exerts on myeloid cells are related to its enzymatic
activity or are mediated by the binding to a cell surface receptor.
The fact that treatment with low concentrations of recombinant
eNAMPT is sufficient to activate specific intracellular signaling
pathways suggests that eNAMPThas cytokine-like properties and
binds to and activates a cell surface receptor. In 2015, Camp et al.
identified eNAMPT as a new ligand of the Toll-like receptor 4
(TLR4) (105). The authors demonstrated that in human lung
endothelial cells, eNAMPT activates an inflammatory response
via activation of NF-kB signaling pathway by binding TLR4-MD2
(105). However, the fact that recombinant eNAMPT is often
produced in E. Coli strains renders the interpretation of these
results controversial for the possible contamination of LPS, the
natural ligand of TLR4, and activator of inflammatory programs.
New studies have to confirm the TLR4 engagement by eNAMPT
and correlate this with myeloid differentiation and plasticity.

The evidence linking myeloid cell fate and NAD/NAMPT
could open the way to pharmacological inhibition of either
iNAMPT and/or eNAMPT for re-education of myeloid cells.
This could be useful in the context of acute inflammation,
but also in cancer to force a reversion of immunosuppressive
microenvironment, in combination with immunotherapy, as
summarized in Figure 3.

For iNAMPT specific small molecules inhibitors exist, most
known FK866 (also known as APO866) and GMX1778 (also
known as CHS-828), among others (Table 1) (139–143, 159–
161). However, most of the data on these drugs describe
their effect on the tumor itself, and not on cells of the
microenvironment (141, 161). Whether these inhibitors could
also affect also eNAMPT activity is unknown, even if, as
mentioned before, the enzymatic activity of eNAMPT is
controversial. On the other hand, for eNAMPT, the group
of Garcia, in order to block only the cytokine-like activity
of eNAMPT, has devised a polyclonal eNAMPT neutralizing
antibody (130, 144), that could be useful in those condition in
which only the extracellular form of eNAMPT is detrimental and
intracellular enzymatic activity needs to be preserved.
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FIGURE 3 | NAMPT in regulating myeloid cell fate and immunometabolism. Role of iNAMPT/eNAMPT in skewing myeloid populations into tumor-supporting M2-like

macrophages and myeloid suppressive cells. Specifically, the iNAMPT/sirtuins axis regulates the metabolic reprogramming of cancer and myeloid cells in condition of

low oxygen tension; while eNAMPT/TLR4 axis activates intracellular signaling promoting differentiation of myeloid cells and secretion of anti-inflammatory and

pro-tumor cytokines creating an immunosuppressive microenvironment. The block of NAMPT functions, using iNAMPT pharmacological inhibitors and/or neutralizing

antibodies, can repolarize the myeloid populations and inhibit tumor growth. TLR4, Toll-like receptor 4; C/EBPα/β, CCAAT/enhancer-binding protein α/β; G-CSF,

Granulocyte Colony-Stimulating Factor; GM-CSF, Granulocytes-Macrophage Colony-Stimulating Factor; TAM, tumor-associated macrophages; MDSC,

myeloid-derived suppressive cells.

CD38 IN METABOLIC DYNAMICS OF T
CELLS ACTIVATION

Cluster of differentiation (CD) protein CD38, first identified
as a lymphocyte antigen, is a cell surface glycohydrolase that
cleaves a glycosidic bond within NAD to yield Nam, ADP-
ribose (ADPR), and cyclic ADPR (cADPR), and converts
NAD phosphate (NADP) to NAADP, all calcium (Ca2+)
mobilizing molecules (162, 163). These molecules bind specific
receptors, like the ryanodine receptor on endoplasmic reticulum,
the lysosomal two-pore channel and the plasma membrane
calcium channel transient receptor (TRPM2), activating calcium
signaling, which in turn affects gene expression, cell cycle

control, cell survival, energy metabolism, leukocyte trafficking,
and inflammation (87).

CD38 is a transmembrane protein with four different forms,
according to the cellular localization (164). The most common
form of CD38 has a type II membrane orientation, i.e., with
the catalytic domain facing the extracellular space. By contrast,
the less abundant type III transmembrane form has its catalytic
site facing the inside. Intriguingly, soluble intracellular and
extracellular forms of CD38 have also been ascribed (165,
166). CD38 is widely expressed both in immune cell types
(bone marrow progenitors, natural killer cells, monocytes, and
activated T- and B-lymphocytes) and in non-hematopoietic
cells (167).
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TABLE 1 | Pharmacologic tools currently undergoing pre- or clinical evaluation to block NADome enzymes.

Agent Mechanism of action Indication Trial Stage References

NAMPT INHIBITORS

APO866 (FK866) NAMPTi T/IC Clinical phase I (139)

CHS-828 (GMX 1778) NAMPTi T/IC Clinical phase I (140)

GNE-617, GNE-618 NAMPTi T Pre-clinical (141)

KPT-9274 Dual NAMPTi/PAX4i T Clinical phase I (142)

OT-82 NAMPTi T Clinical phase I (143)

Blocking antibody eNAMPT neutralization T/IC Pre-clinical (144)

CD38 INHIBITORS

Daratumumab Blocking antibody MM/ALL Clinical phase III (145)

Isatuximab Blocking antibody MM Clinical phase II-III (146)

MOR202 Blocking antibody MM Clinical phase II (147)

Apigenin CD38i MD Pre-clinical (148)

SIRTUINS INHIBITORS

Cambinol SIRT1/2i T/ND Pre-clinical (149)

Sirtinol SIRT1/2i T/ND Pre-clinical (150)

Selermide SIRT1/2i T/ND Pre-clinical (151)

Tenovins SIRT1i T/ND Pre-clinical (152)

EX-527 SIRT1i T/ND Pre-clinical (153)

Nicotinamide SIRTi/NAD precursor T/ND Pre-clinical, phase I-II (154)

IDO INHIBITORS

Indoximod IDOi T Clinical phase I-II (155)

Epacadostat (INCB024360) IDOi T Clinical phase II-III (156)

Navoximod IDOi T Clinical phase I (157)

BMS-986205 IDOi T Clinical phase I-II (158)

I, inhibitor; T, solid and/or hematological tumors; IC, inflammatory conditions; MM, multiple myeloma; ALL, acute lymphoblastic leukemia; MD, metabolic diseases; ND,

neurodegenerative diseases.

CD38 is also an unquestionable contributor to intracellular
NAD homeostasis (168, 169) and this apparent “paradox” has
been in part reconciled by recent reports demonstrating that
CD38 can also degrade circulating NAD precursors such as
NMN and NR, thus preventing their fueling of NAD biosynthesis
(170, 171). Notably, CD38 enzymatic activity mediates many
roles which include metabolism regulation and pathogenesis of
heart disease, obesity, aging and inflammation, among the others.
Nevertheless, it is well-established that CD38 overexpression
is correlated to different hematological malignances including
myelomas and leukemias (172). In this contest, a broad immune
regulatory role for NAD and CD38 on T cell behavior has
been reported (87, 145, 173) and summarized in Figure 4. In
order to elucidate the impact of CD38 modulation of NAD
homeostasis in T cell, a brief synthesis of T cell metabolism is
necessary, as metabolism drives T cell life (36, 174, 175). One
of the main challenges of the field in a translational perspective
is to manipulate T cell metabolism in order to improve
their immune response capacity. Defined metabolic pathways
orchestrate T cell development, differentiation, function and
persistence (176). TCA/OXPHOS-mediated ATP production is
instrumental for the maturation of Naïve T (TN) lymphocytes,
a population of quiescent non-proliferative cells, in primary
lymphoid organs (177). T cell activation is initiated after
antigen recognition and TCR ligation. This step, requiring

major histocompatibility complex, and co-stimulatorymolecules,
activates T lymphocytes inducing both a rapid proliferation
rate and a differentiation program toward effector functions
(176). To sustain both clonal expansion and active immune
response, T cells shift to an anabolic metabolism which
provides faster ATP production and nutrients supply. While
cytolytic CD8+ T (Tc) cells dominantly shift metabolism to
glycolysis, activated CD4+ T helper (Th) cells increase both
glycolysis and FAO (178). FAO also supports metabolism of
iTreg and long living memory T-cell (Tm) (178). All these
T cell subsets, to achieve their metabolic profile, require a
coordinated transcriptional program together with a specific
system of nutrient uptake. T cells depend on the import of
substrates such as glucose, amino-acids (especially glutamine),
and glycerol. In TN and Tm cells, increased expression of glucose
and glutamine transporters is controlled by the transcription
factor c-Myc (36) and regulated by a specific cytokine, IL-
7 (175). AKT-mTOR and TLR signaling, as well as the
transcription factors HIF-1α, c-Myc and FoxP3, have been
shown to directly regulate Treg metabolic programming and
development, while HIF-1α and mTOR control the glycolytic
phenotype and activation (IFN-γ production) of effector T-cells,
Th1, Th2, and Th17 lineages (36). Metabolism underpins T
cell cycle through quiescence and activation states and T-cells
failure to engage specific metabolic programs is a biological
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FIGURE 4 | CD38/NAD axis regulates T cell phenotype and responses. The ectoenzyme CD38, expressed by tumor cells and immune cells is involved in the

activation of calcium (Ca2+) signaling through the generated metabolite cADPR/ADPR/NAADP. Moreover, it metabolizes NAD, releasing Nam, rendering the substrate

of NAMPT available for continuous NAD regeneration. These reactions occur also in immune cells modifying NAD concentrations and affecting sirtuins activities. The

NAD/CD38/SIRTUINS axis regulates T cell immune cell fate, metabolism, and gene transcription. Evidence of high CD38 expressing immune suppressive cells have

been reported in several tumors. CD38 inhibition was sufficient to re-establish T cell proliferation, antitumor cytokine secretion, and killing capability. ADPR,

ADP-ribose; cADPR, cyclic ADPR; NADP, NAD phosphate; NAADP, nicotinic acid adenine dinucleotide phosphate; Ca2+, calcium; NR, nicotinamide riboside; NMN,

nicotinamide mononucleotide; Nam, nicotinamide; MDSC, myeloid-derived suppressive cells; PD-1, programmed cell death protein 1; PD-L1, PD-1 ligand.

phenomenon accompanying tumor aggressiveness and T cell
exhaustions (176). The crosstalk between cancer cell and tumor
TILs is played at different levels. As already mentioned, it has
been shown that the establishments of nutrients competition
between tumor cells and TILs has a primary role in influencing
T cell fate and dysfunctions (34, 179–181). Malignant cells push
their metabolism toward a Warburg phenotype. The consequent
induction of a hypoxic and nutrient-deprived environment
(low glucose, glutamine, glycine, and serine) shapes a tumor
sustaining microenvironment and immune tolerance (179).
Indeed, T cells migrating to tumors sites must adapt to both
(i) nutrient-depleted environments (182) and contemporarily
to (ii) the presence of hypoxic tumor-derived metabolites

including lactate, adenosine, cyclic adenosine monophosphate
(cAMP), IDO/kynurenine.

In this context, CD38-mediated Ca2+ mobilization can
directly affect T cell metabolism. In the physiology of a
T lymphocyte, Ca2+ controls T cell gene expression and
consequently differentiation, development and cytotoxicity
(183). Alteration of Ca2+ signaling affects immune deregulation
and consequently tumor initiation and progression (183–186).
A second level of T cell metabolic reprogramming control by
the CD38/NAD axis also involves sirtuins (173). Indeed, a lot
of literature has been produced on the role of SIRT1, as a key
modulator of immune cell functions, as described in a dedicated
section of this review (166, 187, 188). In this case, the inverse
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correlation between expression of CD38 and intracellular NAD
contents, act on SIRT1-mediated post-transcriptional control of
key genes involved in T cell functions (173). Furthermore, it
was recently shown that CD38 is highly expressed by specific
subsets of immunosuppressive TILs (i.e., Treg and Th17) (34,
36, 173, 189) and by MDSC, another key immunosuppressive
cellular component of tumor milieu represented (190). Both,
CD38highMDSC cells-mediated suppression of activated T-cells
and the concomitant expression of CD38 with exhaustion
markers on T cells, for example PD1, pointed to an active role
of CD38 in modulating T cell metabolism and fate toward the
generation of an immune tolerant landscape in tumor (173).
Evidence of high CD38 expressing Treg have been reported
for multiple myeloma and acute lymphoblastic leukemia, where
the use of mAbs against CD38 (daratumumab, isatuximab,
and MOR202, Table 1) is more than a promising therapeutic
option to reestablish a functional immune surveillance (145–
147, 189, 191, 192). In these tumor models, suppression of
CD38+ cancer cells associate with an increase in T-helper and
cytotoxic T lymphocytes, T-cell functional response and TCR
clonality (191, 192). A functional relationship between CD38
and Th17 has also been highlighted (173). Th17 is a CD4+

T cell subpopulation secreting IL17, which gained interest in
the field of immunotherapy due to their self-renewal, plasticity
and hematopoietic stem-like phenotype (173, 193). Adoptive T
cell transfer (ACT) therapy is a powerful strategy developed for
controlling cancer (194, 195). The emerged staminal potential
of Th17, together with their ability to persist for long times
at tumor sites, made of this T cell subset an ideal candidate
to improve ACT efficacy (173, 196, 197). Chatterjee et al.
recently demonstrated that, SIRT1-dependent deacetylation of
the transcription factor forkhead box O1 (FOXO1) drives the
functional homing in different organs of a hybrid Th1/Th17
population 24 h after ACT. Most importantly, they reported
that, the decrease of CD38 expression on Th17 cells leads to
the increase of intracellular NAD concentration, reinforcing the
SIRT1-dependent immune efficacy of this T cell population
(173). For these reasons, the inhibition of CD38 has been
proposed not only to specifically target CD38high immune
suppressive cell populations (MDSCs, Treg), but also to improve
tumor control via ACT therapy or using immunomodulatory
drugs (173, 191, 192).

Lastly, very recently CD38 was considered as major acquired
mechanism of resistance to PD-1/PD-L1 blockade, causing
CD8+ T cell suppression. Co-targeting of CD38 and PD-L1
improves anti-tumor immune response. CD38 manipulation
was sufficient to regulate CD8+ T cell proliferation, antitumor
cytokine secretion, and killing capability (198).

SIRTUINS AND EPIGENETIC REGULATION
OF IMMUNE RESPONSE

Sirtuins, initially described as transcriptional silencers in yeast
(199), represent a class of NAD-dependent enzymes with
deacetylase activity. So far, seven isoforms (SIRT1-7) constitute
the family of mammalian sirtuins, which differ in subcellular
compartmentation, enzymatic activity, and in vivo substrate

selectivity (200). As a primary cellular location, SIRT1, SIRT6,
and SIRT7 are found in the nucleus, SIRT2 in the cytoplasm, and
SIRT3-SIRT5 in mitochondria (201). However, recent reports
have shown that sirtuins are not anchored to precise subcellular
compartments, and may shuttle between them, depending on cell
type or physio-pathological conditions (202–205). The canonical
reaction catalyzed by sirtuins is the transfer of an acetyl group
from protein lysine residues to the ADPR moiety of NAD.
As a result, the reaction produces Nam, first released, the
deacetylated lysine, and 2’-O-acetyl-ADP ribose (206). Although
lysine deacetylation is the primary activity of sirtuins, recent
studies have shown that these enzymes can remove a variety
of other acyl-lysine groups (207). Some sirtuins act as ADP-
ribosyltransferases, although the biological relevance of such
activity is incompletely understood. Mammalian sirtuins target
different proteins in an isoform-specific fashion (207, 208),
allowing their regulation of multiple processes like energy
metabolism, epigenetic regulation of gene expression, DNA
repair, inflammation, cellular stress resistance, healthy aging,
tumorigenesis, autophagy, and apoptosis as reviewed in Haigis
and Sinclair (208), Finkel et al. (209), andHoutkooper et al. (210).

Emerging evidence demonstrated that sirtuins are key
regulators of inflammatory stress response in immune and
non-immune cells (95, 211–213). Sirtuins are involved in
epigenetic regulation, through deacetylation of histones
and/or non-histone proteins, of metabolic, phenotypic,
and bioenergetics reprogramming of immune cells
(immuno-metabolism) (210, 212–214).

SIRT1 is the most extensively studied sirtuins, especially for
its role in aging (210, 214). In addition, SIRT1 is involved
in controlling stem cell development, cell differentiation and
autophagy, metabolic reprogramming and inflammation (209,
215). SIRT1 is also the most studied among sirtuins involved
in immune regulation and here we summarized some SIRT1
activities in epigenetic regulation of metabolism and immune
response (Figure 5).

Epigenetic mechanisms are essential to the development and
differentiation of the immune system, as well as in related
pathologies (216–218). Epigenetic mechanisms include
multilevel intracellular events that influence chromatin
structure and gene expression such as histone methylation
and acetylation, as well as DNA methylation, non-coding
RNAs and chromatin remodeling (219). Further, numerous
signals (i.e., TCR, TLRs, inhibitory receptors, and cytokines)
drive changes in the epigenome that result in downstream
modulation of immune responses (77). TLR signaling
in macrophages regulates differentiation/polarization and
activation in response to pathogens affecting gene expression
and metabolic reprogramming (220, 221). In particular, TLR4
engagement by LPS in macrophages drives a shift toward a
glycolytic metabolism impairing mitochondrial respiration
(222), resulting in a marked shifts in NAD/NADH ratios,
which influence the activities of SIRT1, potentially altering
deacetylation of histone and non-histone substrates (134, 223).
Liu et al. found in TLR4-stimulated THP-1 promonocytes that
SIRT1 support a switch from increased glycolysis to increased
FAO as early inflammation converts to late inflammation (134).
The shift to late acute inflammation and elevated FAO required
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FIGURE 5 | Sirtuins and epigenetic regulation of immune cell functions. Sirtuins are a family of 7 members with different subcellular localization. These

NAD-dependent deacetylases are involved in epigenetic regulation of metabolic reprogramming of cancer and immune cells and in promoting T cell differentiation and

function. Particularly, in myeloid cells SIRT1 decreases inflammation negatively regulating NF-KB pathway, and inducing a metabolic rewiring mediated by its activity

on AMPK/PGC-1α and HIF-1α stabilization. In T cell populations, SIRT1 modifies the phenotypic plasticity of Thelper and Treg and induces T cell tolerance. The

manipulation of the Sirtuins/NAD axis is an important area of study for therapeutic implications in cancer research to repolarization of immune cell responses and to

block tumor progression. TLR4, Toll-like receptor 4; AMPK, AMP-activated protein kinase; HIF, Hypoxia-inducible factor; PD-1, programmed cell death protein 1;

CTLA-4, Cytotoxic T-Lymphocyte Antigen 4; TAM, tumor-associated macrophages; MDSC, myeloid-derived suppressive cells.

peroxisome proliferator-activated receptor gamma coactivator
(PGC-1α),a known target of SIRT1 (187, 224–227). A circuit
of AMP-activated protein kinase [(AMPK)/SIRT1/PGC-1α]
results in the deacetylation and modulation of the activity of
downstream SIRT1 targets that include the PGC-1α and the
FOXO1 and FOXO3a transcription factors. The AMPK-induced
SIRT1-mediated deacetylation of these targets explains many
of the convergent biological effects of these two energy sensors,
AMPK and SIRT1, on cellular metabolism (225, 226).

Recent studies have showed that the regulation of innate
immunity and energy metabolism are connected through
antagonistic crosstalk between NF-κB and SIRT1 signaling
pathways (228). NF-κB signaling has a major role in innate
immunity defense, while SIRT1 regulates the oxidative
respiration and cellular survival (229). However, NF-κB
activation can stimulate glycolysis during acute inflammation,
whereas SIRT1 activation inhibits NF-κB signaling and enhances
oxidative metabolism and the resolution of inflammation.

SIRT1 inhibits NF-κB signaling directly by deacetylating the p65
subunit of NF-κB complex (230). SIRT1 stimulates oxidative
energy production via the activation of AMPK, peroxisome
proliferator activated receptor (PPARα) and PGC-1α and
simultaneously, these factors inhibit NF-κB pathway and
suppress inflammation (225, 226, 231). Using a myeloid cell-
specific SIRT1 knockout (Mac-SIRT1 KO) mouse model, Schug
et al. show that ablation of SIRT1 in macrophages renders
NF-κB hyperacetylated, resulting in increased transcription
of proinflammatory target genes. Consistent with increased
proinflammatory gene expression, Mac-SIRT1 KO mice
challenged with a high-fat diet display high levels of activated
macrophages in liver and adipose tissue, predisposing the
animals to development of systemic insulin resistance and
metabolic derangement (232). In some cases, the effects of SIRT1
in regulating metabolism of immune cells are mediated by
HIF-1α (233). SIRT1 can bind and deacetylate HIF-1α resulting
in a stabilization or in an inhibition of the protein, depending on
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the cells and context (234, 235). The SIRT1-HIF-1α axis bridges
the innate immune signal to an adaptive immune response
by directing affecting metabolism, cytokines production, and
differentiation of immune cells (236). For example, (i) SIRT1
can limit the function and differentiation of MDSCs through
HIF-1α-induced glycolytic metabolic reprogramming (237), (ii)
SIRT1 can regulate T helper 9 (Th9) cell differentiation through
the mTOR/HIF-1α-dependent glycolytic pathway (238). The
interplay between HIFs and sirtuins may also extend to stress
settings such as hypoxic tumors, in which cellular redox balance
is perturbed (64, 239).

For adaptive immune cells, SIRT1 has a key role in mediating
the differentiation of T cell subsets in a NAD-dependent manner.
T cells exhibit remarkable phenotypic and functional plasticity
during immune responses (240). SIRT1 is involved in (i) Th
and Treg cell differentiation (238, 241); (ii) SIRT1 signals in
DCs can repress PPARγ activity and promote T helper 2
(Th2) cell responses in airway allergy through metabolism-
independent manners (242); (iii) SIRT1 interacts with c- Jun
and inhibits CD4T cells to mediate T cell tolerance (243);
(iv) SIRT1 regulates CD8 T-cell differentiation interacting with
basic leucine zipper transcription factor ATF-like (BATF) and
regulating both epigenetic remodeling and energy metabolism
of T cells (244). Furthermore, (v) SIRT1/FOXO1 axis regulates
metabolic reprogramming of terminally differentiated memory T
cells, as previously described (188).

Finally, SIRT1 has been shown to play also important roles in
physiological processes affecting organismal longevity as well as
stem cell function and self-renewal (245, 246). In macrophages,
SIRT1 is emerging as critical positive modulator of self-renewal,
regulating G1/S transition, cell cycle progression and a network
of self-renewal genes (247).

Similar functions in regulating inflammation and metabolism
are exerted also by SIRT2 and SIRT6 (134, 213, 248).

Interactions of cellular metabolic and epigenetic pathways and
how these two key biological processes interplay to feedback
modulate immune cell function is attracting in cancer therapy.
Sirtuins/NAD axis has proven to be a crucial link between
epigenetics and metabolism, and hence, it is an important area
of study for therapeutic implications (215). While there are only
specific activators or inhibitors for SIRT1 exist, drugs that affect
NAD levels or NAD precursors offer the possibility to regulate
all seven sirtuins coordinately (239). These compounds can be
used alone or in combination with existing cancer therapies. The
effects of SIRT1 inhibitors (e.g., cambinol, sirtinol, tenovins, Ex-
527,Table 1) are currently studiedmainly in the context of cancer
(239). Very recent data show the impact of SIRT1 inhibition
or genetic deletion on T cell responses, particularly on Treg
differentiation. Genetic deletion or pharmacologic inhibition of
SIRT1 through EX-527 improves Foxp3+ Treg number and
function through increased Foxp3 transcription its acetylation,
leading to decreased Foxp3 turnover from ubiquitination and
poly(ADP)ribosylation. As a result, targeting SIRT1 increases
both central and inducible Foxp3+ Tregs and promotes their
suppressive functions, as summarized in Chadha et al. (249).
SIRT1 inhibition is therefore useful in the context of graft-vs.-
host disease (GVHD), to extend allograft survival (249–251).
However, there are a number of studies in which SIRT1 deletion

or inhibition led to proinflammatory conditions, indicating that
regulation of the system is still incompletely understood (249,
252). Interestingly, the Nam generated in deacetylase reactions
by SIRTs acts as a negative feedback regulator of SIRT activity
(253, 254). This Nam is converted back to NAD by the action
of NAMPT and NMNATs. Hence, NAD-biosynthetic enzymes,
in particular NAMPT, also regulate sirtuins signaling (255)
providing the rational to use NAMPT inhibitors to interfere with
Sirtuins functions.

Overall these results indicate that sirtuins broadly coordinate
innate and adaptive immune reprogramming and represent
druggable immunometabolic enhancement targets, useful also to
repolarize immune cells in TME.

IMMUNOSUPPRESSION VIA
TRYPTOPHAN CATABOLISM: THE ROLE
OF KYNURENINE PATHWAY ENZYMES

Amino acid catabolism is a key effector in driving immune
tolerance. IDO is a cytosolic, heme-dependent enzyme
responsible for the rate-limiting step of de novo NAD synthesis
from tryptophan in extrahepatic tissues. The catalyzed-reaction
yields N-formylkynurenine and commits the aminoacid toward
its conversion to QA through the kynurenine pathway (90),
which accounts for >90% of tryptophan catabolism (256).
Tryptophan is an essential amino acid in protein metabolism, a
precursor for the synthesis of the neurotransmitter serotonin and
tryptamine, as well as for the synthesis of NAD and the hormone
melatonin (257, 258).

In recent years, IDO has drawn enormous attention due to
its immune regulatory functions (259–261) and summarized
in Figure 6. IDO is not constitutively expressed in immune
cells. Rather, various stimuli, and signaling pathways induce
transcription and translation ofmetabolically-active IDO enzyme
protein. Among them, TLRs, tumor necrosis factor superfamily
members (TNFRs), interferon beta receptor (IFNBR), the
interferon gamma receptor (IFNGR), transforming growth
factor beta receptors (TGFBRs) and the aryl hydrocarbon
receptor (AhR) all can activate signaling mechanisms that either
induce or maintain IDO expression. NF-KB activation is a
central downstream signal of these pathways regulating IDO
expression (262).

By catalyzing the initial and rate-limiting step of tryptophan
degradation, IDO reduces the local tryptophan concentration
and produces immunemodulatory tryptophanmetabolites (263).
In particular, cells expressing IDO and TDO produce the
tryptophan catabolite kynurenine that, by interacting with the
aryl hydrocarbon receptor expressed by T cells, Tregs and DCs,
regulates immunity (264). Additionally, inhibition of CD8+ T-
cell-mediated cytotoxic function was found to be an important
mechanism behind IDO’s immune-modulating property (264).
Due to the role in regulating T cell response and fate, IDO
function is critical in organ and tissue graft survival, in viral
infection, in tissue-specific autoimmunity and the promotion
of cancer cell survival (265). The biologic function of the IDO
pathway was originally described as both counter-regulatory
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FIGURE 6 | The role of IDO/kynurenine in cancer immunoediting. IDO1 is an enzyme involved in the catabolism of tryptophan (kynurenine pathway). IDO and

kynurenine can be secreted by tumor and tolerogenic immune cells in the microenvironment where exert an immunosuppressive function polarizing myeloid cell

toward M2 phenotype (TAM; MDSC) and suppressing effector T cell functions, while stimulating expansion and activation of permissive Treg population, increasing

immune escape mechanisms (PD-1/PD-L1; CTLA-4/B7-1 crosstalk). Moreover, in the extracellular space, IDO1 depletes the essential amino acid tryptophan from the

tumor microenvironment, favoring tumor growth. IDO1 inhibitors in combination with Immunotherapy aim to reverse immunoediting (backward arrow) by inhibiting and

activating local immunosuppressive and tumor eradication mechanisms, respectively. PD-1, programmed cell death protein 1; PD-L1, PD-1 ligand; CTLA-4, Cytotoxic

T-Lymphocyte Antigen 4; Foxp3, forkhead box P3; TAM, tumor-associated macrophages; MDSC, myeloid-derived suppressive cells.

(controlling inflammation) and tolerogenic (creating acquired
antigen-specific tolerance in T cells) (257).

Escape from the immune response is essential for cancer
progression, however, mechanisms underlying this process
remain unclear. Kynurenine in the tumor microenvironment
was recently shown to favor immunosuppression (265, 266).
Tryptophan catabolism was shown to create an immuno-
suppressivemilieu in tumors and in tumor-draining lymph nodes
through accumulation and secretion of immunosuppressive
tryptophan catabolites that bind and activate AhR (267),
leading to induction of T-cell anergy, apoptosis, increased
conversion of naïve CD4+ T cells into Tregs and polarization
of DCs and macrophages toward an immunosuppressive
phenotype (190, 261, 265, 268).

Clinically, studies of ovarian, lung, colorectal, breast
cancer, brain tumors, melanoma, and others have shown
that increased expression of IDO was associated with poor
survival outcomes (258, 265, 269, 270). In most studies, the
ratio of kynurenine to tryptophan was measured in patient
plasma as a measure of IDO and TDO activity (156, 267).
Moreover, not only tumor can express IDO, but also immune
cells including both TAM and MDSC express high levels
of IDO, in response to inflammatory cytokines, of which
IFN-γ is the most potent inducer, amplifying the circuit of
immunosuppression (190, 271, 272).

According to the role of IDO in driving immunosuppression,
in the last years IDO became a valid target in cancer
therapy (273, 274). Competitive inhibitors of IDO are currently
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being tested in clinical trials in patients with solid cancer,
with the aim of enhancing the efficacy of conventional
chemotherapy, vaccine or checkpoint inhibitors (275). Agents
currently account for the majority of the trials: indoximod
(1-methyl-D-tryptophan), an inhibitor of the IDO pathway
(155, 276), epacadostat (INCB024360) (156) and BMS-986205
(158) (Table 1), with encouraging results. Importantly, the
use of IDO inhibitors can be also overcome the resistance
to immunotherapies targeting immune checkpoints, strongly
supporting the combination therapies with IDO inhibitors
irrespective of IDO expression by the tumor cells (277).
Additional IDO inhibitors are in the development pipeline, as
well as agents that may target TDO, or a second isoform of IDO
(IDO2) (275).

CONCLUDING REMARKS

Anticancer strategies targeting simultaneously oncogenic and
metabolic pathways, de-regulated in cancer cells, seem to be
ideal and have shown some promising results. Interestingly,
local conditions in the tumor microenvironment affect also
metabolic responses of immune cells, favoring immune-
tolerance, and immune-escape mechanisms. One of the goals of
immunotherapy could be to re-educate the immune system to
kill tumors, by reprogramming their metabolism. The network

of immunosuppressive mechanisms in the TME is complex,
multifactorial, and mutually reinforcing. A better knowledge
of the main players of this cross-talk can help in designing
more effective combination therapies. In this picture, NAD-
metabolizing enzymes are receiving increasing attention to due
to their role in conditioning several aspects of immune cell fate
and functions. It is foreseeable that modulators/inhibitors of the
NADome (summarized in Table 1) will become useful alone or
in combination with current anti-cancer therapeutic strategies to
regulate both tumor growth and immune populations of TME.
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