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Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) is a

Gram-negative bacterium with a broad host range that causes non-typhoidal

salmonellosis in humans. S. Typhimurium infects epithelial cells and macrophages in

the small intestine where it replicates in a specialized intracellular niche called the

Salmonella-containing vacuole (SCV) and promotes inflammation of the mucosa to

induce typically self-limiting gastroenteritis. Virulence and spread of the bacterium is

determined in part by the host individual’s ability to limit the infection through innate

immune responses at the gastrointestinal mucosa, including programmed cell death.

S. Typhimurium however, has evolved a myriad of mechanisms to counteract or exploit

host responses through the use of Type III Secretion Systems (T3SS), which allow the

translocation of virulence (effector) proteins into the host cell for the benefit of optimal

bacterial replication and dissemination. T3SS effectors have been found to interact with

apoptotic, necroptotic, and pyroptotic cell death cascades, interfering with both efficient

clearance of the bacteria and the recruitment of neutrophils or dendritic cells to the

area of infection. The interplay of host inflammation, programmed cell death responses,

and bacterial defenses in the context of non-typhoidal Salmonella (NTS) infection is a

continuing area of interest within the field, and as such has been reviewed here.

Keywords: non-typhoidal Salmonella, programmed cell death, innate immunity, T3SS effector protein, immune

evasion, host-pathogen interaction

PATHOGENICITY AND VIRULENCE OF Salmonella enterica

SEROVAR TYPHIMURIUM

Infections caused by Salmonella enterica are a major challenge in both human and
animal health. Salmonella enterica subsp. enterica serovars are categorized by their disease
phenotypes into typhoidal (Typhi and Paratyphi) and non-typhoidal Salmonella (NTS)
serovars (e.g., S. Typhimurium). Whereas, typhoidal serovars cause invasive disease
and are human restricted, NTS serovars cause disease in a wide range of mammals
and birds and typically cause self-limiting gastroenteritis (salmonellosis) in humans,
with the bacteria restricted to the gastrointestinal mucosa (1, 2). S. Typhimurium is
acquired via the fecal-oral route from consumption of raw or contaminated poultry
products, and causes the majority of notified NTS infections in Australia (3, 4).
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In immunocompromised individuals, S. Typhimurium can
cause invasive disease that requires antibiotic treatment or
hospitalization. Murine infections with S. Typhimurium
result in invasive disease and bacteremia, and thus are a
more representative model of invasive salmonellosis but are
nevertheless used to great effect to study the pathogenesis of S.
Typhimurium in vivo.

The interactions between NTS and host cell processes during
host invasion and the initial establishment of infection have been
reviewed previously by LaRock et al. and as such are only briefly
described here (5). Once ingested, S. Typhimurium enters the
gastrointestinal tract and uses flagella to access the epithelial layer
of the terminal ileum. Inflammatory responses in the epithelium
release key nutrients required by the bacteria, also causing
diarrheal symptoms that promote transmission (6, 7). Following
contact with the epithelium, S. Typhimurium utilizes a Type III
Secretion System (T3SS) encoded on Salmonella pathogenicity
island-1 (SPI-1) to translocate effector proteins (such as SopE2,
SipA, and SopB) into the epithelial cell cytosol, inducing actin
rearrangement, membrane ruffling, and non-phagocytic cellular
uptake of the bacteria into the host cell (Figure 1) (8–10).
Inside the intracellular space, flagella are no longer required
for motility of the bacteria, and are typically downregulated in
order to avoid host immune responses (11–14). Internalization
of S. Typhimurium causes formation of an endosome termed
the early Salmonella-containing vacuole (SCV). Here, a second
T3SS (encoded by the SPI-2 locus) is used to translocate virulence
proteins such as SifA, SopD2, and SseJ, acidifying the vacuole and
maturing the SCV into the ideal replicative niche for the bacteria
(15). The late stage SCV enables efficient bacterial replication,
while interconnected networks of Salmonella-induced filaments
(SIFs) allow enclosed bacteria to acquire nutrients (15, 16).
Other SPI-2 effectors prevent lysosomal fusion with the SCV,
inhibiting recruitment of lysosomal enzymes and trafficking
markers that would promote degradation of the vacuole (15,
17). In epithelial cells, subpopulations of S. Typhimurium have
been observed in the cytosol, resulting in bacterial hyper-
replication and host cell extrusion (18). Host guanylate-binding
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proteins (GBPs), expressed following Type I or II interferon
(IFN) signaling, can also lyse the SCV, exposing S. Typhimurium
to the cytosol (19–21).

Cytosolic S. Typhimurium enable the detection of
pathogen-associated molecular patterns (PAMPs), such as
lipopolysaccharide (LPS) and flagellin, by pattern recognition
receptors (PRRs) or Nod-like receptors (NLRs). PRRs act to
recruit immune cells to infected tissues and limit bacterial
virulence through the activation of pro-inflammatory signaling.
The ability of Salmonella infection to induce tumor necrosis
factor (TNF) production in epithelial cells and macrophages is
well-documented (22–24). TNF signaling typically reinforces the
production of pro-survival cytokines and anti-apoptotic factors
via nuclear factor kappa B (NF-κB) or mitogen-activated protein
kinase (MAPK) signaling cascades (25–27). However, effector
proteins such as GtgA, SspH1, SptP, and potentially SseL can
prevent the activation of these pathways, instead driving TNF
signaling toward programmed cell death cascades (28–34). These
include apoptosis, necroptosis, and pyroptosis, and are triggered
by TNF and other death receptor ligands, or inflammasome
activation (Figure 1). Death of the host cell allows escape of S.
Typhimurium into the extracellular space, and uptake of the
bacteria by professional phagocytes. Neutrophils play a key
role in the overall clearance of S. Typhimurium, killing the
phagocytosed bacteria through the activity of reactive oxygen
species (ROS), while infected dendritic cells and macrophages
can spread the bacteria to the mesenteric lymph nodes, spleen,
and liver (12, 35–37).

APOPTOTIC CELL DEATH PATHWAYS
DURING SALMONELLA INFECTION

Apoptosis is a caspase-dependent form of programmed cell
death, induced in damaged or stressed cells in response to
intrinsic or extrinsic signaling cascades (38). The apoptotic
process results in DNA fragmentation, phosphatidylserine
exposure, formation of apoptotic bodies, and the display
of “eat me” signals to prompt phagocytic clearance of the
dying cell. Intrinsic apoptosis is triggered by DNA damage,
accumulation of ROS or endoplasmic reticulum (ER) stress,
resulting in mitochondrial outer membrane permeabilization
and activation of caspase-9. Caspase-9 catalyzes the activation
of caspase-3 and caspase-7, which execute the biochemical
and morphological changes characteristic of apoptosis (38). In
contrast, extrinsic apoptosis responds to ligand or cytokine
binding to transmembrane death receptors on the surface of
the cell. Death receptors possess an apoptosis-activating death
domain, and include receptors such as Fas, TNFR1, and TRAIL-
R1. Upon TNF stimulation, TNFR1 recruits adaptor proteins
such as TNFR1-associated death domain protein (TRADD),
TNFR-associated factor 2 (TRAF2) and receptor-interacting
serine/threonine-protein kinase 1 (RIPK1) (Figure 1). RIPK1
is subject to ubiquitylation and phosphorylation events that
direct TNFR1 signaling toward pro-survival NF-κB activation
(39). In the absence of modifications, RIPK1 associates with
pro-caspase-8, TRADD and Fas-associated protein with death

Frontiers in Immunology | www.frontiersin.org 2 July 2019 | Volume 10 | Article 1758

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Wemyss and Pearson Cell Death in Salmonella Infection

FIGURE 1 | Activation and inhibition of apoptosis, necroptosis and pyroptosis by non-typhoidal Salmonella virulence (effector) proteins and other stimuli during

Salmonella enterica serovar Typhimurium infection. Non-typhoidal Salmonella species invade intestinal epithelial cells through the use of SPI-1 effectors to induce

(Continued)
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FIGURE 1 | membrane ruffling and actin rearrangement, resulting in non-phagocytic uptake of the bacteria. Alternatively, Salmonella uptake can occur due to M cell

mediated transport across the epithelial barrier, or through sampling by phagocytic cells such as dendritic cells or macrophages. Once internalized, the SPI-1 T3SS

and effectors are downregulated, while SPI-2 is upregulated to promote SCV formation and facilitate Salmonella replication. Throughout the infection, both SPI-1 and

SPI-2 effector proteins interact with host innate immune pathways to either activate or inhibit inflammatory responses and programmed cell death. Signaling cascades

have been simplified for clarity and are discussed in more detail in-text.

domain (FADD) to form a cytosolic secondary signaling complex
(40, 41). Cellular FLICE-like inhibitory protein (cFLIP) also
regulates complex assembly by inhibiting caspase-8 activation
(42). Secondary complex activation allows caspase-8 to activate
caspase-3/-7 and subsequent apoptosis.

During S. Typhimurium infection, autocrine or paracrine
TNF signaling triggers cell death responses by initiating extrinsic
apoptosis. Salmonella effector proteins also induce apoptosis
via these signaling pathways. SlrP is an E3 ubiquitin ligase
translocated by both SPI-1 and SPI-2 that interacts with
thioredoxin-1 (Trx1) and the ER chaperone protein, ERdj3
(43–46). Expression of SlrP increased cytotoxicity in infected
HeLa cells, suggesting a role for SlrP in inducing intrinsic
apoptosis in infected epithelial cells (43, 44). Additionally,
translocation of SPI-2 effector SpvB (an ADP-ribosylase)
promotes apoptosis in human monocyte-derived macrophages
(HMDMs), potentially due to loss of polymerized F-actin (47–
50). SpvB may have a similar effect in S. Dublin-infected HT-29
cells, although apoptosis wasmarkedly delayed in these cells (28 h
post-infection in vitro) (51). However, the mechanism by which
SpvB promotes apoptosis remains unclear.

Alternatively, effectors such as SopB may have a role in
preventing intrinsic apoptosis. SopB (also known as SigD) is
a phosphoinositide phosphatase translocated by SPI-1 that has
multiple reported virulence functions (8, 52, 53). Infection of
mouse embryonic fibroblasts revealed that SopB is ubiquitylated
by TRAF6, potentially as a mechanism of directing SopB
activity within the host cell (54, 55). SopB-TRAF6 interactions
prevent the recruitment of TRAF6 to the mitochondria,
inhibiting accumulation of ROS in the organelle, thus preventing
intrinsic apoptosis (56). SopB phosphatase activity in epithelial
cells also mediates the recruitment of Rho and Ras family
GTPases to the site of infection, promoting pro-survival Akt
signaling and inhibiting apoptotic responses downstream (57–
59). Another SPI-1 translocated effector that alters apoptotic
pathways is AvrA, which displays deubiquitinase and acetyl-
transferase activity. Studies of S. Typhimurium-infected HeLa
or HCT116 cells demonstrated that AvrA deubiquitylates
IκBα to suppress pro-survival NF-κB activation (60, 61).
Interestingly, in vivo mouse infections, as well as transfection
of AvrA into HEK293T cells, indicated that AvrA also prevents
apoptotic responses by acetylating MAPK kinase 4 (MKK4)
and inhibiting the c-Jun N-terminal-kinase (JNK) pathway (62–
64). Similarly, SpvC (a phosphothreonine lyase) acts to both
dampen inflammation and suppress apoptosis by inactivating
members of the MAPK pathway (65, 66). While suppression
of both pro-survival signaling and pro-apoptotic pathways may
initially seem counterintuitive, it is likely that this duality allows
Salmonella to prolong infection of epithelial cells, allowing
greater opportunities for replication in this cell type.

SALMONELLA INFECTION AND
NECROPTOTIC CELL DEATH

Necroptosis is a caspase-independent lytic form of programmed
cell death that results in characteristic pore formation and
the release of cellular contents and highly inflammatory
damage-associated molecular patterns (DAMPs) into the
extracellular space (67). Initially triggered by TNF binding to
TNFR1, necroptosis occurs when caspase-8 is non-functional
or inhibited. In the absence of active caspase-8, deubiquitylated
RIPK1 is able to interact with RIPK3, subsequently forming an
amyloid-like complex (called the necrosome), activating RIPK3
via autophosphorylation events (68). Active RIPK3 thenmediates
the phosphorylation of mixed lineage kinase domain-like protein
(MLKL), enabling MLKL oligomerization and migration to the
plasma membrane, triggering membrane permeabilization and
lytic cell death (Figure 1) (68). Although RIPK3 and MLKL are
critical for the induction of necroptosis, the precise mechanism
by which active MLKL executes necroptosis remains unclear
(38, 69, 70). Released DAMPs induce inflammatory responses in
neighboring cells, promoting recruitment of innate immune cells
and mediating tissue pathology in the immediate area (71).

Observations of necroptosis in response to S. Typhimurium
infection have included studies comparing infected C57BL/6J
wild type (WT) or type I IFN alpha/beta receptor 1
deficient (Ifnar1−/−) mice (72). Type I IFNs act through
heterodimeric IFNAR1/IFNAR2 complexes to activate Janus
kinase (JAK)/signal transducer and activator of transcription
(STAT) signaling cascades, resulting in the transcription of
interferon-stimulated genes (ISGs) (73). Following intravenous
S. Typhimurium infection, Ifnar1−/− mice experienced
improved survival compared to WT mice, while infected
Ifnar1−/− bone marrow derived macrophages (BMDMs)
experienced reduced rates of cytotoxicity in vitro, with decreased
activation of RIPK1 and RIPK3 (72). Immunoprecipitation
of IFNAR1 in WT BMDMs indicated RIPK1 associates with
IFNAR1 following Type I IFN stimulation, while in vivo infection
of Ripk3−/− mice induced similar cytotoxicity to Ifnar1−/− mice
(72). Robinson et al. thus proposed a role for Type I IFN
signaling in inducing necroptosis in S. Typhimurium-infected
macrophages (72). Later work found that signaling downstream
of IFNAR1/RIPK1/RIPK3 interactions resulted in recruitment
of phosphoglycerate mutase family member 5 (PGAM5) (74).
PGAM5 recruitment by RIPK3 was suggested as a mechanism of
promoting or executing necroptosis in S. Typhimurium-infected
BMDMs via impaired production of antioxidants, resulting
in ROS-mediated mitochondrial damage (74, 75). However,
studies outside the S. Typhimurium infection context did
not support PGAM5 as a mediator of necroptosis, instead
proposing that PGAM5 counteracts necroptosis by promoting
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autophagic degradation of mitochondria (inhibiting ROS
production) (70, 76, 77).

Other explorations of necroptosis in the context of S.
Typhimurium infection involved the use of qRT-PCR techniques
to assess the expression of micro RNAs (miRNAs) induced
by infection in RAW264.7 cells (78). A highly upregulated
miRNA, miR-155, mediated cytotoxicity levels similar to S.
Typhimurium-infected cells when transfected into RAW264.7s
(78). Further in vitro transfections indicated that miR-155
induced RIPK1 and RIPK3 phosphorylation (indicative of
necroptosis) by 18 h post-treatment, as well as cleavage of
poly (ADP-ribose) polymerase-1 (PARP-1) in a similar manner
to S. Typhimurium infection (78). Treatment with RIPK1
inhibitor necrostatin-1s partially rescued cell viability in miR-155
transfected cells, supporting a role for necroptosis in contributing
to cytotoxicity (78). The authors suggested that PARP-1
activation occurs downstream of RIPK1/RIPK3 activation,
however existing work in TNF-stimulated L929 cells instead
proposes that PARP-1 contributes to a separate programmed
necrosis pathway (78, 79).

Virulence proteins may also play a role in mediating
host necroptotic responses during S. Typhimurium infection.
Salmonella secreted effector K1 (SseK1), SseK2, and SseK3 are
a family of related virulence proteins with glycosyltransferase
activity that share high sequence homology with the Arg-
GlcNAc transferase, NleB, found in attaching and effacing
(A/E) pathogens (80–82). SseK effectors reportedly inhibit TNF-
induced NF-κB signaling and cell death in macrophages, through
arginine glycosylation of FADD and TRADD by SseK1 and
SseK3, respectively (83). In vitro infections of RAW264.7 cells
with∆sseK123 S. Typhimurium showed similar levels of caspase-
3/-7 activation when compared to WT infection, but resulted in
higher levels of MLKL phosphorylation, indicating that SseK1
and SseK3 may specifically inhibit necroptotic cell death (83).
Reports of SseK binding targets remain inconclusive, with
suggested glycosylation targets for SseK1 including GAPDH,
FADD, and TRADD, while SseK2 may glycosylate FADD (83–
85). Recently, mass spectrometry-based screens have identified
TNFR1 and TRAIL-R as novel glycosylation targets of SseK3,
and demonstrated that TRADD is the preferred binding target
of SseK1 (85). Although the specific actions of SseK effectors
have yet to be confirmed, collectively these results suggest that
SseK1 and SseK3 modify TNFR superfamily members as well as
TRADD or FADD, thus inhibiting both TNF-mediated NF-κB
signaling and cell death via apoptosis or necroptosis.

INFLAMMASOME ACTIVATION AND
PYROPTOTIC CELL DEATH DURING
SALMONELLA INFECTION

Pyroptosis is a highly inflammatory, caspase-dependent form of
lytic cell death characterized by pore formation and release of
active IL-1β and IL-18 (86). Originally thought to be a caspase-
1 dependent form of apoptosis or necrosis, pyroptosis is an
important host defense mechanism against S. Typhimurium
(87–89). Typically, pyroptosis in S. Typhimurium-infected cells

is triggered by the sensing of flagellin (FliC and FljB) or PrgJ (a
SPI-1 rod protein) by NLR family apoptosis inhibitory proteins
(NAIPs), which then interact with NLR family caspase activation
and recruitment domain (CARD)-containing protein 4 (NLRC4)
to trigger assembly of a multiprotein complex called the NLRC4
inflammasome (90–92). NLRC4 recruits pro-caspase-1 via shared
CARD domains, and can also recruit apoptosis-associated speck-
like protein containing a CARD domain (ASC), to assemble
the inflammasome and induce the proteolytic activation of
caspase-1 (Figure 1) (92). Active caspase-1 mediates pyroptosis
by cleaving gasdermin-D (GSDMD), producing an N-terminal
segment that forms multimeric pores in the cell membrane and
releases cellular contents into the extracellular space (93, 94).
Caspase-1 also cleaves IL-1β and IL-18 into their active forms,
allowing their release through the GSDMD-N pores, or following
the process of necrosis or others [as reviewed by Eder et al.
(95)] (93, 95–98).

Other sensors capable of inducing pyroptosis via ASC-
caspase-1 inflammasomes include NLRP3 (senses K+ efflux or
increased ROS), AIM2 (detects cytosolic dsDNA) and pyrin
(senses inhibition of RhoA GTPase activity) (99–103). Both
NLRP3 and NLRC4 contribute to IL-1β and IL-18 maturation
and pyroptosis in S. Typhimurium-infected macrophages
(104). Activated NLRC4 amplifies caspase-1 activation in
infected macrophages by recruiting NLRP3, forming a single
inflammasome complex with ASC that mediates pyroptotic
responses downstream (104–106). Alternatively, non-canonical
inflammasome pathways can induce pyroptosis through the
sensing of cytosolic LPS by murine caspase-11 (or human
caspase-4/-5) which cleaves GSDMD independent of caspase-
1 activation, however caspase-11 does not cleave IL-1β or IL-
18, thus reducing pro-inflammatory cytokine release (Figure 1)
(107–112). Both NLRC4 and non-canonical inflammasome
activation play a role in epithelial cell responses to infection,
and may help reduce bacterial dissemination throughout the
intestinal mucosa (108, 113–116).

Crosstalk with caspase-8 and apoptotic pathways can also
promote inflammasome activation in S. Typhimurium-infected
cells. Studies of NLRP3 and NLRC4 interactions during S.
Typhimurium infection detected IL-1β maturation mediated
by ASC-caspase-8 specks, suggesting a role for caspase-8 as an
inflammasome effector (105, 117). Other studies have proposed
roles for caspase-8 in priming inflammasome activation, or
coordinating cleavage of caspase-1 in the absence of NLRP3
or NLRC4 (118). Although not yet demonstrated, effectors
such as SlrP, which induce downstream ROS accumulation,
could contribute to inflammasome activation and pyroptotic
responses due to NLRP3 detection of ROS. However, a study
of IL-1β release in a murine S. Typhimurium in vivo infection
context found that SlrP signaling inhibited IL-1β activation,
contradicting this idea (119). Aside from SlrP, effectors
such as SipB, SopE, or SopB may influence pyroptosis in S.
Typhimurium-infected macrophage. Following secretion, SipB
interacts with SipC to form a translocon pore, facilitating SPI-1
effector translocation into the host cell (120). SipB is reportedly
sufficient to induce caspase-1-mediated “apoptosis” and IL-18
maturation in SipB transfected or S. Typhimurium-infected

Frontiers in Immunology | www.frontiersin.org 5 July 2019 | Volume 10 | Article 1758

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Wemyss and Pearson Cell Death in Salmonella Infection

dendritic cells and peritoneal macrophages, potentially via
direct interactions with caspase-1 (121–123). These results
likely indicate pyroptosis, however the mechanisms by
which SipB interact with caspase-1 or the inflammasome
remain unclear.

S. Typhimurium SPI-1 effector SopE is a guanine nucleotide
exchange factor that catalyzes the activation of host cell Rho
GTPases such as Cdc42 and Rac1 (124). Activation of Rac1
by SopE has been reported to induce caspase-1 activation and
IL-1β secretion during S. Typhimurium infection of HeLa or
RAW264.7 cells, and in vivo infection of murine enterocytes
(125). SopE-induced caspase-1 activation in macrophages was
not due to NLRC4 sensing of flagellin, suggesting an alternative
sensor mechanism (126). Other Gram-negative bacteria possess
effectors that modify Rho GTPase activity, for instance Yersinia
spp. effector YopT, which inhibits the activity of RhoA (102,
127). This RhoA inactivation allows assembly of the pyrin
inflammasome, resulting in downstream caspase-1 activity and
pyroptosis in infected cells (102). This suggests interesting
avenues of research for SopE-induced caspase-1 activation;
however, pyrin activation has not been observed in response to
changes in Rac1 or Cdc42 activity (127). In contrast to SopE,
SPI-1 effector SopB plays a role in dampening inflammasome
activation. SopB has been associated with the downregulation
of NLRC4 in S. Typhimurium-infected macrophages and B cells
(128–130). NLRC4 depletion was associated with reductions in
both IL-1β maturation and cytotoxicity in S. Typhimurium-
infected B cells, and was determined to be the result of Akt/YAP
pathway activation (128, 130). Loss of NLRC4 inhibits the
dominant inflammasome involved in the pyroptotic response
to S. Typhimurium infection, thus allowing the bacteria better
opportunities for replication before escaping the host cell.

Lastly, although S. Typhimurium effectors both activate and
inhibit inflammasome activation, current understandings of
these effectors suggest that their translocation is under temporal
and spatial control by the bacteria due to their translocating
T3SS type. A recent study demonstrated that mutation of the
SPI-1 T3SS resulted in decreased HMDM cytotoxicity and IL-
1β release, while infection with ∆SPI-2 S. Typhimurium induced
rapid cell death and IL-1β production in these cells (131). SPI-2
mutation also resulted in increased expression of SPI-1 effectors
detectable by NLRC4 (FljB, PrgI, and PrgJ), suggesting that SPI-2
activity helps suppress the translocation of SPI-1 effectors later in
infection (131).

CONCLUDING REMARKS

Investigating cell death in the context of S. Typhimurium
infection has revealed highly complex interactions between
host signaling cascades and bacterial virulence effectors. Tightly
regulated control of T3SS effector translocation supports
bacterial requirements at different infection stages, allowing S.
Typhimurium to evade or promote cell death responses. Our
understanding of Salmonella-host interactions is continually
evolving, with virulence mechanisms and effector proteins still
to be characterized and improved in vitro and in vivo models
for testing hypotheses frequently emerging. While the current
literature does not describe immediate applications for exploiting
programmed cell death in treatment of salmonellosis, further
exploration of NTS virulence factors could help characterize
clinical isolates, leading to personalized therapies and improved
patient outcomes. Additionally, the high specificity of Salmonella
effector proteins could prove crucial to the development
of novel genome or proteome editing tools (such as the
recently described use of effectors from Shigella flexneri) (132).
Overall, exploration of pathogen-mediated cell death provides
crucial insights into how bacteria can mediate survival and
dissemination between host cells and can further improve
our general understanding of the importance of cell death in
counteracting bacterial pathogenesis.
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