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Immunosuppressive cells have been highlighted in research due to their roles in tumor

progression and treatment failure. Myeloid-derived suppressor cells (MDSCs) are among

the major immunosuppressive cell populations in the tumor microenvironment, and

transcription factors (TFs) are likely involved in MDSC expansion and activation. As key

regulatory TFs, members of the CCAAT/enhancer-binding protein (C/EBP) family possibly

modulate many biological processes, including cell growth, differentiation, metabolism,

and death. Current evidence suggests that C/EBPs maintain critical regulation of

MDSCs and are involved in the differentiation and function of MDSCs within the tumor

microenvironment. To better understand the MDSC-associated transcriptional network

and identify new therapy targets, we herein review recent findings about the C/EBP family

regarding their participation in the expansion and function of MDSCs.
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INTRODUCTION

In the tumor microenvironment, immunosuppressive cells function to inhibit tumor immune
responses and promote tumor immune evasion. These cells include regulatory T cells (Tregs),
regulatory dendritic cells (regDCs), tumor-associated macrophages (TAMs), and myeloid-derived
suppressor cells (MDSCs). MDSCs are a heterogeneous population of immunosuppressive cells
that comprise myeloid progenitor cells and immature myeloid cells and exert immunosuppressive
and pro-tumorigenic effects (1, 2). Under physiological conditions, immature myeloid cells
(IMCs) are generated in the bone marrow and eventually differentiate into mature dendritic cells,
macrophages, or granulocytes (1). In contrast, under pathological conditions, IMC differentiation
into mature myeloid cells is blocked, resulting in the accumulation of MDSCs and the upregulation
of immune suppressive factors, such as arginase, nitrogen species, and reactive oxygen species
(3–5). MDSCs can be divided into 2 major populations: polymorphonuclear MDSCs (PMN-
MDSCs), which have a CD11b+Ly6G+Ly6Clo phenotype in mice and a CD11b+ CD14−CD15+

(or CD66b+) phenotype in humans; and mononuclear MDSCs (M-MDSCs), which are defined
as CD11b+Ly6G−Ly6Chi in mice and CD11b+CD14+HLA-DR−/lo CD15− in humans (4, 6, 7).
In addition, Lin − (including CD3, CD14, CD15, CD19, CD56) HLA-DR−CD33+ cells have been
properly defined as “early-stageMDSC” (eMDSC) in humans, and themice equivalent is not clearly
determined. In particular, functional characteristics and biochemical and molecular characteristics
are also necessary to identify cells as MDSCs (7).

It is known that both the expansion and activation of MDSCs are under precise regulation,
and multiple factors have been documented after active investigation in recent years, especially
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transcription factors (TFs). To modulate MDSCs, TFs bind
to DNA to induce the transcription of multiple target genes,
taking part in the mediation of MDSCs. Such TFs include
CCAAT/enhancer-binding proteins (C/EBPs), signal transducers
and activators of transcription (STATs), interferon regulatory
factor (IRF), hypoxia-inducible factors(HIF), and nuclear factor
kappa B (NF-κB) (8–12). In recent years, many reports have
focused on the C/EBP family, particularly C/EBPβ, which may
play a fundamental role among all TFs. Here, we review the
critical role of the C/EBP family in the regulation of MDSCs and
explore new therapeutic targets in the tumor microenvironment.

THE C/EBP FAMILY: THE BASICS

The C/EBP family consists of six structurally and functionally
homologous transcription factors: C/EBPα, C/EBPβ, C/EBPγ,
C/EBPδ, C/EBPε, and CHOP. C/EBPs are modular proteins
composed of a transactivation domain (TAD), a regulatory
domain, a basic DNA-binding domain, and a “leucine zipper”
domain, by which family members can form homodimers and
heterodimers (13, 14). Following dimerization, the DNA-binding
domain recognizes and binds to the palindromic sequence
A/GTTGCG

C/TAA
C/T to regulate expression of target genes (15).

The unique structure and precise regulation of C/EBPs
determine their complex and significant functions in multiple
cells (16). A variety of extracellular signals can act as activators or
inhibitors of C/EBPs via distinct signal transduction pathways,
and expression and activation of C/EBPs are regulated in a
complexmanner by posttranslational modifications and protein–
protein interactions (16–18). Following activation, several classes
of genes are induced or repressed by C/EBPs, including cytokines
and chemokines, their respective receptors, proinflammatory
factors, differentiation-related markers and metabolic enzyme
genes, with diverse effects on distinct cells.

THE ROLE OF THE C/EBP FAMILY IN
MYELOPOIESIS

The C/EBP family plays a central role in diverse
pathophysiological events, including liver metabolism,
adipogenesis, hematopoiesis, inflammatory processes, and
tumorigenesis (19–22). Specifically, the C/EBP family is involved
in regulating the development of myelomonocytic cells as well
as the specific functions of this cell type (19, 23, 24). The role of
C/EBPα in the development of leukemia has been extensively
investigated, and C/EBPβ has also been directly connected to
the development of different myelomonocytic leukemias. In
addition, C/EBPβko mice are characterized by hyperplastic
hematopoiesis and hypermyeloproliferation. Interestingly,
the complete absence of C/EBPβ differentially affects the
proliferation of cells at distinct developmental stages or further
differentiated cells.

Among the C/EBP family, C/EBPα, and C/EBPβ have
fundamental roles in myelopoiesis. Although C/EBPα and
C/EBPβ share many common target molecules, they exhibit
different abilities, especially under emergency conditions. First,
C/EBPα strongly inhibits the cell cycle, represses proliferation,

and induces granulocyte differentiation. In contrast, C/EBPβ has
less of an inhibitory effect and is associated with proliferation
and differentiation. Second, C/EBPα and C/EBPβ are required
for steady-state and emergency granulopoiesis, respectively. One
study reported that all members of the C/EBP family, except for
C/EBPβ, were downregulated in response to cytokine stimulation
under emergency conditions (25). Third, C/EBPα functions
as the “granulopoiesis molecular switch” at the early stage of
myeloid differentiation, whereas the level of C/EBPβ expression
increases dramatically at later stages of differentiation (26).
Nonetheless, a recent study indicated a role for C/EBPβ in
regulating hematopoietic stem cells under emergency conditions
(27). Considering their homology, the different roles of C/EBPα

and C/EBPβ in myelopoiesis may also be true in humans.
As MDSCs can be considered to be an abnormal myeloid

population under pathological conditions, we explore whether
C/EBPs also contribute to MDSC processes.

THE C/EBP FAMILY FUNCTIONS IN MDSCs

C/EBPα
C/EBPα was first described in 1986 as the founding member of
the C/EBP family. Two isoforms of C/EBPα are generated from
its mRNA by a ribosomal scanning mechanism. The full-length
protein is 42 kDa, containing a negative regulatory subdomain,
and the other isoform is a shorter 30-kDa protein with altered
transactivation potential (13).

C/EBPα promotes differentiation and is necessary for
normal granulocyte expansion (20–22). C/EBPα, a differentiation
factor, and c-myc, a proliferative factor, act in opposition
to each other. C/EBPα and its negative regulation of c-myc
allow for early myeloid precursors to enter a granulocytic
differentiation pathway, thus indicating their potential role in
the differentiation of MDSCs. In addition, an E2F binding
site in the c-myc promoter acts as a cis-acting element
critical for C/EBPα negative regulation. C/EBPα and pRb
function in parallel to repress E2F, providing a potential
mechanism for C/EBPα-mediated growth inhibition (28, 29).
In accordance with this finding, C/EBPα knockout mice
show a reduction in mature neutrophil/monocyte cells due to
blockade of the transition between CMPs (common myeloid
progenitors) and GMPs (granulocyte macrophage progenitors)
(30). Similarly, PU.1 acts with C/EBPα to complete the
transition from CMPs to GMPs and regulate expression
of myeloid-specific genes, such as myeloperoxidase as well
as colony-stimulating factors (CSFs), cytokines, and their
receptors (31).

As shown in a study by Hegde et al. (32), miRNA-690 is highly
overexpressed in 1(9)-tetrahydrocannabinol-induced MDSCs
(THC-MDSCs). C/EBPα was identified as a potential functional
target of miR-690, and downregulation of C/EBPα likely plays
a crucial role in myeloid expansion and differentiation and in
cannabinoid-induced immunosuppression (32).

C/EBPβ
C/EBPβ (also known as NF-IL6, IL6-DBP, CRP2, NF-M,
AGP/EBP, ApC/EBP, or TCF5) has three isoforms: liver-enriched
activator proteins LAP∗, LAP, and liver-enriched inhibitory
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protein LIP (6). A difference of 21 amino acids (23 in human
proteins) in the TAD region between LAP∗ and LAP leads
to distinct physiological roles. LAP∗ participates in terminal
differentiation, whereas LAP and LIP promote cell proliferation
and tumor progression. The truncated LIP, which lacks the entire
transactivation domain, attenuates transcriptional activity via
heterodimerization with LAP(LAP∗). Proper ratios of all three
isoforms are critical for normal cell growth and development
(13, 14, 19, 33).

Stimulation by IL-6, IFN-γ, TNF, and IL-1 induces C/EBPβ

mRNA and protein expression as well as C/EBPβ DNA-
binding activity, suggesting a role in mediating the inflammatory
response (19, 34). Moreover, C/EBPβ LAP∗ and LAP function
as transcriptional activators of inflammation-linked genes, such
as IL-6, TNF, and G-CSF, while LIP reduces inflammation
by blocking LAP and LAP∗ signaling (13). Considering its
role in the inflammatory response, C/EBPβ induction by
cytokines, especially IL-6, is crucial for the regulation of MDSC
differentiation and function in the tumor microenvironment
(35–37) (Figure 1). Studies have shown that C/EBPβ activates
miR-21 and miR-181b expression, inducing NFI-A to support
MDSC expansion in the bone marrow and spleens of septic mice
(38, 39). In contrast, C/EBPβ deficiency affects the differentiation
of MDSCs, mostly M-MDSCs (35). IL-6-mediated lnc-C/EBPβ

binds to LIP to inhibit activation of LAP and to downregulate
expression of immunosuppressive genes such as arginase-1 (Arg-
1), NO synthase 2 (NOS2), NADPH oxidase 2 (NOX2), and
cyclooxygenase-2 (COX2) (37). Another study by Gao et al.
demonstrated the relationship among lnc-chop, C/EBPβ and
CHOP, with lnc-C/EBPβ and lnc-chop cooperatively regulating
the balance among the three C/EBPβ isoforms. Furthermore,
C/EBPβ might also modulate MDSCs by controlling myeloid cell
survival (36, 40).

It is known that C/EBPβ is indispensable for myelopoiesis
and MDSC processes. However, it is not clear at which
stage C/EBPβ specifically affects myelopoiesis. C/EBPα enables
the granulocyte-lineage specific transition from CMPs to
GMPs; beyond the GMP stage, C/EBPα is dispensable, with
C/EBPβ playing the predominant role (41). One previous study
indicated that RORC1 (retinoic-acid-related orphan receptor 1)
contributes to the accumulation of PMN-MDSCs (39, 40,
42, 43). Additionally, RORC1 orchestrates myelopoiesis by
promoting C/EBPβ and suppressing SOCS3 at myelocyte (MC)
and metamyelocyte (MM) stages. Moreover, a study by McClure
et al showed that in late sepsis, binding of pSTAT3 and C/EBPβ

to the miR-21 and miR-181b promoters is restricted to the
CD31+ subset of Gr1+CD11b+ MDSCs, a more immature stage
of Gr1+CD11b+ cells (8).

The different roles of C/EBPβ isoforms require further
research. The decrease in the LAP/LIP ratio has been strongly
associated with proliferation in hematopoietic cells (44). LAP∗

and LAP with transcriptional activation domains are able to
promote differentiation of the granulocytic lineage in murine
bone marrow cells (45), though the study by Sonda et al.
reported the opposite results (46). The role of miR-142-3p
in the regulation of myeloid differentiation has recently been
investigated, and Sonda et al. detected downregulation of LAP*

in miR-142-3p-overexpressing BM-MDSCs. Intriguingly, BM
cells induced toward granulocytic differentiation show a strong
decrease in LAP∗ content, whereas macrophage differentiation
causes LAP∗upregulation.

Thus, it is clear that there are two different subsets of MDSCs.
The independent roles of C/EBPβ in MDSC subsets and in
the selective differentiation of MDSCs need to be explored. As
shown by Sonda et al., the question of whether the LAP∗/LIP
ratio is able to determine the differentiation fate of M-MDSCs
or PMN-MDSCs remains unanswered (46). RORC1 might also
orchestrate the M-MDSC transition to TAMs by regulating
C/EBPβ (39, 40, 42, 43).

C/EBPδ
C/EBPδ is encoded by the single-exon CEBPD gene, and only
one full-length protein is known (47). Although C/EBPδ has
diminished DNA-binding activity compared to C/EBPα and
C/EBPβ, it is also associated with diverse gene expression and
functions (13).

C/EBPδ modulates many biological processes in a cell-
type and context-dependent manner (47). Because of its roles
in DNA repair, genomic stability, cell growth arrest, cell
death, cell differentiation and the innate immune response,
C/EBPδ might function as a tumor suppressor in the early
stages of tumor development (47). In contrast, C/EBP-δ
is thought to be an important factor in regulating gene
transcription of various inflammatory cytokines and acute-
phase proteins, such as COX-2, iNOS, G-CSF, IL-1β, IL-
6, and TNF-α (48). C/EBPδ also causes upregulation and
persistence of HIF-1α under hypoxic conditions (49). Because
inflammation and hypoxia are two conditions closely associated
with tumor development, C/EBP-δ might also have a positive
role in tumorigenesis. Additionally, recent studies have reported
its functions in lymphangiogenesis, angiogenesis, and tumor
metastasis (50, 51).

C/EBPδ is expressed by differentiated
granulocytes/neutrophils, with a specific role in emergency
myelopoiesis under tumor conditions (23, 24, 50, 51), and
a recent study suggested that C/EBP-δ positively regulates
MDSC expansion and endothelial VEGFR2 expression in tumor
development (50). The pathological upregulation of C/EBP-δ
in MDSCs constitutes another mechanism for tumor growth
and progression.

CHOP
C/EBP-homologous protein (CHOP; encoded by Ddit3 and also
known as CHOP−10 and Gadd153) typically leads to apoptosis
and correlates with tumor progression (52). Increased expression
of CHOP is observed at tumor sites and in malignant cells and
infiltrating myeloid cells. Recent studies have shown that CHOP
might have a critical role in the expansion and function of tumor-
infiltrating MDSCs and may also be partly responsible for the
short lifespan of MDSCs (53, 54).

CHOP is thought to lack DNA-binding activity and cannot
form homodimers, but it can form heterodimers with other
C/EBP family proteins to affect their activities (55). Thevenot et al
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FIGURE 1 | Regulation of C/EBPβ in MDSCs. Stimulation by G-CSF, GM-CSF, IL-6, or other factors strongly induces C/EBPβ expression in MDSCs. The JAK-STAT3

signaling pathway may function as an upstream regulator of C/EBPβ. Three isoforms of C/EBPβ are generated from its mRNA through a ribosomal scanning

mechanism. In addition, C/EBPβ cooperates with p-STAT3 or NF-κB by sharing the same target genes. On the one hand, C/EBPβ LAP* and LAP function as

transcriptional activators of the expression of immunosuppressive genes such as Arg-1, NOS2, NOX2, or COX2, whereas LIP attenuates function by blocking LAP

and LAP* signaling. On the other hand, C/EBPβ affects the differentiation and expansion of MDSCs by regulating IL-6, CSFs, CSFRs, MMPs, or other factors.

found that chop upregulation in MDSCs was induced by tumor-
induced ROS or PNT. CHOP could interact with C/EBPβ isoform
LIP to regulate C/EBPβ isoform LAP activity, promoting MDSC
immunosuppressive functions. In contrast, MDSCs derived from
Chop-deficient mice acquired a DC-like phenotype and were able
to stimulate immune response, reversing MDSC activity (53). A
study by Gao et al. showed similar results. IL-6–mediated lnc-
chop bound with both CHOP and LIP to promote activation of
LAP. Meanwhile, lnc-chop also promoted the accumulation of
H3K4me3 in the promoter region of immunosuppressive genes.
Interestingly, lnc-chop might also affect MDSCs to differentiate
into M-MDSCs (monocytes/macrophages) (56).

CHOP is thought to lack DNA-binding activity and cannot
form homodimers, but it can form heterodimers with other
C/EBP family proteins to affect their activities (55). Thevenot
et al found that CHOP upregulation in MDSCs is induced by

tumor-induced reactive oxygen species (ROS) or PNT. CHOP
is able to interact with the C/EBPβ isoform LIP to regulate
the activity of the C/EBPβ isoform LAP, promoting MDSC-
immunosuppressive functions. In contrast, MDSCs derived from
CHOP-deficient mice acquire a DC-like phenotype and are able
to stimulate the immune response, reversing MDSC activity (53).
Additionally, a study by Gao et al. reported similar results. IL-
6-mediated lnc-chop binds to both CHOP and LIP to promote
activation of LAP, and lnc-chop promotes accumulation of
H3K4me3 in the promoter region of immunosuppressive genes.
Interestingly, lnc-chopmight also promptMDSCs to differentiate
into M-MDSCs (monocytes/macrophages) (56).

Overall, C/EBPε is known to be a master regulator of
terminal differentiation in granulocytes (36, 40). However,
the relationship between C/EBPε and MDSCs remains to
be clarified.
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FIGURE 2 | Cooperation among the C/EBP family members in MDSCs. The C/EBP family members cooperatively regulate MDSCs. (A) Under pathological

conditions, C/EBPα might relatively downregulate, but C/EBPβ, C/EBP-δ, and CHOP might strongly upregulate in MDSCs (4, 25, 32, 35–37, 50, 57). (B) There is a

possible switch between C/EBPα and C/EBPβ in MDSCs, that is sufficient to turn on or off target promoter (4, 8). (C) C/EBPβ exists as three isoforms, and one

cooperation model is promoting activation of LAP or LAP*. For example, CHOP binds to LIP and to sequester LAP or LAP* in MDSCs (53, 56).

CO-OPERATION AMONG C/EBPs

Regulation by TFs becomes more complex when considering
cooperation among these regulators. According to the previous
discussion, we know that C/EBPα might relatively downregulate,
but C/EBPβ, C/EBP-δ, and CHOP might strongly upregulate
in MDSCs under pathological conditions (4, 25, 32, 35–37, 50,
57). Although almost C/EBP family members are involved in
the regulation of MDSCs, C/EBPβ is even more important.
Especially, C/EBPβ exists as three isoforms, and one co-operation
model is promoting activation of LAP or LAP∗. As mentioned
earlier, CHOP binds to LIP and to sequester LAP or LAP∗ in
MDSCs (53, 56) (Figure 2). In general, more studies are required
to unveil cooperation among C/EBPs family.

Of the various TFs, C/EBPβ and STAT3 are mainly implicated
in MDSC expansion and function. Stimulation by G-CSF, GM-
CSF, IL-6, IL-1, or factors strongly induce C/EBPβ expression
in MDSCs (35–38), and the JAK-STAT3 signaling pathway can
function as an upstream regulator of C/EBPα, C/EBPβ, NF-
κB, and IRF-8, among others (8, 12, 57). A study by Zhang et
al. showed that STAT3 activates its downstream target C/EBPβ

with relative downregulation of C/EBPα in response to G-CSF,

ultimately regulating c-myc activity, which partly accounts for
CD11b+Gr1+ cell expansion (4).

Nonetheless, the question of how C/EBPs function with other
TFs in a cooperative manner remains unanswered. C/EBP family
members have similar abilities to regulate transactivation in
MDSCs by forming homologous or heterogeneous dimers. In
addition, C/EBPs not only act as downstream targets of STAT3
but also cooperate with STAT3 andNF-κB by sharing target genes
involved in proliferation, survival, chemokine and cytokines. In
addition, several mutagenesis studies have shown that C/EBPs
and NF-κB binding sites are necessary for transactivation of the
IL-6 gene. Similarly, another study suggested that pRb regulates
the miR-21 and miR-181b promoters during sepsis by binding
and sequestering the C/EBPα protein, which allows C/EBPβ and
pSTAT3 to bind to these miR promoters (8). These findings
suggest a possible switch between C/EBPβ and C/EBPα that is
sufficient to turn on or off target promoter (4, 8) (Figure 2). In
addition, C/EBPs can interact with other TFs or proteins such as
Rb, E2F, PU.1, runt-related transcription factor (Runx) proteins,
p300/CREB-binding protein (CBP), and death-associated protein
6 (Daxx) in distinct cells (19), though whether the interaction
exists in MDSCs remains to be further investigated.
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CONCLUSIONS

It is evident that C/EBP family members control the expansion
and functional features of MDSCs. The relationship between
C/EBPs and MDSCs can be demonstrated in both mice and
humans. However, most reports have concentrated on C/EBPβ.
Thus, more exploration of other C/EBP family members and
their upstream or downstream molecules is needed. In addition,
we should pay attention to the different roles of C/EBPs in G-
MDSCs andM-MDSCs and among various differentiation stages.

The C/EBP family may differentially regulate MDSCs from
neutrophils and monocytes. Although all members of the C/EBP
family are required for the differentiation of neutrophils and
monocytes, they are modestly expressed. During pathological
conditions, C/EBPα may be downregulated in MDSCs, but
C/EBPβ, C/EBP-δ, CHOP may be strongly upregulated.

Most of the findings discussed above are from tumor-
derived MDSCs or from MDSCs in an inflammation setting.
Inflammation and hypoxia are two conditions closely associated
with tumor development (50, 51), and the C/EBP family
may have similar mechanisms regulating MDSCs in tumor
and inflammation settings. We hope to use existing evidence
to provide a predictive description of the C/EBP family
in MDSCs during pathological conditions, especially in the
tumor microenvironment.

The molecular mechanisms of the C/EBP family in MDSCs
have not been fully elucidated, especially with regard to
cooperation among familymembers or with other TFs, cytokines,
proteins, and microRNAs. Although the precise mechanisms
require further study, the broad effects of MDSCs render them
an ideal therapeutic target, especially for immune checkpoint

inhibitor (ICI) treatment. For example, ipilimumab treatment
decreases levels of M-MDSCs and elevates those of CD8

effector memory T cells in advanced melanoma (58). Ibrutinib
reduces the generation and function of MDSCs, significantly
enhancing the efficacy of anti-PD-L1 therapy in a murine
breast cancer model (59). Additionally, entinostat (ENT)
efficiently inhibits MDSC function in combination with ICI
treatment (60). The proposed mechanism involves inhibition of
STAT3 activation, and such inhibition by the tyrosine kinase
inhibitor sunitinib in tumor-bearing mice also reduces MDSC
numbers (61). Moreover, omaveloxolone (RTA 408) suppresses
MDSC functions, inhibiting the NF-κB kinase subunit at high
concentrations (62, 63). Some studies have considered STAT3 to
be an ideal target. Other TFs, such as C/EBPβ and NF-κB, might
also become prospective therapy targets, as previously achieved
via conditional genetic ablation of the Cebpb gene. Overall, much
deeper insight is urgently needed.
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