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Recent preclinical/clinical studies have underscored the significant impact of

tumor microenvironment (TME) on tumor progression in diverse scenarios. Highly

heterogeneous and complex, the tumor microenvironment is composed of malignant

cancer cells and non-malignant cells including endothelial cells, fibroblasts, and diverse

immune cells. Since immune compartments play pivotal roles in regulating tumor

progression via various mechanisms, understanding of their multifaceted functions is

crucial to developing effective cancer therapies. While roles of lymphoid cells in tumors

have been systematically studied for a long time, the complex functions of myeloid cells

have been relatively underexplored. However, constant findings on tumor-associated

myeloid cells are drawing attention, highlighting the primary effects of innate immune

cells such as monocytes and neutrophils in disease progression. This review focuses on

hitherto identified contextual developments and functions of monocytes and neutrophils

with a special interest in solid tumors. Moreover, ongoing clinical applications are

discussed at the end of the review.
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MONOCYTES: FROM DEVELOPMENT TO DEPLOYMENT

Monocyte Development
Monocytes originally stem from the bonemarrow and constitute 10% of leukocytes in human blood
and 4% of leukocytes in mouse blood, respectively (1). The development of blood monocytes is
dependent on colony-stimulating factor 1 receptor, CSF-1R (also known as M-CSFR; macrophage
colony-stimulating factor receptor) (1, 2). CSF-1R is a hematopoietic growth factor receptor
expressed onmonocytes, macrophages, dendritic cells and their progenitors (1, 2). CSF-1R interacts
with its ligands CSF-1 (M-CSF) and IL-34 to regulate the development of monocytes in the bone
marrow (1, 2). In mice deficient in CSF-1R and CSF-1, monocyte development is inhibited, and
therefore the number of monocytes in blood is remarkably reduced (1, 2).

With knowledge of CSF-1R, it is possible to navigate the development process of monocytes.
From the bone marrow, hematopoietic stem cells (HSCs) give rise to heterogeneous multipotent
progenitors (MPPs) generating common myeloid progenitors (CMPs) or common lymphoid
progenitors (CLPs) in a CSF-1 dependent manner (3). While lymphoid cells such as T
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lymphocytes, B lymphocytes, and natural killer cells are derived
from CLPs, CMPs generate megakaryocyte and erythrocyte
progenitors (MEPs) or granulocyte and macrophage progenitors
(GMPs). Generated GMPs further go through a series of
differentiation, firstly into macrophage, and DC progenitors
(MDPs), then into common monocyte progenitors (cMoPs),
and finally into monocytes (3). Differentiated monocytes
can be divided into two main subpopulations defined as
Ly6ChiCX3CR1

low and Ly6ClowCX3CR1
hi cells in mice and as

CD14hiCD16+/− and CD14lowCD16hi cells in humans (4–8).
Ly6ChiCX3CR1

low populations (hereinafter referred to as
Ly6Chi monocytes) are named “classical” or “inflammatory”
monocytes, whereas Ly6ClowCX3CR1

hi populations (hereinafter
referred to as Ly6Clo monocytes) are named “non-classical” or
“patrolling” monocytes for their preferential patrolling behavior
while circulating the blood stream (9, 10). Development of
Ly6Chi monocytes occurs during the cMoP stage, dependent
on GM-CSF, c-FLIP, IRF8, and KLF4 (10). The widely
accepted hypothesis on Ly6Clo monocyte differentiation is
that after generation of Ly6Chi monocytes from the bone
marrow, a proportion of them differentiate into Ly6Clo

monocytes as downregulation of Ly6C and upregulation of
Nr4a1, C/EBPβ, CSF-1R, and CX3CR1 (4, 10, 11). However,
this was questioned for some time in that deletion of
transcription factors KLF4 and IRF8 hinders the development
of Ly6Chi monocytes but not Ly6Clo monocytes (12–14).
This finding led to controversy on whether Ly6Clo monocytes
originate from Ly6Chi monocytes or not. The latter argues
that Ly6Clo monocytes might have a distinct differentiation
lineage in a Ly6Chi monocyte-independent way, namely direct
differentiation from cMoPs.

Single-cell RNA sequencing provided an additional clue,
reasserting that Ly6Chi monocyte population is the source
of Ly6Clo monocytes (15). Application of such advanced
technology revealed that steady-state Ly6Chi and Ly6Clo

monocytes are homogenous populations, and C/EBPβ regulates
the differentiation of Ly6Chi monocytes into Ly6Clo monocytes
(15). This is also in line with remarkable expression/function
of Nr4a1 on Ly6Clo monocyte development (16), as it was
found that regulation of Nr4a1 is mediated by the expression
of C/EBPβ and also KLF2 assisting conversion of Ly6Chi

monocytes to Ly6Clo monocytes (12, 15–17). Besides Nr4a1,
Ten-Eleven-Translation-3 (TET3), a target of hsa-miR-150,
regulates differentiation of classical monocytes into non-classical
monocytes in K562 human chronic myeloid leukemia and U937
human lymphoma (18). Upregulation of TET3 expression in
classical monocytes following downregulation of hsa-miR150
rarely generates non-classical monocytes, but does not affect
the survival of non-classical monocytes (18). Recently, single-
cell RNA-seq has also led to the identification of two additional
monocyte populations and their distinct relationships with other
immune cells in human blood, highlighting the heterogeneity of
myeloid cells (19). High-dimensional mass cytometry has further
revealed heterogeneity within human non-classical monocytes,
and has allowed distinguishing between two different non-
classical monocyte subsets, Slan+ and Slan−, with functional
differences based on Slan expression (20).

Some developed monocytes can enter non-lymphoid organs
such as skin and lung without differentiation and orchestrate
the physiological condition, while some portion of developed
monocytes undergoes differentiation into macrophages or
dendritic cells (21–24). Of note, differentiated macrophages
are conventionally classified into pro-inflammatory M1
type and anti-inflammatory (pro-tumoral) M2 type, and
these macrophages differentially regulate tumor progressions
and metastases (25). However, this binary classification of
macrophages is insufficient to represent their multifaceted and
plastic functions (25). On the other hand, monocyte-derived
dendritic cells have been mainly regarded as immune activators
in the tumor microenvironment, recruiting and stimulating
immune effector cells (26). Nevertheless, dendritic cells are
also highly heterogeneous, and cancer cells can recruit the
immunosuppressive subset of dendritic cells and/or suppress
their anti-tumoral functions (26). All this flexibility appears
in a context-dependent manner. Likewise, differing individual
functions of monocytes might result from different contexts of
development. While it is well-accepted that the bone marrow
is the primary source of production and supply of monocytes
in physiological condition (1), there is substantial controversy
whether the bone marrow serves the same role in cancer-derived
pathological conditions. Splenic progenitor cells are reinforced
to generate monocytes during KP lung carcinoma progression,
which suggests that the spleen could be a critical organ to
produce and amplify monocytes (27). The pivotal role of spleen
as a source of monocytes has also been highlighted in a different
inflammatory condition (28). Angiotensin II plays a central
role in amplifying Ly6Chi monocytes and their precursors
in the spleen red pulp of KP lung carcinoma-bearing mice
as well as releasing monocytes from their splenic reservoir
(28, 29). However, a conflicting view has been suggested in a
different lung tumor model. During the development of Lewis
lung carcinoma (LLC), the bone marrow primarily promotes
monocyte production while the spleen plays a minor role in
monocyte production (30). Monocytes produced from the bone
marrow are more favored to migrate into and to be accumulated
in the tumor region than those from the spleen (30). Although
an increased accumulation of monocytes in the spleen is also
detected in the LLC model, it is because the bone marrow
primarily accelerates monocyte production and transfers the
newly formed monocytes to the spleen; the spleen is not the
primary source (30). As such, different context might have
yielded the controversy on tumor monocyte development.
Therefore, further studies need to be conducted in as many types
of tumors as possible (31).

Monocytes: Pro-tumoral vs. Anti-tumoral
Functions in Solid Tumors
Other than the well-known feature as precursors of macrophage
and dendritic cell populations, monocytes play a significant
role per se in orchestrating the immune system not only in
homeostatic condition (21), but also in tumor progression (7,
8, 32–35). Generally, high rate of monocyte infiltration into the
tumormilieu indicates poor clinical prognosis of cancers (36, 37).
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Since each subset of monocytes has different functions in tumor
progression depending on the context, it is momentous to decide
which subset of monocytes should be targeted in each tumor.
Distinct functions of Ly6Chi monocytes and Ly6Clo monocytes
in solid tumors have been explored (Table 1; Figure 1). These
monocytes play pro-tumoral or anti-tumoral roles, regulating
diverse mechanisms ranging from angiogenesis to immune
modulation in a context-dependent manner (Table 1; Figure 1).

Recruitment of Classical Monocytes and Their

Functions in Solid Tumors
Ly6Chi classical monocytes have been mostly reported to
play pro-tumoral functions once recruited to the tumor
microenvironment (Table 1; Figure 1). Ly6Chi monocytes
express high levels of CCR2 on their surface (32). CCR2mediates
the migration of Ly6Chi monocytes from the bone marrow
to CCL2-secreting tumor milieu in PyMT spontaneous breast
carcinoma, KCKO pancreatic carcinoma, and MC38 colorectal
carcinoma (29, 45, 46). These recruited classical monocytes
release VEGFA (a major stimulator of angiogenesis) to facilitate
tumor cell extravasation and lung metastasis (32, 47). In human
pancreatic tumor as well as murine pancreatic lesion model, the
tumor microenvironment releases CCL2 and thereby actively
recruits CCR2-expressing CD14+CD16− classical monocytes
from bone marrow to blood stream, which is a prognostic factor
of worse outcome (45). In contrast, CCR2 inhibition attenuates
the mobilization and thus leads to forming an anti-tumoral
immune environment in KCKO pancreatic carcinoma and
MC38 colorectal carcinoma (45, 46). In human RCC patients
and xenograft models, the IL-1β/IL-1R interaction activates
the MyD88-NF-kB signaling pathway, and thereby enables
classical monocytes with pro-tumoral phenotypes to upregulate
pro-tumoral genes such as VEGF, MMP-10, IL-8, TNF-α, and
PTGS2 (38). Ly6Chi monocytes/CD14+CD16− monocytes also
facilitate cancer cell invasion and metastases via expressing
F13a1 to promote fibrin cross-linking not only in murine
KLN205 lung squamous cell carcinoma but also in human lung
cancer, implicating poor survivals (39). As such, in hepatocellular
carcinoma (HCC), Gr-1+ myeloid cells which contain Ly6Chi

monocyte population play pro-tumoral function supporting
tumor fibrosis by secreting platelet-derived growth factor-beta
(PDGF-β), a pro-fibrotic growth factor (40).

Moreover, classicalmonocytes play amajor role in establishing
a cancer therapy-resistant microenvironment (34, 48, 49).
Doxorubicin treatment on MMTV-PyMT breast carcinoma,
for induction of necrotic cell death, triggers the enhanced
infiltration of CCR2-expressing monocytes. At later stages of
cancer, this backfires; these monocytes have been revealed
responsible for resistance against doxorubicin, promoting tumor
relapse after treatment (48). In 4T1 and MMTV-PyMT breast
carcinoma, paclitaxel treatment induces the secretion of tumor-
derived extracellular vesicles (EVs), and these EVs upregulate
pulmonary CCL2 expression to elicit classical monocyte
expansion establishing a lung pre-metastatic niche (34). Applying
radiotherapy on KPC pancreatic carcinoma also leads to
a significant increase in CCL2 production by tumor cells.
Subsequent recruitment of classical monocytes thereby endows

the tumor with resistance against the cancer treatment (49).
Use of anti-CCL2 antibodies selectively restrains radiotherapy-
dependent recruitment of classical monocytes, impeding tumor
progression when combined with radiotherapy (49).

Based on these findings, treatment with anti-CCL2 antibody
might sound attractive for tumor regression. However, the
following study has proposed a caution for anti-CCL2 mono-
treatment. During anti-CCL2 treatment in 4T1, J110, and Met-
1 mammary carcinoma, a large population of the classical
monocytes is retained within the bloodstream, and their homing
to the primary tumor or to the metastatic site is attenuated
(50). However, after anti-CCL2 treatment cessation, monocytes
initiate their migration to the lungs, and the level of IL-6
rises within the lungs. The increased level of IL-6 augments
pro-angiogenic VEGF-A expression in classical monocytes, and
thereby accelerates tumor metastasis (50). IL-6RA is largely
expressed in Ly6Chi monocytes, and anti-IL-6R antibodies
effectively target Ly6Chi monocytes (51, 52). Notably, IL-6-
IL-6R interaction not only promotes VEGF-A secretion from
classical monocytes but also activates the STAT3 signaling
pathway in cancer cells, which enhances tumor cell proliferation
in pancreatic ductal adenocarcinoma (PDAC) (50–53). IL-6
is also strongly induced in adipocytes and tumor-infiltrated
myeloid cells after anti-VEGF treatment on overweight breast
cancer patients. The upregulated IL-6 mediates resistance to
anti-VEGF therapy, leading to the proliferation of cancer cells
and dysfunctional angiogenesis (54). IL-6 inhibition increases
the tumor microenvironment’s sensitivity to chemotherapy and
anti-angiogenic therapy and promotes tumor cell death (52, 54).

Contrary to the pro-tumoral properties of
Ly6Chi/CD14+CD16− monocytes explicated above, it has also
been reported that these classical monocytes play anti-tumoral
functions in certain treatments (Table 1; Figure 1). Tumor
fibrosis promotes tumor progression by increasing collagen
deposition, reducing T cell infiltration, and inducing pro-
tumoral macrophage polarization (33, 55–58). A distinct class
of Mac1+F4/80−Msr1+ceacam1+Ly6Clo monocytes has been
recently discovered to promote fibrosis in C/EBPβ dependent
manner (59). Meanwhile, Ly6Chi monocyte infiltration into
KPC pancreatic adenocarcinoma via IFN-γ and CCL2 following
anti-CD40 treatment has been reported to facilitate degradation
of tumor fibrosis, increasing the efficacy of the chemotherapy on
PDAC while Ly6Chi monocyte-containing Gr-1+ myeloid cells
in HCC play pro-fibrotic roles (33, 40, 55).

Recruitment of Non-classical Monocytes and Their

Functions in Solid Tumors
On the other hand, Ly6Clo/CD14−CD16+ non-classical
monocytes have independent mechanisms for infiltration
to tumors, and their functions are context-dependent. In
models of colorectal cancer, Jung et al. have firstly revealed
immunosuppressive functions of non-classical monocytes in any
context, including cancers (7, 8). Anti-angiogenic therapy leads
to non-classical monocyte influx to CX3CL1-secreting tumor
milieu. Then these recruited non-classical monocytes secrete
CXCL5, and mediate a massive infiltration of CXCR2-expressing
neutrophils through the highly specific chemokine axis (7). This
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TABLE 1 | Context-derived heterogeneous functions of monocyte subsets.

Type of

monocytes

Function Factor Model Cancer type/treatment References

Classical

monocytes

Protumoral Metastasis; Tumor cell

extravasation

VEGFA Mouse MMTV-PyMT breast cancer (32)

VEGF, MMP-10, IL-8,

TNF-α, PTGS2

Human Renal cell carcinoma (38)

Metastasis; Cancer cell

invasion

F13a1 Mouse KLN205 lung squamous cell

carcinoma

(39)

Human Lung cancer

Tumor fibrosis PDGF-β Mouse Hepatocellular carcinoma (40)

Antitumoral Degradation of tumor

fibrosis

MMPs Mouse KPC pancreatic adenocarcinoma

w/anti-CD40 treatment

(33)

Non-classical

monocytes

Protumoral Immunosuppression CXCL5, IL-10 Mouse CT26, SL4 colorectal cancer

w/anti-VEGFR2 therapy

(7, 8)

Angiogenesis MMP-9 Human cancer cell

xenograft

DLD1, HCT116 human

colorectal carcinoma

(41)

Antitumoral NK cell recruitment CCL3, CCL4, CCL5 Mouse, Human

cancer cell xenograft,

Human

B16F10 melanoma, A375

human melanoma, MMTV-PyMT

breast cancer, Human lung

cancer specimen (early stage)

(35, 42, 43)

NK cell activation IL-15 Mouse B16F10, B16F0 melanoma (44)

Summarizes diverse protumoral and antitumoral functions of monocyte subsets (classical and non-classical monocytes) and their related factors in each model.

finding echoes a previous finding also showing that non-classical
monocytes recruit neutrophils, albeit mediated by CXCL1—not
CXCL5—in a different disease condition outside oncology
(60). These tumor-infiltrating non-classical monocytes and
neutrophils release immunosuppressive cytokines including
IL-10 which inhibits infiltration and activity of cytotoxic T
lymphocytes in tumors (7, 8) (Table 1; Figure 1). Jung et al. also
successfully developed several therapeutic strategies targeting
these non-classical monocyte-mediated cascades by blocking
their infiltration and activity (7, 8). Through a series of in
silico and in vitro screening, novel siRNA sequences against
CX3CL1 with potent knock-down efficacy were identified.
The siRNA was formulated with nanoparticles particularly
designed for endothelial cell-specific delivery, which resulted
in inhibiting Ly6Clo monocyte infiltration and subsequently
reduced tumor growth (7). Notably, CXCR4 was discovered
to be a critical chemokine receptor expressed on non-classical
monocytes and neutrophils (8). CXCL12/CXCR4 axis in these
cells mediates restrained cytotoxic T cell infiltration and builds
up immunosuppressive tumor microenvironment in CT26,
SL4 colorectal carcinoma, and E0771, MCa-M3C mammary
carcinoma (8, 61). Supporting this finding, AMD3100 which is
a potent CXCR4 inhibitor, also known as plerixafor, efficiently
hinders the recruitment of non-classical monocytes, improving
the treatment efficacy of anti-VEGFR2 therapy. This suggests the
potential of rapid clinical translation, since AMD3100 is already
an FDA-approved CXCR4 blocker being used in the clinic for
other uses (8, 61).

Despite the several pro-tumoral features of
Ly6Clo/CD14−CD16+ non-classical monocytes, these
monocytes also display anti-tumoral properties in different
tumor/treatment conditions (Table 1; Figure 1). In B16F10

melanoma and MMTV-PyMT spontaneous mammary
carcinoma, non-classical monocytes play a pivotal role in
engulfing tumor material in the lung and attenuating tumor
metastasis and activating NK cells (17, 35). In B16F10 and
B16F0 melanoma, non-classical monocytes also activate NK
cells by releasing IL-15, which is a determinant cytokine
for NK cells’ homeostasis, activation and effector function,
preventing lung metastases in primary tumor-bearing mice (44).
In B16F10 melanoma and A375 human melanoma xenograft
models, exosomes secreted from non-metastatic cancer cells
promoted the expansion of non-classical monocytes in the bone
marrow (42). The expanded population of the non-classical
monocytes leads to recruiting NK cells which function in
cancer cell clearance at the pre-metastatic niche (42). This NK
cell-recruiting function of non-classical monocytes have been
reconfirmed in early stage lung cancer patients (43). Based
on these findings, reduced CD16+ non-classical monocytes
might be correlated with NK cell paucity in this lung tumor
lesions (43). According to ex vivo study of patients with stage IV
cutaneous melanoma, CD14−CD16+ non-classical monocytes
kill regulatory T lymphocytes (Tregs) by assisting ipilimumab,
anti-cytotoxic T lymphocyte associated antigen 4 (CTLA4)
monoclonal antibody, -mediated ADCC (antibody-dependent
cell-mediated cytotoxicity) (62).

Importantly, it had been widely believed that non-classical
monocytes are not able to extravasate out of blood vessels.
Instead, they were known to stay inside vasculature and patrol
the endothelium, which gave these monocytes the nickname
“patrolling monocytes” (9). However, recent studies strongly
suggest that they do have the capability of transmigration
and actively infiltrate into tissues, proven by state-of-the-art
in vivo imaging techniques (7, 8). Supporting this, in DLD1
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FIGURE 1 | Monocytes mediate a variety of pro-tumoral and anti-tumoral mechanisms in a context-dependent way. In primary tumors, Ly6Chi monocytes exert

pro-tumoral effects to promote cancer cell proliferation and cancer cell intravasation. Of note, anti-angiogenic therapy induces Ly6Clo monocyte-mediated

immunosuppressive tumor microenvironment and triggers resistance against the therapy. Under the treatment, non-classical Ly6Clo monocytes have been revealed to

extravasate to primary tumor regions. The tumor-infiltrated Ly6Clo monocytes significantly contribute to inhibition of cytotoxic T cell function. In metastatic niches,

Ly6Chi monocytes and Ly6Clo monocytes facilitate cancer cell extravasation by secreting pro-angiogenic molecules and by mediating the release of ECM-bounded

VEGF molecules. In contrast, these monocytes display anti-tumoral functions in different settings. In the lung metastatic sites, Ly6Clo monocytes recruit tumor-killing

NK cells, and scavenge tumor materials in the lung vasculature. Meanwhile, Ly6Chi monocytes degrade fibrosis around cancer cells, which have the cancer cells

acquire chemosensitivity upon treatments.

and HCT116 human colorectal carcinoma, recruited human
patrolling monocytes in tumors secrete matrix metalloproteinase
9 (MMP9), a proteolytic enzyme fostering angiogenesis,
triggering a release of matrix-bound VEGFA. This accelerates
the extravasation and accumulation of these pro-angiogenic
patrolling monocytes, promoting tumor progression (41).
This also validates the first finding of non-classical monocyte
extravasation directly visualized by intravital microscopic
imaging (7, 8).

Tie2-Expressing Monocytes
Other than the traditional classification of monocytes by
Ly6C expression level, another classification method by Tie2
(angiopoietin receptor) expression exists. Tie2-expressing
monocytes (TEMs) are a monocyte population present in
both human and mouse peripheral blood and tumor, and are
localized in perivascular spaces but not incorporated with
vascular endothelial cells (63, 64). Angiopoietin-1 (Ang-1),

a Tie2 ligand, is likely to promote the recruitment of TEMs
to tumor vasculature before the turn-on of the angiogenic
switch in early stages of N202 breast carcinoma, Rip1-Tag2
pancreatic insulinoma and U87 human glioma (63, 65, 66). In
a following study, it was also elucidated that Angiopoietin-2
(Ang-2), another Tie2 ligand upregulated in tumor hypoxia,
can also recruit TEMs. The TEMs are then reprogrammed to
show proangiogenic phenotypes (67, 68). Meanwhile, Collagen
triple-helix repeat-containing 1 (CTHRC1) secreted by several
malignant tumors has been reported to recruit TEMs to the
tumor microenvironment through upregulation of Ang-2 in
endothelial cells and promote metastasis in human MiaPaCa-2,
CFPAC-1, and Panc-1 pancreatic cancers (69). Recruited TEMs
promote angiogenesis via secretion of a proangiogenic molecule,
basic fibroblast growth factor (bFGF) (63–66). Also, Ang-2 and
hypoxia cause TEM influx into the tumor microenvironment,
and the TEMs mediate downregulation of TNF-α supporting
cancer cell survival and causing metastasis of the primary tumor
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(63, 67, 70). Blockade of Ang-2 impedes tumor angiogenesis
in MMTV-PyMT breast carcinoma and Rip1-Tag2 pancreatic
insulinoma through downregulation of Tie2 in TEMs (71).

NEUTROPHILS: FROM DEVELOPMENT TO
DEPLOYMENT

Neutrophil Development
Neutrophils are another myeloid compartment which plays
critical roles both in homeostatic condition and tumor
context. There is a train of precursors to be passed through
to generate mature neutrophils in the bone marrow (72).
Hematopoietic stem cells (HSCs) give rise to multipotent
progenitors (MPPs), lymphoid primed multipotent progenitors
(LMPPs), and granulocyte/macrophage progenitors (GMPs)
in this very order (72). There are several more stages
to go to be differentiated to neutrophils, namely a series
of myeloblasts, promyelocytes, myelocytes, metamyelocytes,
band cells, and finally neutrophils (72). These steps for
neutrophil generation occur under major regulation by the
granulocyte-colony stimulating factor (G-CSF), granulocyte–
macrophage-colony stimulating factor (GM-CSF) and alsominor
regulation by other molecules such as IL-6 and KIT ligand
(KITL) (73). Differentiating neutrophils express the G-CSF
receptor (G-CSFR) throughout the myeloid lineage (73). During
development in the bone marrow, neutrophils acquire three
types of granules sequentially; azurophil (primary) granules
which retain myeloperoxidase regulated by transcription factors
C/EBPα and Gfi-1, specific (secondary) granules which contain
lactoferrin mostly regulated by C/EBPε, and gelatinase (tertiary)
granules which contain MMP9 regulated by C/EBPβ, C/EBPδ,
C/EBPγ, and PU.1 (74, 75). Of note, mass cytometry has
recently found new proliferative precursors of neutrophils
after GMP stage which further differentiate to immature
neutrophils and mature neutrophils with regulation of C/EBPε

(76). Although the bone marrow is primarily responsible for
the neutrophil formation, the spleen can be an alternative
source of neutrophils during emergency granulopoiesis derived
from cancer progression (73). In KP lung adenocarcinoma,
splenic hematopoietic stem cells, and progenitor cells produce
neutrophils during tumor progression (27). Presence of cancer
cells upregulates the expression of several factors accelerating
neutrophil development. The expression of CXCL1, CXCL2,
CXCL5, and CXCL8, which are CXCR2 ligands, and the
expression of KITL and GM-CSF are strongly enhanced by
KRAS signaling in cancer cells and tumor-derived hypoxia (73).
Moreover, IL-1β-producing macrophages and IL-17-producing
γδ T cells secrete G-CSF to promote neutrophil development
in the tumor (73). Cancer cells accelerate secretion of these
cytokines and chemokines to instigate overactive granulopoiesis
and neutrophilia (73). The accelerated secretion of these
factors promotes the release of immature neutrophils to the
blood stream, resulting in an increased number of circulating
neutrophils (73). In 4T07, 4T1 mammary carcinoma, LLC,
and Kras-driven pancreatic carcinoma, G-CSF production is
also facilitated via RAS/MEK/ERK pathway in cancer cells,

promoting recruitment of neutrophils (77). Meanwhile, type
I IFNs from tumor trigger differentiation of neutrophils to
achieve an anti-tumoral phenotype, reducing not only CXCR4
expression in neutrophils which mediates tumor-homing, but
also VEGF and MMP9 expression (78, 79). Moreover, type I
IFNs suppress G-CSF signaling pathways in neutrophils, thereby
reducing expression of Bv8, S100A8, S100A9, and MMP9 so
that they can attenuate the formation of the pre-metastatic
niche (78, 79). Inhibition of type I IFNs impairs cytotoxicity
of neutrophils and promotes metastasis of B16F10 melanoma,
MCA205 fibrosarcoma, 4T1 mammary carcinoma and LLC
mediated by neutrophils (78, 79).

Neutrophils: Pro-tumoral vs. Anti-tumoral
Functions in Solid Tumors
Functions of neutrophils in the tumor microenvironment vary
by context including types of tumor, stages of tumor progression,
and different therapies (Table 2; Figure 2).

Recruitment of Neutrophils to Tumor Milieu
As mentioned above, tumors promote the early release of
neutrophils yet with immature phenotypes from the bone
marrow. There are several ligand-receptor axes studied for
neutrophil recruitment into the tumor. Upon research on diverse
tumor models, it has been revealed that CXCR2 is a pressing
chemokine receptor which recruits neutrophils to the tumor
(7, 8, 119, 120). In KPC pancreatic carcinoma and inflammation-
driven and spontaneous intestinal adenocarcinoma, the
migration of myeloid cells, especially neutrophils, to the tumor
microenvironment is impaired when CXCR2 signaling is
suppressed (119, 120). This enhances tumor cell apoptosis
and restrains tumorigenesis, resulting in a failure to set up a
metastatic niche (119, 120). Moreover, activated neutrophils
also express CCR7 on their membrane, which pushes those
cells to tumor sites in response to CCL19, CCL21, and GM-CSF
secretion (121). IL-17 also triggers neutrophil recruitment to
tumor sites in 4T1 breast carcinoma (122), KRAS mutated lung
carcinoma (123), and ovarian carcinoma (124). The recruited
neutrophils present high expression of tumor-promoting genes
such as TNF-α, CXCL1, MMP9, and VEGF (122). In zebrafish
larvae model of glioblastoma initiation, neutrophils are actively
recruited to KRAS-transformed cells very early in oncogenesis
via the CXCL8-CXCR1 signaling axis, and this recruitment
contributes to the proliferation of tumor-initiating cells (125).
Gastrin-releasing peptide (GRP)-GRP receptor (GRPR) axis can
also induce neutrophil migration in the tumor (126, 127). In
A375 and M24met human melanoma, CXCL5 overexpression by
tumor cells enhances neutrophil recruitment and infiltration into
primary tumors and tumor lymphatic vessels (128). It triggers the
proximal interaction between neutrophils and cancer cells near
the lymphatic endothelial cells in order to help trans-endothelial
migration of the cancer cells (128). In SL4 and CT26 colorectal
cancer, tumor-infiltrated Ly6Clo monocytes induced by anti-
VEGF therapy can also recruit CXCR2-expressing neutrophils
to the tumor site via the CXCL5-CXCR2 and CXCL12-CXCR4
axes (7, 8). Albeit in a different disease setting, it has been
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TABLE 2 | Context-dependent multifaceted functions of neutrophils.

Function Factor Model Cancer type/treatment References

Neutrophils Protumoral Tumor initiation Neutrophil elastase Mouse Kras mutant (80)

ROS, RNS Mouse Colon cancer (81)

Cancer cell proliferation NETs (Neutrophil elastase

traps), HMGB-1

Mouse MC38 colorectal cancer

w/ischemia and reperfusion injury

(82)

Neutrophil elastase Mouse A549 lung adenocarcinoma (83)

IL-6, IL-1β Mouse 4T1 breast cancer (84)

Transferrin Mouse 4T1 breast cancer (85)

Cancer cell colonization;

Differentiation from

monocytes to fibrocytes

MMP-9 Mouse CMT93 colon carcinoma (86, 87)

Fibrosis MAP kinase pathway Mouse HCA-1 hepatocellular carcinoma

w/Sorafenib treatment

(88)

IL-1β Mouse AK4.4, Pan02, KPC, iKRAS

pancreatic adenocarcinoma

(58)

Macrophage recruitment MAP kinase pathway Mouse TRAMP-C1 prostate cancer,

E0771 breast cancer w/VEGF

blockade

(89)

T cell suppression IL-10 Mouse, Human

cancer cell xenograft

CT26, SL4 colorectal cancer

w/anti-VEGFR2 therapy/LS174T

human colorectal cancer

(7, 8, 90)

PD-L1 Mouse H22-generated hepatoma (91)

IL-10, LGALS9, ARG1, MFGE8 Mouse KP lung carcinoma (92)

Nos2 Mouse KEP breast carcinoma, AB12

mesothelioma, LKRM lung

carcinoma, LLC

(93, 94)

ARG1 Human Non-small cell lung cancer (95)

Regulatory T cell attraction CCL17 Mouse LLC, AB12 mesothelioma (96)

Angiogenesis Bv8 Mouse Rip-Tag pancreatic insulinoma (97, 98)

MMP-9 Mouse, Human

cancer cell xenograft

Rip1-Tag2 pancreatic

insulinoma, L929 fibrosarcoma,

B16-F10 melanoma, LLC, HPV-

(99–102)

15-induced squamouse

carcinoma, HT-1080

fibrosarcoma/PC-3 human

prostate carcinoma

VEGF Human Oral cavity cancer (103)

FGF2 Mouse, Human

cancer cell xenograft

Pan02, KPC pancreatic

carcinoma/HT29, HCT-116,

Lovo human colon cancer

(104)

Metastasis; Tumor cell

extravasation

IL-1β, Leukotriene, IL-8 Mouse, Human

cancer cell xenograft

4T1, D2A1 breast

cancer/Human MDA-MB-

(105–107)

231 breast cancer, human

A375-MA2, WM35, C8161.C19,

UACC903 melanoma

Metastasis;

Epithelial-mesenchymal

transition (EMT)

IL-17α In vitro human cancer

cell

(In vitro) Human MKN45, MKN74

gastric cancer

(108)

Metastasis; Bridge between

ICAM-1-expressing cancer

cells and endothelial cells

MAC-1 Mouse, Human

cancer cell xenograft

H50 Lewis Lung

carcinoma/Human A549 lung

carcinoma

(109)

Cancer cell retention NETs (Neutrophil elastase

traps)

Mouse H59 Lewis lung carcinoma

w/cecal ligation and

puncture/MC38 colorectal

cancer w/ischemia and

reperfusion injury

(82, 110)

Activation of dormant

cancer cell

Mouse D2.0R breast cancer (111)

(Continued)
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TABLE 2 | Continued

Function Factor Model Cancer type/treatment References

Antitumoral Tumor cell death TNF-α, NO, H2O2 Mouse LLC, AB12 mesothelioma (112)

Granzyme B CT26 colon cancer (113)

H2O2 AT3, 4T1, MMTV-PyMT breast

cancer

(114, 115)

IL-17+ γ δ T cell

suppression

ROS Mouse B16F10 melanoma, Hepa1-6

hepatoma

(116)

Impairment of tumor cell

proliferation

Tsp-1 Human cancer cell

xenograft

Human PC3 prostate cancer,

human MDA- MB-231 breast

cancer

(117)

Stimulation of T cell

response

CD54, CD86, OX40L, and

4-1BBL

Human Lung cancer (early stage) (118)

Summarizes multiple protumoral and antitumoral functions of neutrophils and their responsible factors in each different context.

also reported that monocytes recruit neutrophils in a TLR7-
dependent manner through CXCL1 (60), different from the
case of cancer context where non-classical monocytes-derived
CXCL5 was newly discovered as the key chemokine attracting
neutrophils (7, 8).

Pro-tumoral Functions of Neutrophils in Solid Tumors
Recruited neutrophils from the blood stream have potent
influences on various components of tumor progression
and metastasis, including tumor initiation, cancer cell
survival/proliferation, immune modulation, angiogenesis,
and intra/extravasation of cancer cells (Table 2; Figure 2).

Neutrophils and tumor initiation
In Kras mutant mice, airway inflammation induces secretion
of IL-8 by lung keratinocytes, recruiting CXCR2-expressing
neutrophils to the inflammation site (80). Neutrophil elastase
(NE), a powerful serine protease exclusively found in primary
granules of neutrophils, facilitates inflammation-mediated tumor
initiation in the lung (80). H. hepaicus-induced colitis triggers
tissue infiltration of MPO+ neutrophils and macrophages into
the infected sites (81). These neutrophils and macrophages
generate reactive oxygen species (ROS) and reactive nitrogen
species (RNS) which subsequently cause molecular damage,
promoting tumorigenesis (81). Transcriptional analysis
reveals that genes involved in repairing DNA damage were
downregulated, but genes associated with reactive chemical
species generation were upregulated in infected colons (with no
impact on cell proliferation) (81).

Neutrophils and cancer cell survival/proliferation
Beyond tumorigenic functions of neutrophils, their roles in
cancer cell survival and proliferation have been also elucidated
well. Overexpression of insulin receptor substrate 1 (IRS-
1) is known to reduce tumor growth (83). In A549 lung
adenocarcinoma, neutrophil elastase (NE) degrades IRS-1 in
cancer cells, thereby causing tumor cell proliferation. PI3K
signaling pathway alteration mediates this process by fostering
the interaction with PDGF-receptor (83). In 4T1 breast
carcinoma, transferrin, an iron-transporting protein secreted by
neutrophils, binds to its receptor expressed on cancer cells (85).

Then the transferrin supplies iron to the cancer cells for their
proliferation (85). As tumor growth andmetastasis are promoted,
transferrin secretion by neutrophils increases (85). Sorafenib, a
rapidly accelerated fibrosarcoma (RAF) inhibitor, is commonly
used as treatment for HCC. However, the use of sorafenib
causes side effects and resistance such as tumor desmoplasia.
Gr-1+ myeloid cells including neutrophils have been revealed
to be responsible for the resistance (40, 88, 129, 130). Sorafenib
treatment induces tumor hypoxia, which upregulates CXCL12
expression in HCA-1 cancer cells and stromal cells. Then,
CXCR4-expressing Gr-1+ myeloid cells are promoted to infiltrate
to CXCL12-secreting tumor sites, and the infiltrated cells support
differentiation and activation of hepatic stellate cells via the MAP
kinase pathway and fibrosis in HCC (40). Of note, CXCL12-
CXCR4 axis triggers increased infiltration of Tregs and M2
type macrophages and upregulation of intratumoral PD-L1 in
HCA-1 HCC (88). Moreover, in Ak4.4, Pan02, KPC, and iKRAS
pancreatic adenocarcinoma, adipocytes of obese population
secrete increased levels of IL-1β to recruit neutrophils to the
tumor along with enhancing Treg infiltration, and hindrance of
CD8+ T cell infiltration (58). The recruited neutrophils then
activate pancreatic stellate cells via IL-1β secretion to accelerate
fibrosis, which promotes tumor growth and reduces sensitivity to
chemotherapy (58).

Neutrophils and immune modulation
Neutrophils play essential roles in tumor growth and metastasis
not only to regulate cancer cell proliferation and survival,
but also to modulate innate and adaptive immunity. The
recruited neutrophils via CXCL12-CXCR4 axis secrete IL-10 that
suppresses cytotoxic T cell function on tumor cells, which then
causes anti-VEGF therapy resistance in SL4 and CT26 colorectal
carcinoma (7, 8). Similar findings have been recently reported
in LS174T human colorectal carcinoma (90), which confirms
the previous observations in preclinical murine models (7, 8).
The CXCL12-CXCR4 axis in myeloid cells including neutrophils
is also responsible for NK cell apoptosis and inactivation by
enhancing the Fas signaling pathway and restraining IL-18
production in neutrophils, respectively, in metastatic B16F0
melanoma, PyMT breast carcinoma, and YAC-1 lymphoma
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FIGURE 2 | Neutrophils differentially regulate tumor microenvironment with diverse mechanisms. Neutrophils perform pro-tumoral roles in most tumor settings,

promoting tumorigenesis, and cancer cell proliferation via diverse mechanisms. Moreover, neutrophils regulate the functions of other immune cells including cytotoxic

T cells and Tregs in order to build up tumor-favorable tumor microenvironment. On the one hand, neutrophils stimulate tumor angiogenesis via inducing the release of

VEGF and FGF-2 from ECM or secreting pro-angiogenic molecules, themselves. Furthermore, metastatic competence of cancer cells can be achieved by physical

interaction with neutrophils and neutrophil-derived secretory molecules, facilitated to extravasate to secondary tumor sites. Neutrophils also create a positive feedback

loop with cancer cells toward the formation of the tumor-supportive microenvironment, developing dysfunctional vasculature around the tumor, leading to hypoxia

which recruits more neutrophils and pro-tumoral immune cells into tumor milieu. On the other hand, a couple of studies indicate anti-tumoral functions of neutrophils in

different contexts. In these contexts, neutrophils perform a cytotoxic function on cancer cells, and have cancer cells lose proliferative and metastatic properties.

(131). Neutrophil-mediated modulation of NK cells has been
confirmed in 4T1 and D2A1 metastatic mammary carcinoma
context (D2A1 inoculation after 4T1 injection) as well (105). The
expanded population of neutrophils near metastatic sites inhibits
functional activation of NK cells, and thus the NK cells lose their
ability to clear intraluminal tumor cells (105). This consequently
comes across with a favorable environment for cancer cell
survival and metastasis (105). CXCR4 depletion in those myeloid
cells recovers the tumor-killing capacity of NK cells (131). In
H22-generated hepatoma-bearing mice, PD-L1 is upregulated in

tumor-infiltrating neutrophils (TINs), induced by GM-CSF and
TNF-α secretion from the tumor microenvironment (91). The
overexpressed PD-L1 of neutrophils suppresses proliferation and
activation of PD-1+ T cells, dampening anti-tumor immunity
(91). In STK11/LKB1-deficient KP lung carcinoma, recruited
neutrophils produce suppressive factors such as IL-10, LGALS9,
Arginase1 (ARG1), and Milk fat globulin EGF factor (MFGE8)
which are also involved in cytotoxic T cell suppression as well
as the tumor-promoting cytokine IL-6 (92). In KEP breast
carcinoma, Nos2, the gene encoding iNOS, is largely upregulated
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in neutrophils (93). Then the neutrophils suppress CD8+ T cell
activity via NO from iNOS, promoting lung metastasis (93).
Effect of neutrophil NO production on CD8+ T cell apoptosis
has been also confirmed in AB12 mesothelioma, LKRM lung
carcinoma, and LLC (94). TNFα-mediated iNOS upregulation
and NO secretion in neutrophils induce the apoptosis of non-
activated CD8+ T cells via direct contact between cells in
these tumor contexts (94). ARG I secretion by neutrophils has
been also uncovered to affect T cell suppression by degrading
extracellular arginine in non-small cell lung carcinoma patients
(95). IL-8 and TNF-α secretions are enhanced in non-small
cell lung carcinoma patients, and these cytokines induce ARG
I release from exocytosis of granules in neutrophils (95). In
4T1 mammary carcinoma, SCF-c-kit signaling increases c-kit+
neutrophil frequency in the circulatory system. Even in nutrient-
limited tumor microenvironments, these neutrophils exploit
fatty acid metabolism to maintain mitochondrial function and
support ROS production, resulting in T cell suppression (132).
This also echoes the formal observations of immunosuppressive
neutrophils in colon cancers (7, 8). Meanwhile, a research
adopting mass cytometry and single-cell RNA sequencing has
recently revealed that a unipotent precursor of neutrophils
promotes B16F10 melanoma progression via inhibition of pro-
inflammatory T cell activation, eliciting an immunosuppressive
microenvironment around the tumor (133).

Neutrophils affect tumor progression by regulating other
immune cells beyond NK cells and cytotoxic T cells. In LLC
and AB12 mesothelioma, neutrophils attract Tregs via CCL17
secretion and thus scupper the formation of an anti-tumor
immune microenvironment (96). Furthermore, blockade
of VEGF in TRAMP-C1 prostate carcinoma and E0771
breast carcinoma triggers Gr-1+ myeloid cell recruitment
which mediates macrophage recruitment to the tumor
microenvironment via activation of p38 mitogen-activated
protein kinase (MAPK) to promote lung metastasis (89).

Myeloid-derived suppressor cells (MDSCs) are
immunophenotypically defined as CD11b+ Gr-1+ cells (in
mice) and possess pro-tumorigenic functions including immune
suppression (134). These MDSCs can be further classified into
granulocytic (or polymorphonuclear) MDSCs [gMDSCs or
PMN-MDSCs] (CD11b+ Ly6C− Ly6G+ in mouse, CD11b+

CD14− CD15+ in human) and monocytic MDSCs [mMDSCs]
(CD11b+ Ly6C+ Ly6G− in mouse, CD11b+ CD14+ HLA-DRlow

CD15− in human) (134). Although we do not doubt that
MDSCs play important roles in regulating tumor progression,
the definition of MDSCs is still under debate since it is
difficult to clearly discriminate the heterogeneous myeloid cell
mixtures only with markers being currently used (7, 8). Indeed,
phenotypical and functional features of MDSCs are considerably
overlapped with those of monocytes and neutrophils, which we
discuss in depth throughout this review. Therefore, we would
rather not go into details of MDSCs here.

Neutrophils and angiogenesis
Even though cancer cells and cancer-associated fibroblasts are
considerably responsible for the source of angiogenic factors,
tumor-infiltrated myeloid cells including neutrophils also exert

potent properties in tumor angiogenesis over diverse tumor
settings (135). Upregulation of Bv8 following STAT3 activation
is responsible for neutrophil-mediated tumor angiogenesis in
the early stages of Rip-Tag pancreatic insulinoma (97, 98).
In Rip1-Tag2 pancreatic insulinoma, L929 fibrosarcoma, B16-
F10 melanoma, LLC, HPV-15-induced squamous carcinoma,
HT-1080 fibrosarcoma, and PC-3 human prostate carcinoma,
neutrophils infiltrated to the tumors majorly secrete MMP9
remodeling the ECM to release VEGF and FGF-2, and
activating them to trigger chronic angiogenesis and thereby
promotes tumor progression (99–102, 135). Meanwhile, in
oral cavity cancer patients, neutrophils actively secrete VEGF,
and promote tumor angiogenesis and metastasis (103). By
studying HT29, HCT-116, LoVo human colon carcinoma and
Pan02, KPC murine pancreatic carcinoma, it has also been
studied that neutrophils are the main source of FGF2 (104).
Here, these neutrophils play a proangiogenic role to develop
unsystematic tumor vasculature and prompt liver metastasis,
facilitating endothelial cell proliferation and migration (104).
Hence, inhibition of FGF2 delays tumor growth via normalizing
the vasculature (104). In KP lung carcinoma, neutrophils
alter angiogenesis around tumor tissue, causing a hypoxic
environment (136). HIF1α stabilization induced by hypoxia
increases expression of the Snail gene in cancer cells (136). The
Snail-expressing cancer cells secrete increased levels of CXCL5
and CXCL2 to recruit more pro-tumoral neutrophils to the
tumor, creating a positive amplifying loop to facilitate tumor
growth (136, 137). Notably, it has been revealed that Snail
has a pro-tumorigenic influence via recruiting pro-tumoral M2
macrophages as well in 4T1 breast cancer and LLC1 lung cancer
(137). Snail also induces Treg differentiation and impairs the
activity of dendritic cells in B16F10 melanoma (138).

Neutrophils and metastasis
While affecting primary tumor cell proliferation, modulation
of the immune microenvironment, and angiogenesis,
neutrophils also play significant roles in supervising tumor
metastasis. It has been reported that neutrophil infiltration
is essential to endow non-malignant BMT-11 fibrosarcoma
cancer cells with malignant and metastatic phenotypes
(139). The metastatic incidence is significantly reduced
with the anti-Gr1 antibody-mediated neutrophil depletion
in blood circulation or integrin β2 knockout mice lacking
in neutrophil extravasation (139). Of note, integrin β2
mediates neutrophil adhesion on activated endothelium
with high affinity, which leads to transmigration of neutrophils
across the endothelium (140, 141). A number of subsequent
researches have endeavored to illuminate diverse factors and
mechanisms which can explain functions of neutrophils on
tumor metastasis. In 4T1 and D2A1 metastatic mammary
carcinoma (D2A1 injection after 4T1 injection), recruited
neutrophils activate endothelial cells via secretion of IL-
1β. This, in turn, facilitates trans-endothelial migration of
intraluminal tumor cells, forming small protrusions of the
cell bodies across the endothelial layer (105, 106). In 4T1
breast carcinoma and human MDA-MB-231 breast carcinoma,
leukotrienes derived from neutrophils transform cancer
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cell populations to acquire highly metastatic competence in
lung pre-metastatic sites (106). The metastatic competence
of cancer cells can be also acquired by IL-17α secretion
of neutrophils in gastric cancer (108). Of note, epithelial-
mesenchymal transition (EMT) endows cancer cells with
invasive properties and high-grade malignancy (108, 142).
Coculture of gastric cancer patient-derived neutrophils and
human MKN45, MKN74 gastric cancer cells has proven that
IL-17α activates JAK2/STAT3 axis in the cancer cells following
by their acquisition of mesenchymal characteristics, and the
IL-17α is mostly derived from tumor-associated neutrophils
(TANs) (108).

Employment of a multiplexed microfluidic model of the
human microvasculature has revealed that neutrophils also
secrete IL-8 by themselves (143). The self-secreted IL-8
induces not only neutrophil sequestration in A375-MA2 human
melanoma cells but the interference of endothelial barrier
function, supporting cancer cell extravasation (143). In human
WM35, A375, C8161.C19, and UACC903 melanoma, IL-8
secreted from entrapped melanoma cells attracts neutrophils and
increases integrin β2, specifically MAC-1, on the neutrophils.
This leads to the enhancement of neutrophil-melanoma cell
interaction, facilitating lung metastasis (107). There is another
research subsequently conducted which confirms the interaction
between MAC-1 and ICAM1 (neutrophils and cancer cells,
respectively) (109). In H59 Lewis lung carcinoma and A549
human lung carcinoma, MAC-1 on neutrophils acts as a bridge
between ICAM-1-expressing cancer cells and endothelial cells
in favor of liver metastasis (109). Even though both pieces
of research by Huh et al. (107) and Spicer et al. (109) have
elucidated the MAC-1-ICAM-1 interaction and highlighted the
significant function of neutrophils on tumor metastasis, the
finding of Spicer et al. (109), is incompatible with Huh et al.
(107), in that neutrophils come first to metastatic sites, and then
circulating tumor cells directly adhere to the arrested neutrophils
in the early step of metastasis. Interaction between neutrophils
and circulating tumor cells in the bloodstream has also been
elucidated to be mediated via VCAM-1 in 4T1 breast carcinoma
(84). Also, the neutrophils physically clustered with circulating
4T1 breast cancer cells support the cancer cell cycle progression,
secreting IL-6 and IL-1β, and promote metastasis of cancer cells
(84). In MCF-7 human ER+ breast cancer, estradiol alters the
neutrophil phenotype to overexpress integrin LFA-1, promoting
ER+ cancer cell dissemination by activating cell-cell interaction
(144). Meanwhile, it has been recently studied that neutrophils
regulate diurnal transcription profiles in the lung, and promote
the migration of B16F1 melanoma cells to the lungs (145). In
CCL9-expressing CMT93 colon carcinoma, CCR1+ neutrophils
secrete MMP9 to foster cancer foci, and in late phases of tumor
the neutrophils recruit fibrocytes or induce differentiation from
monocytes to fibrocytes which secrete MMP2, accommodating
tumor cell colonization (86, 87). In short, the collaborative work
of CCR1, MMP9, and MMP2 at metastatic sites promotes cancer
metastasis (86, 87).

Neutrophil elastase traps (NETs) consist of extracellular
decondensed DNA with granules and histones derived from
neutrophils (146). Through a myriad of studies, it was

explored that upon activation of neutrophils, neutrophil-derived
NETs degrade virulence factors and trap bacteria within the
vasculature, eventually killing them. Thus, NETs work as
antimicrobial substances (146–148). It has also been elucidated
that NETs play potent roles in tumor cell migration by
trapping circulating cancer cells in vasculature and releasing
secretory molecules by themselves (110). A study on the
progression of H59 Lewis lung carcinoma after cecal ligation
and puncture (CLP), represented as an alternative model
of postsurgical infection, has proven that systemic sepsis
induces neutrophil-derived NET formation in the hepatic
sinusoid (110). Then the NETs enable stable retention of
tumor cells and accelerate tumor growth within the liver
(110). The link between trapped cancer cells by NETs and
their proliferation in metastatic sites has been explicated in
a metastatic MC38 tumor model followed by ischemia and
reperfusion (I/R) injury, which is in an inevitable state after
liver resection (82). Tumor hypoxia promotes NET formation
within the metastatic site, and the NETs release the High
mobility group box 1 (HMGB-1) protein (82). Secreted HMGB-
1 activates TLR9, which encourages tumor progression via
activation of related intracellular growth signaling pathways,
involving phosphorylation of p38, Stat3, JNK and p65 of NF-
kB (82). Moreover, it has been recently elucidated that NETs
are involved in activation of dormant cancer cells in D2.0R
mammary carcinoma (111). NET formation driven by LPS
inflammation mediates laminin cleavage and thrombospondin-
1 (Tsp-1) modulation by neutrophil elastase and NET-associated
proteases (111, 149). This stimulates integrin α3β1 on dormant
cancer cells and activates the FAK/ERK/MLCK/YAP signaling
pathway to awaken cancer cells (111). Even in the absence of
infection, 4T1 mammary cancer cells induce neutrophils to form
NETs once they arrive at lung metastatic sites, promoting the
expansion of disseminated cells (150). In ID8 ovarian cancer, the
cancer cell-derived factors such as IL-8, GRO-a, GRO-b, and G-
CSF enhance neutrophil influx to premetastatic omental niche
and promote NET formation. In sequence, the NETs support
tumor metastasis throughout trapping circulating ovarian cancer
cells (151).

Meanwhile, the importance of considering cancer as a
systemic disease has been highlighted again through its
interaction with bones (152). In KP lung adenocarcinoma, the
lung tumor activates Ocn+ osteoblasts via secretion of the
soluble receptor for advanced glycation end products (sRAGE),
which induces tumor infiltration of siglecFhigh neutrophils and
promotes tumor growth (152). These neutrophils represent
a tumor-promoting transcriptional profile with upregulated
expression of genes associated with angiogenesis (VEGFA,
HIF1α, and SEMA4d), myeloid cell differentiation and
recruitment (CSF1, CCL3, and MIF), extracellular matrix
remodeling (ADAMDEC1, ADAM17, and many cathepsins), T
cell suppression (PD-L1, FCGR2b, and HAVCR2), and tumor
cell proliferation (TNF, TGFβ1, and IL-1α) (152). In contrast,
the siglecFhigh neutrophils downregulate genes involved in
cytotoxicity (CD244, ITGAL, and Fas) (152). Furthermore,
these neutrophils increase ROS production and foster monocyte
differentiation into macrophages (152).
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Anti-tumoral Functions of Neutrophils in Solid Tumors
The majority of the hitherto conducted researches indicate
that neutrophils can only serve to promote tumor progression
(Table 2; Figure 2). However, depending on the context,
neutrophils suppress tumor metastasis by inhibiting malignant
progression. In CT26 colon carcinoma, neutrophils inhibit the
growth of G-CSF-producing cancer cells via contact-mediated
cytostatic activity, but not G-CSF-nonproducing cancer cells
(153). It has been recently revealed that the H2O2 secreted by
neutrophils leads to tumor cell death, and TRPM2-mediated
calcium influx acts as a go-between for this tumor killing
process by neutrophils in AT3 and 4T1 breast cancer (114).
In 4T1 mammary carcinoma and MMTV-PyMT spontaneous
mammary carcinoma, entrained in the pre-metastatic lung prior
to the arrival of metastatic cancer cells from primary sites,
neutrophils play a cytotoxic function via physical contacts with
cancer cells, secreting H2O2 and inhibiting the seeding of the
cancer cells (115). Neutrophil-derived ROS secretion in B16F10
melanoma and Hepa1-6 hepatoma suppress IL-17+ γδ T cells
which have pro-tumoral features, but not CD8+ T cells, in
tumor niches (116). Neutrophils also have cytotoxic activity
against CT26 colon cancer cells via production of granzyme
B (113). Meanwhile, in B16F10 melanoma, T241 fibrosarcoma,
LLC, and MMTV-PyMT-derived lung adenocarcinoma, tumor-
induced TNF-α stimulates the NF-kB signaling pathway to
express proto-oncogene MET in neutrophils (154). This enables
the hepatocyte growth factor (HGF), also driven by the tumor,
to bind to MET (154). HGF/MET signaling promotes neutrophil
extravasation, induces iNOS and NO production, and thereby
supports tumoricidal neutrophil function (154). In human
PC3 prostate cancer and MDA-MB-231 breast cancer, bone
marrow-derived CD11b+ Gr1+ cells which contain neutrophil
populations mainly induce thrombospondin-1 (Tsp-1) in lung
premetastatic sites, impairing tumor cell proliferation at the
sites (117). It has been also reported that tumor-infiltrated
neutrophils undergo functional changes and acquire an anti-
tumoral phenotype, supporting T cell responses against tumor in
early stages of human lung cancer (118). Photodynamic therapy
(PDT) augments anti-tumor immunity and tumor regression by
regulating the anti-tumoral functions of neutrophils (155).

Furthermore, neutrophils regulate pro-tumoral or anti-
tumoral mechanisms depending on tumor stage. In LLC and
AB12 mesothelioma, TANs from the early tumors are more
cytotoxic toward tumor cells and produce higher levels of TNF-α,
NO, and H2O2, while these expressions are downregulated in
late stages of tumors in which TANs acquire an enhanced pro-
tumoral phenotype (112). Although depletion of neutrophils in
the early stages of tumor has no effect on tumor growth, depletion
of neutrophils in late stages of tumor dramatically decreases
tumor growth (112).

Polarization of Tumor-Associated
Neutrophils
According to a myriad of aforementioned studies on functions
of neutrophils in diverse tumor circumstances, it has been
well-established that TANs acquire pro-tumoral phenotype or

anti-tumoral phenotype depending on related factors (147,
156). In AB12 mesothelioma and LKR lung carcinoma, TGF-β
secreted by the tumor induces neutrophil polarization toward
a pro-tumorigenic phenotype (156). Blockade of TGF-β attracts
anti-tumorigenic neutrophils which release a large number
of proinflammatory cytokines to infiltrate into the tumor
microenvironment (156). Moreover, as the tumor develops,
neutrophils display different functions regarding tumor growth
through pro-tumoral or anti-tumoral mechanisms. IFN-β (type
I IFN) differentiates neutrophils to achieve an anti-tumoral
phenotype, reducing VEGF, and MMP9 expression (78, 79, 157).
Inhibition of IFN-β endows TANs with pro-tumoral properties,
and promotes growth and metastasis of B16F10 melanoma,
MCA205 fibrosarcoma, 4T1 mammary carcinoma, CT26 colon
carcinoma and Lewis lung carcinoma (78, 79, 157). In vitro
study of BGC-823, MGC80-3, SGC-7901, and HGC-27 human
gastric cancer cells has elucidated that interaction between
HMGB1 secreted by the cancer cell-derived exosomes and toll-
like receptor 4 (TLR4) on neutrophils fosters the formation of the
autophagosome, inhibition of ROS production, and upregulation
of MMP9 and VEGF in neutrophils, inducing polarization of
neutrophils, promoting cancer cell migration (158).

CLINICAL ASPECTS

Prognostic Biomarkers
There have been a number of trials to predict cancer prognosis,
including the TNM staging system established by The American
Joint Committee on Cancer/Union Internationale Contre Ie
Cancer (AJCC/UICC) (159). Through the TNM staging system,
tumor prognostic information can be provided depending
on tumor burden, the presence of cancer cells in lymph
nodes (N) and event of distant metastases (M). Nonetheless,
TNM provides limited capacity for accurate prediction (159).
Cancer is a multidimensional disease, beyond difficulties in
cure and prediction, which incurs many systemic alternations
to be considered for effective treatment (159). One of the
alternations emanates from the immune microenvironment.
Reflecting the considerable impact of the immune system on
tumor progression, the application of the immune parameter
(Immunescore) has been introduced in disease classification
to overcome the limitations of the traditional TNM staging
system (159). As described above, presence of monocytes and
neutrophils can be a double-edged sword, pro-tumoral or anti-
tumoral, depending on the characteristics of tumors and applied
therapies. In lung cancer, increased amount of monocytes within
the tumor is associated with a poor survival rate, represented
by progression-free survival (PFS) and overall survival (OS) of
patients (36). In patients with colorectal cancer, profound influx
of CCR2+ classical monocytes from the bone marrow to the
circulatory system is correlated with worse clinical outcomes,
showing accelerated liver metastasis (46). Reversely, in patients
with melanoma, high frequency of classical monocytes allows
us to predict favorable treatment response to anti-PD1 therapy
and increased survival rates (160). Presence of TEMs and M2-
polarized macrophages infiltrated in PDAC is associated with
a high possibility of tumor recurrence and poor survival rates
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(161). In hepatitis B virus related hepatocellular carcinoma,
high percentage of TEMs in peripheral blood monocytes
represent poor overall survival and a shorter time to disease
recurrence after resection (162). Changes in abundance between
TEMs before and at 1 month after initial therapy also could
serve as a biomarker in order to predict overall survival of
hepatocellular carcinoma patients treated with sorafenib, a multi-
kinase inhibitor of tumor angiogenesis (163). In breast cancer,
endometrial cancer, prostate cancer, bladder cancer, ovary cancer,
and urothelial cancer patients, high density of tumor-associated
monocytes/macrophages (TAMs) has been reported to correlate
with poor overall survival rates, while high density of TAMs in
colorectal cancer patients shows longer overall survival (164).
High density of TAMs is also associated with advanced tumor
stages (III+IV) rather than with early stages (I+II) in breast
cancer, oral cancer, and bladder cancer patients (164). However,
there was no observed relation between TAMs and disease free
survival rate in this clinical study (164).

Despite the controversial functions of neutrophils, neutrophil
lymphocyte ratio (NLR) could be a potential biomarker for
clinical use in some cases. After surgical removal of colorectal
cancer (CRC), esophageal squamous cell carcinoma (ESCC),
and PDAC, patients with lower values of NLR have a greater
survival rate and reduced disease progression compared to
patients with high NLR (165–167). When using everolimus for
treatment of metastatic renal cell carcinoma (RCC), patients
with low NLR also represent increased levels of both overall
survival and PFS (168).Meanwhile, NLR inversely correlates with
prostate-specific antigen (PSA) responsiveness to abiraterone
acetate (abiraterone), a medication for metastatic castration-
resistant prostate cancer patients (169, 170). In hepatocellular
patients, tumor-infiltrated neutrophils represent upregulated
PD-L1 expression (91). The ratio of PD-L1+ neutrophils to PD-
1+ T cells helps better predict the disease-free survival of HCC
patients (91). The NLR system is still under investigation across
various cancer types, and it would be safe to be cautious to make
an interpretation of disease prognosis with this system.

On one hand, counting TINs indicates controversial clinical
outcomes. In RCC, presence of TINs has a negative impact on
survival rates (171) and in melanoma patients, high amount
of TINs mediated by activated pSTAT3 is linked to poor
disease prognosis (172). Robust tumor infiltration of neutrophils
also presents a negative disease progression of head and neck
squamous cell carcinoma (HNSCC) (173). In the same manner,
colorectal cancer patients with increased level of TINs are more
likely to acquire a malignant phenotype of cancer and show
adverse prognosis (174). Moreover, upon bevacizumab treatment
(anti-VEGF therapy) for metastatic colorectal cancer patients,
neutrophil infiltration engenders drastically low survival rates
and represents a hostile clinical response against bevacizumab
treatment (90). However, according to a couple of other clinical
researches regarding influence of TINs on colorectal cancer
prognosis, neutrophil infiltration to tumor tissue positively
associates with favorable disease prognosis (175, 176) and
with better responses to 5-FU-based chemotherapy (177).
Interestingly, level of TINsmay affect tumor prognosis differently
depending on the sex of gastric cancer patients. Extensive amount

of TINs reduces mortality risk of female patients while it does
not affect male patients (178). Meanwhile, in non-small cell lung
cancer (NSCLC) TINs do not represent any immediate impact on
recurrence-free survival and overall survival (179).

Tests of functional single-nucleotide polymorphisms in genes
regulating TAMs also enable us to predict clinical treatment
outcomes (180). Through related trials, TBK1 rs7486100, CCL2
rs4586, CCL18 rs14304, and IRF3 rs2304205 have also been
revealed to correlate with overall survival and progression free
survival of metastatic colorectal cancer patients treated with
bevacizumab (180).

Therapeutic Applications
The CCL2-CCR2 chemokine axis plays a major role in
recruitment of TAMs, which renders the immunosuppressive
tumor microenvironment immunosuppressive and thereby
promotes tumor progression (46). Conversely, inhibition of
this axis restores anti-tumor immunity (46). Combination
therapy of CCR2 inhibitor PF-04136309 with FOLFIRINOX
chemotherapy for PDAC restores the anti-tumor immune
microenvironment, preventing CCR2+ monocytes from
emerging from the bone marrow (181). Carlumab is a human
immunoglobulin G1κ monoclonal antibody which specifically
binds to human CCL2 with high affinity, leading to CCL2-
CCR2 axis disruption (182–184). Clinical trials conducted
for Carlumab in ovarian cancer, prostate cancer and other
solid tumors with and without other chemotherapies such
as docetaxel, gemcitabine, paclitaxel+carboplatin, or PLD
has proven that Carlumab is well-tolerated but unfortunately
fails to trigger significant tumor responses, since it could not
sustain the long-term blockade of CCL2 (182–184). Since the
CSF-1/CSF-1R axis is responsible for differentiation and survival
of pro-tumoral TAMs, incessant efforts have been made to
target CSF-1R to eliminate or repolarize TAMs (185). There are
several CSF-1R inhibitors currently in clinical trials in many
tumor types (186). Emactuzumab (RG7155) is a recombinant,
humanized monoclonal antibody of IgG1 subclass, targeting
CSF-1R expressed on macrophages (186). Clinical treatment
of emactuzumab to patients with tenosynovial giant cell tumor
shows durable tumor responses and functional improvement of
patients with significant reduction of infiltrated macrophages in
the tumor (186).

Another CSF-1R inhibitor is pexidartinib (PLX3397), a
small-molecule inhibitor (187). As delineated above, preclinical
studies in diverse solid tumors including mammary carcinoma,
melanoma, lung carcinoma, pancreatic carcinoma, and glioma
have proven that this molecule effectively blocks CSF-1R
signaling, suppresses infiltration of macrophages into tumors,
and accordingly restrains tumor progression (187–191).
The dramatic tumor response to PLX3397 has provided a
rationale to begin work on its clinical applications, currently
ongoing in many solid tumors with and without combination
with pembrolizumab, a monoclonal antibody targeting PD-
1. According to a clinical case report, the progression of
tenosynovial giant cell tumor was inhibited during non-surgical
management with pexidartinib treatment (192).
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In the context of tumor where neutrophils exert detrimental
influence, the activation and homing of neutrophils need to be
interrupted for better prognosis. Repertaxin is a small molecule
inhibitor of CXCR1 and CXCR2 for blocking neutrophil
trafficking (193). In patients with HER-2 negative metastatic
breast cancer, treatment of repertaxin in combination with
paclitaxel shows a durable tumor response with fine safety and
tolerance. In this setting, an increased rate of neutropenia has
not been observed, which needs to be evaluated further (194).
Meanwhile, myeloid cell-derived IDO could be another attractive
target for tumor regression since it shows suppressive activity on
T cells (195). Preclinical research usingMMTV-Neu breast tumor
model has revealed that indoximod, a small molecule inhibitor of
IDO, in combined use of paclitaxel, successfully induces tumor
regression (195). As a clinical trial, targeting IDO with a peptide
vaccine elicits long-lasting disease stabilization in lung cancer
patients along with reduction of Treg frequency and increased
cytotoxicity of CD8+ T cells to kill cancer cells (196). Clinical
application of indoximod is also ongoing in metastatic solid
tumor patients (197). However, it may be asked whether IDO is
an effective target, since phase III ECHO301 trial of epacadostat,
another inhibitor of IDO, with pembrolizumab for melanoma as
a combination therapy failed, missing the first primary endpoint
of improving PFS vs. pembrolizumab alone (198).

CONCLUDING REMARKS

As thoroughly discussed in this review, tumor-associated
monocytes and neutrophils are highly heterogeneous in a
context dependent manner. Setting aside the need for the
fine-tuning, we still have limited knowledge of their versatile
functions in diverse tumor scenarios: cancer types, stages of
disease, and applied therapies. In order to decipher these
multifaceted roles ofmonocytes and neutrophils, there are several
demands to be considered. First, we strongly suggest establishing
orthotopic tumor models for preclinical studies. Ectopic tumor

implantation has been conducted in many pieces of researches
without consideration of organ settings. However, since the
organ specific microenvironment, including different immune
landscape, differently regulate tumor growth and progression,
neglecting it undermines the validation of ectopic tumor models.
Second, we also urge that researches be further progressed
with development of applicable technologies such as single-
cell RNA sequencing, intravital imaging, and mass cytometry.
Application of advanced technological methods not only help
in systemically understanding the heterogeneous and dynamic
tumor microenvironment, but will also let us forecast disease
prognosis and make therapeutic decisions with minimal side
effects. Lastly, more clinical studies are required to validate
prognostic markers and therapeutic agents.

With the fulfillment of these methodological and practical
suggestions, we will be able to heighten our understanding
of heterogeneous functions of monocytes and neutrophils in
various tumor contexts, and further establish effective tumor
therapies based on the comprehensive understanding.
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