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Immunoediting is an important concept in oncology, delineating the mechanisms through

which tumors are selected for resistance to immune-mediated elimination. The recent

emergence of immunotherapies, such as checkpoint inhibitors, as pillars of cancer

therapy has intensified interest in immunoediting as a constraint limiting the efficacy of

these approaches. Immunoediting manifests at a number of levels for different cancers,

for example through the establishment of immunosuppressive microenvironments within

solid tumors. Of particular interest to the current review, selection also occurs at the

cellular level; and recent studies have revealed novel mechanisms by which tumor cells

acquire intrinsic resistance to immune recognition and elimination. While the selection of

escape mutations in viral epitopes by HIV-specific T cells, which is a hallmark of chronic

HIV infection, can be considered a form of immunoediting, few studies have considered

the possibility that HIV-infected cells themselves may parallel tumors in having differential

intrinsic susceptibilities to immune-mediated elimination. Such selection, on the level

of an infected cell, may not play a significant role in untreated HIV, where infection is

propagated by high levels of cell-free virus produced by cells that quickly succumb to

viral cytopathicity. However, it may play an unappreciated role in individuals treated with

effective antiretroviral therapy where viral replication is abrogated. In this context, an

“HIV reservoir” persists, comprising long-lived infected cells which undergo extensive

and dynamic clonal expansion. The ability of these cells to persist in infected individuals

has generally been attributed to viral latency, thought to render them invisible to immune

recognition, and/or to their compartmentalization in anatomical sites that are poorly

accessible to immune effectors. Recent data from ex vivo studies have led us to propose

that reservoir-harboring cells may additionally have been selected for intrinsic resistance

to CD8+ T cells, limiting their elimination even in the context of antigen expression. Here,

we draw on knowledge from tumor immunoediting to discuss potential mechanisms by

which clones of HIV reservoir-harboring cells may resist elimination by CD8+ T cells. The

establishment of such parallels may provide a premise for testing therapeutics designed

to sensitize tumor cells to immune-mediated elimination as novel approaches aimed at

curing HIV infection.
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INTRODUCTION

The cancer immunoediting hypothesis proposes that the immune
system sculpts tumor immunogenicity even as it protects the
host against the development of cancer. This occurs through
a dynamic process consisting of three stages—elimination,
equilibrium, and escape. Tumor elimination is the process
through which the cancer immunosurveillance network is
assembled, and drives the rapid elimination of tumor cells as they
acquire somatic mutations. Equilibrium represents the period of
immune-mediated clinical latency that follows the incomplete
elimination of potentially cancerous cells, where the immune
response and tumor engage in a cycle of tumor cell elimination,
followed by selection and outgrowth of mutants escaped from
immune pressure. The final stage involves the escape of
tumor cells from immune control, resulting in the unrestrained
outgrowth of the tumor. Cancer immunoediting was first
reported in mouse models of cancer, where immunodeficient
mice showed earlier and greater penetrance of carcinogen
induction and spontaneous cancer development compared to
wild-type mice (1–6). A substantial body of evidence now shows
that this process is also prevalent in humans [reviewed in (1, 2,
7)]. Of particular importance, it has been shown that CD8+ T
cells play an important role in cancer immunoediting, especially
in cancers that acquire resistance to the adaptive immune
response (8–10). In this Hypothesis and Theory article, we draw
attention to the similarities between immunoediting in cancer
and HIV, highlighting established and hypothetical parallels
between tumor escape and the persistence of HIV-infected cells,
and their potential implications on future applications of HIV
cure strategies.

Immunoediting in Cancer Evolution
Over the past several decades, there has been increased
appreciation that adaptive and innate immunity can help sculpt
the mutational landscape of cell lineages constituting tumors
during cancer evolution and progression (3, 9–14), in some
cases even before they are macroscopically detectable (15, 16).
Observational studies have revealed that when either mice or
patients are immunodeficient in adaptive immunity, incidence of
certain types of cancer, including viral-induced cancers, increases
(17–19). The overall process of how tumors are sculpted by
adaptive and innate immune responses is referred to as cancer
immunoediting (and less commonly, immune surveillance or
immunoselection). While most studies of immunoediting have
focused on T cell mediated immunoediting, a growing number
of studies provide evidence highlighting the role that Natural
Killer (NK) cells may play, particularly for tumor cells that have
lost class I major histocompatibility complex (MHC) cell surface
presentation (see below) (20–23).

The initial studies proposing the existence of immunoediting
were largely drawn from studies of chemically induced mouse
tumors in interleukin-2 receptor common subunit and VDJ

Abbreviations: CTL, Cytotoxic T lymphocyte; HIV, Human Immunodeficiency

Virus; ARV, Antiretrovirals; ART, Antiretroviral therapy; QVOA, Quantitative

viral outgrowth assay; PCR, Polymerase chain reaction; TCGA, The Cancer

Genome Atlas; TME, tumor microenvironment.

recombinase (RAG) mutant mice that are immunodeficient in
T cells, B cells, and NK cells (15, 16, 24). However, more
recent studies evaluating the landscape of the specific mutations
carried by individual tumors paired with the host patient
HLA alleles provide additional evidence that tumor-specific
changes in MHC-mediated antigen presentation affect tumor
growth in humans (25, 26). All homeostatic nucleated human
cells (except for certain testicular cell types that are immune-
privileged) are decorated by class I MHC molecules on the cell
surface membrane referred to as HLA. These molecules present
proteasome degraded cytosolic 8–11 amino acid peptides to
CD8+ cytotoxic T cells (CTLs) for recognition. Briefly, different
dendritic cell populations (DCs) that encounter tumor cells
can act as antigen presenting cells and present tumor antigens
in the context of class II MHC [reviewed in (1, 2, 7)]. This
cross-presentation by DCs expands and activates CD8+ cells,
as well as CD4+ helper T cells that promote CD8+ cytotoxic T
cell expansion.

Class I MHC HLA is encoded by three genes (HLA-
A, -B, and -C) and is highly polymorphic. Different allelic
combinations of HLA-A, -B, and -C, create significant diversity
between individuals as to which antigens can be presented
to CD8+ T cells. Typically, early in tumor development,
cancer cells retain their HLA, and can be recognized and
eliminated by immune cells if they present mutated host
proteins (referred to as neoantigens). Additionally, cancer cells
may over-express homeostatic antigens found in “normal”
tissues (e.g., Mucin I (MUC1), or the HER2 growth factor
receptor), that can have varying degrees of effect on central
(thymic) tolerance. Recent studies (25, 26) show that, for
human tumors paired with their patient host HLA from
The Cancer Genome Atlas (TCGA), neoantigens with higher
predicted HLA-neoantigen binding affinities, indicative of a
higher likelihood of presentation to CD8+ T cells, were
significantly more likely to experience mutations that decrease
the HLA affinity of the targeted neoantigens. Additionally,
these studies revealed that recurrent oncogenic mutations,
such as KRAS or BRAF or IDH1 (collectively present on
>35% of all solid tumors as well as many hematological
tumors), have low predicted HLA-binding affinities. Thus, these
paired tumor-host studies provide important new evidence
that immunologically invisible human mutations are under an
evolutionary selective pressure.

As mentioned above, cancer immunoediting is typically
delineated into three stages: elimination, equilibrium and escape
(9, 10, 20). Elimination is the first phase, whereby pre-
malignant cells are killed by adaptive and innate immune cells
patrolling normal tissues. This has been studied in mouse
models, where both adaptive (T cell) (4, 8) and innate (NK
cell) immunity (27–29) have important roles. For transformed
cancer cells that evade elimination, perhaps starting even at
the single-cell stage, cancer cell consortia form and enter
the equilibrium stage. During the equilibrium stage, adaptive
and innate immune cells kill some, but not all, tumor cells,
leading to an evolutionary process whereby the epigenetic
and somatic mutation landscape of tumor cells is sculpted.
Consequently, although tumors may not appear to grow
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macroscopically, the “mutanome” of cancer clonal lineages
that together comprise cancer consortia continuously evolve
to promote immune escape. A common model to study this
evolutionary process during equilibrium is colorectal cancer, as
it is (a) often a relatively slow growing tumor, (b) a subset
are hypermutators and have highly elevated mutations rates
from DNA mismatch repair or DNA polymerase Delta/Eplison
that can be tracked sequentially and (c) there are distinct
histopathological stages that occur during its progression (e.g.,
normal colorectal epithelial crypts, aberrant crypt foci, dysplasia,
carcinoma in situ, polyps and adenomas, frank carcinoma
and metastases). Recent studies evaluating the landscape of
tumor mutations during the evolution of colorectal cancers
provide evidence that specific Single Nucleotide Variant (for
example KRAS), small insertion/deletion (for example APC),
and structural variants (e.g., TP53 loss), evolve, both as
these lesions remain in equilibrium and also expand during
progression (30–34).

Tumor cells that have acquired the pre-requisite mutations
necessary to overcome immune pressure during equilibrium
then enter the escape stage. The phenotypic changes required
to reach this stage rely on a variety of factors, ranging
from the geography of the tumor, to whether the cancer
is liquid or solid. In solid tumors, an important step for
immune escape is the development of an immunosuppressive
microenvironment, known as the tumor microenvironment
[TME, reviewed here (35, 36)]. This microenvironment is
generally characterized by the secretion of immunosuppressive
cytokines such as IL-10 and TGF-Beta [reviewed in (37–
40)], nutrient scarcity imposed on immune effector cells by
the ability of cancer cells to scavenge macronutrients from
their environment (41), generation of a hypoxic environment
that inhibits tumor infiltration and killing by T cells, B cells,
and NK cells (42), and the promotion of a extracellular
matrix that both enhances tumor cell growth while inhibiting
immune cell penetration (43). While TMEs are not present
in liquid cancers, similarities remain in how these cancerous
cells escape from elimination, including: (1) the absence of
a strong tumor antigen (44, 45), (2) the downregulation/loss
of MHC-class I expression levels or co-stimulatory molecules
(46, 47), (3) upregulation of exhaustion markers [e.g., CTLA-
4, PD-L1, (45, 48)] (4) or the development of apoptosis
resistant phenotypes due to increased expression of pro-
survival proteins [e.g., BCL-2, MYC, STAT3, and 5, reviewed
here (43)].

Interestingly, some of these characteristics that facilitate the

escape of liquid cancers are similar to those seen in people
living with HIV—Nef downregulation of MHC-I leads to low

antigenicity of infected cells, and viral epitopes rapidly mutate in

response to immune pressure, and escape immune recognition.
Furthermore, our recent work has highlighted the inherent
resistance of HIV-infected cells to immune-mediated elimination
during suppressive anti-retroviral (ARV) therapy (49, 50). The
following sections will highlight the potential mechanisms
through which these phenotypes may arise, and discuss how the
immunoediting of HIV-infected cells may occur.

Treated vs. Untreated HIV Infection As
Distinct Arenas for Immunoediting
In the absence of ARV therapy, HIV infections are characterized
by three stages—acute infection, chronic infection, and AIDS.
Acute infection encompasses the first 4–8 weeks of infection,
and is characterized by rapidly rising viral loads, often to >106

copies/mL, and steep declines in the numbers of CD4+ T cells,
both in circulation and in tissues (51). At ∼6 weeks post-
infection, robust HIV-specific CD8+ T cell responses develop
that capably suppress HIV viremia to a set point that is typically
2–3 logs below peak (52, 53). While CD8+ T cells may control
viral replication through a number of mechanisms (54–56), a
key mode of action is the direct recognition and elimination of
infected cells by CD8+ CTLs (57–60). This viral load set point is
the primary characteristic of the second stage of HIV infection,
known as the chronic phase, and represents the equilibrium
between ongoing viral replication, viral immune evasion, and
elimination of infected cells by the host immune response
[reviewed in (61)]. Individuals with higher viral load set points
progress more rapidly than individuals with lower set points
to the final stage of HIV infection (62); where HIV eventually
overcomes immune pressure in the large majority of individuals,
leading to the onset of AIDS (Figure 1).

The current treatment for HIV is antiretroviral therapy
(ART), which can durably suppress viremia to levels that are
undetectable by clinical tests, and halt progression to AIDS
for as long as treatment is maintained. However, using ultra-
sensitive PCR methods, it has been shown that low-levels of
virus production do persist in the majority of individuals (63),
and are not reduced even if ART regimens are intensified (64,
65). Additionally, anywhere from 4 to 10% of people on ART
may display levels of persistent viremia that are detectable by
standard assays (50–500 copies/mL), even in the absence of
drug resistance (66). Although there is strong evidence that
ongoing cycles of viral replication do not occur during ART (67–
69), uncertainty remains as to why HIV-specific CD8+ T cell
responses do not seem to eliminate all infected cells that are
producing viral particles. Lastly, upon ART cessation, viral loads
rapidly rebound within a few weeks in the majority of individuals
(70). This occurs despite the pre-existence of robust HIV-
specific T cell responses which, though diminished in magnitude
relative to untreated infection, are sustained at readily-detectable
levels in most ART-suppressed individuals (71–74). While these
studies seemingly highlight the limitations of CD8+ T cells in
controlling and eliminatingHIV-infections, multiple studies have
unambiguously established the importance of CD8+ T cells in
viral suppression (52, 57, 58, 75–78). Indeed, in non-human
primate studies, CD8+ T cells are necessary for maintaining viral
suppression of SIV during the course of both natural infections
and ART (54, 79). These contrasting results raise important
questions about why certain HIV-infected cells are efficiently
eliminated by HIV-specific CD8+ T cell responses, while others
persist, and may even continue generating viral particles during
ART. While viral latency is known to play a critical role in HIV
persistence, we will draw on insights from tumor immunoediting
to propose additional cell-intrinsic mechanisms by which HIV
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FIGURE 1 | Immunoediting during natural infection. During the acute phase of infection, HIV rapidly expands infecting new target CD4+ T cells. Approximately 2

weeks post-infection, HIV-specific CD8+ T cell responses develop and eliminate many infected CD4+ T cells decreasing viral burden by ∼1 × 102−3 RNA copies/ml

of plasma. A viral set point is reached when virus replication and CD8+ T cell elimination of infected cells reaches an equilibrium. During the equilibrium phase,

ongoing rounds of viral replication and CD8+ T cell elimination provides evolutionary pressure to select for viral variants that are not recognized by CD8+ T cell

responses. A combination of viral escape variants and CD8+ T cell exhaustion eventually leads to viral escape and progression to AIDS.

reservoir-harboring cells may resist elimination by CD8+ T
cells, and thus pose the question: have cells harboring the HIV
reservoir been immunoedited?

IMMUNOEDITING OF THE VIRUS DURING
THE COURSE OF UNTREATED HIV
INFECTIONS

A critical distinction in our discussion is between immunoediting
of the virus during the course of untreated infections (which
is a well-characterized phenomenon, although not typically
branded as immunoediting), and the more novel idea that
immunoediting may also occur on the level of reservoir-
harboring cell physiology, particularly in the context of ART.
The current section will focus on the former, which largely
consists of the interplay between viral evolution and escape in
response to CD8+ T cell pressure. While HIV infections are
generally established by one to five “transmitter/founder” viruses
(59, 80, 81), the high error rate of HIV reverse transcriptase
(∼1 point mutation per reverse transcription event, and a
recombination frequency of ∼2.8 crossovers) gives rise to a vast
number of HIV “quasispecies,” each with varying degrees of
replicative fitness (82–87). These mutations often incur a fitness
penalty on the virus, as evidenced by the fairly homogenous
makeup of viral sequences prior to CD8+ T cell pressure, despite
the high mutation rate of HIV reverse transcriptase (88–91),
and the presence of secondary compensatory mutations that
arise in response. Despite these fitness costs, multiple lines of
evidence have shown the importance of these mutations for
viral replication, as they modify epitopes targeted by the host
immune response and allow subdominant viral quasispecies to
escape from immune recognition (75, 92–95). This mechanism

of immune escape is well-documented in many longitudinal
studies of HIV-infected individuals, where dominant CD8+ T cell
responses can be matched to changes in the amino-acid sequence
of targeted viral epitopes, leading to poor HLA presentation
and the outgrowth of new HIV quasispecies (57, 96). Such
escape on the level of viral epitope recognition is paralleled by
the phenomenon of “antigen loss” in tumors—for example, the
loss of MART-1 antigen in melanoma patients after adoptive
transfer of MART-1 specific T cells (97, 98), or the loss of CD19
following CD19 targeted CAR T cell therapy for acute myeloid
leukemia (99) [reviewed in (100)]. Thus, immunoediting on the
level of viral sequence diversity has been well-established in
HIV infection, and this “immune escape” is analogous to the
phenomenon of tumor “antigen loss.” Antigen loss, however, is
just one facet of tumor immunoediting, inspiring us to consider
whether other mechanisms may also have parallels in HIV.

DOES IMMUNOEDITING AT THE LEVEL OF
INFECTED CELLS OCCUR IN INDIVIDUALS
ON ART?

Immunoediting in untreated HIV infections involves the
equilibrium between CD8+ T cell responses and HIV, followed
by the eventual escape of HIV from CD8+ T cell killing in the
majority of individuals. However, viral replication to a degree
that allows for evolution does not occur during suppressive anti-
retroviral therapy (67–69), preventing the development of new
HIV escape mutations in response to CD8+ T cell mediated
immune pressure. Instead, infected cells are thought to persist
and evade the immune response during ART by hiding in a non-
immunogenic quiescent, or latent, state. Infected cells that do not
undergo this transition are largely eliminated: HIV DNA levels
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experience an 86% decline within the first year following ART
initiation before stabilizing (101–103), while HIV RNA levels
in the plasma drop precipitously over the first 7–10 days post-
ART, with a half-life of 6 h, followed by a second phase of slower
viral decay with a half-life of 14 days (104, 105). Infected cells
that survive this selection and persist are remarkably stable, with
a minimal half-life of at least 44 months as measured by total
or intact HIV DNA, or by quantitative viral outgrowth assays
(QVOAs) assessing the number of cells infected with replication
competent proviruses (106–108). This suggests that the persistent
reservoir would require at least 73 years to naturally decay in the
majority of people living with HIV.

It is important to note that although HIV-specific CD8+ T
cell responses decay sharply upon ARV initiation, in parallel
with frequencies of HIV-infected cells, they are still readily
detectable by ex vivo assays (ex. ELISPOT) in the large majority
of individuals on long-term suppressive ART (71). The main
paradigm for how infected cells persist during ART, despite the
existence of CD8+ T cell responses, is that the reservoir “hides”
from the immune system; this occurs primarily by maintaining a
state of viral latency, but also through sequestration in anatomical
sites that are poorly accessible to CD8+ T cells, such as lymph
node follicles (109, 110). While these are indisputably important
mechanisms of persistence, we propose that interactions between
reservoir-harboring cells and CD8+ T cells are also likely to
occur at some frequency in individuals on long-term ART (see
Is Immune Selection Pressure Exerted on Infected Cell Clones
During ART?, below), providing the potential for the shaping
of the landscape of reservoir harboring cells in ways which may
parallel tumor immunoediting.

Immunoediting is an evolutionary process, and thus will
occur over time when the following three requirements are
met: (i) reproduction, (ii) selective pressure, and (iii) heritable
variation (14). The mechanisms by which these criteria are met
in tumor cells are described above. Here, we make the case
that these ingredients are also present in the persistent HIV
reservoir, defined as follows: (i) reproduction—clonal expansion
of HIV reservoir-harboring cells, (ii) selective pressure—ongoing
immune recognition and clearance of certain reservoir-harboring
cells, and (iii) heritable variation—genetic or epigenetic features
of reservoir-harboring cells that confer differential susceptibility
to immune recognition and clearance.

Reproduction—Expansion of Clones of
HIV-Infected Cells During ART
A major hallmark of cancer is the ability of cancer cells
to promote continued expansion, even in a nutrient scarce
environment, or lack of external stimuli. These hallmarks are
a result of mutations in oncogenes (i.e., MYC), which promote
growth, or tumor suppressor genes (i.e., p53), which may inhibit
cell division, repair DNA damage, or induce apoptosis if cellular
functions become deregulated. In liquid cancers, the deregulation
of c-myc—e.g., translocation from chromosome 8–14 in Burkitt’s
lymphoma (111)—generates abnormally high levels of MYC
expression, resulting in enhanced cell cycle progression and
cell growth (112). Conversely, p53 induces cell cycle arrest and

apoptosis in the presence of cellular stress signals such as nutrient
deprivation or DNA damage, and mutation of this gene allows
cancer cells to continually proliferate under otherwise genotoxic
conditions (113). Together, these gene mutations allow cancer
cells to engage in constant clonal proliferation.

In contrast to cancer cells, the HIV-reservoir is thought
to largely reside in long-lived resting memory CD4+ T cells,
where the expansion and/or division of these cells are generally
driven by either recognition of cognate antigen, or cytokine-
induced homeostatic proliferation (114). Until recently, it was
generally thought that an HIV-infected cell would be incapable
of expanding in numbers, as cell division was thought to be
inextricably linked to viral expression—which in turn, it was
thought, would lead to death through viral cytopathic effects
or immune-mediated elimination (102, 103). However, multiple
studies have since demonstrated the ability of infected cells
to proliferate in vitro. Hosmane et al. observed in QVOAs
(115) that increasing numbers of cells producing replication
competent viruses were found as CD4+ T cells were subjected
to additional rounds of activation by mitogens (116), suggesting
that cell activation and division are not intrinsically linked
with reactivation of latent proviruses. Furthermore, a study
by Bui et al. observed sustained levels of HIV RNA in a
culture supernatant over 21 days, following activation with
PMA/ionomycin, including sequences matched to replication
competent viruses found in QVOAs. As these assays were
performed in the presence of ARVs, these results demonstrate
that production of replication competent viruses in reservoir-
harboring cells does not necessarily lead to cell death (117).

The fact that HIV-infected CD4+ T cells can clonally expand
in vivo was unambiguously established by the observation that
40–60% of all cells harboring proviruses had genomic integration
sites that were identical to those of at least one other infected
cell (118–121). Since HIV integrates into the genome without
targeting specific sequences, it is extraordinarily improbable
that the same integration site would occur independently in
two separate cells, indicating instead that these cells clonally
expanded from a common infected-cell ancestor. As the
integration site loop amplification assay used to determine
proviral integration sites (120) only amplifies a small portion
of the 5′ and 3′ ends of the provirus, it was unclear whether
these expanded clones contained intact proviruses, vs. the
defective proviruses that make up the large majority of proviruses
in individuals on long-term ART (ex. containing deletions,
hypermutations, or other mutations that render them replication
incompetent) (122, 123). It thus initially seemed that a simple
potential explanation for how these cells could divide, without
dying from cytopathic effects or immune elimination, was that
they may contain defective proviruses—a subset of which are
incapable of expressing virus or viral antigens (124). However,
multiple studies have since provided evidence indicating that
a subset of these clonally expanded populations can harbor
intact, replication competent proviruses (125–128). These studies
utilized QVOAs to isolate viral RNA from single viruses, and
then assessed their clonality on the basis of viral sequences. It
was inferred by phylogenetic and statistical approaches that these
clonal proviruses almost certainly arose as the result of clonal
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expansion of the host cell, as opposed to the seeding of multiple
infections by a single massive infection event.

More recently, a novel assay (matched integration site and
proviral sequencing, MIP-seq) was developed to determine
near full-length proviral sequences and the corresponding
integration site simultaneously (129). This assay utilized a
limiting dilution of proviral templates, followed by multiple
displacement amplification to generate multiple copies of the
proviral template and surrounding DNA, which could then be
used for both full-length sequencing and integration site analysis.
This approach definitively demonstrated that clonally expanded
cells could indeed harbor intact proviruses (129). Moreover, the
authors observed that these intact proviral sequences matched
the sequences of viruses that had grown out in previous
QVOAs from these same individuals. Thus, clonal expansion
provides a mechanism through which the “replication with
heritability” criterion of evolution may be fulfilled, accounting
for the expansion of certain infected cell clones while others
are eliminated.

Is Immune Selection Pressure Exerted on
Infected Cell Clones During ART?
Clonal expansion of HIV reservoir-harboring cells occurs in
a setting where the overall size of the reservoir is relatively
stable (106, 108). This implies that the death or elimination
of some infected cells must occur on an ongoing basis, to
counterbalance clonal expansion. A recent study examined
this, by analyzing clonal composition of replication competent
reservoir viruses (from viral outgrowth assays) longitudinally
in 8 study participants. Wang et al found that while most of
the clonal proviral populations were found at each time point
throughout the course of the study, their proportional makeup
of the total population differed at each time point (130). The
authors observed a similar variation in the makeup of HIV clones
found in the plasma of these participants, and concluded that
populations of infected cell clones likely persist, but change in
proportion relative to each other (“wax and wane”) over time.
There are three possible and non-mutually exclusive explanations
of these population dynamics: (i) stochastic effects—either
random fluctuations of in vivo prevalence or in sampling, (ii)
driven by the physiology of the CD4+ T cells themselves—ex.
Expansion of a given clone driven by exposure to its cognate
antigen, and iii) driven by fitness differences with respect to a
selective pressure imposed on the infected cell.

In the oncology setting, a key determinant of whether or not
a cancer cell clone will be subject to immune selection pressure
is whether it possesses neoantigens that can be recognized as
foreign by the immune system. In the case of an HIV reservoir-
harboring clone, foreign antigens exist in the form of provirus-
encoded viral genes. Moreover, these viral gene products are
known to be immunogenic—in particular Gag, Pol, and Nef—
and, in untreated infection, stimulate high magnitude T cell
responses in the majority of infected individuals. In considering
whether a reservoir-harboring clone is subject to immune
selection, the key question is therefore the degree to which these
gene products are expressed in an individual on ART.

In the large majority of individuals, cell-associated HIV RNA
remains detectable at relatively low, but stable, levels in ex vivo
CD4+ T cells even after years of suppressive ART (131). While
the presence of viral RNA cannot be equated with protein
expression, given that blocks to translation can exist at various
levels, including splicing (132), and nuclear export (133), the
transcriptional level data also are not counter-indicative of the
possibility that antigen expression may occur at some level
in individuals on ART. The direct assessment of HIV antigen
expression in individuals on ART is limited by the much poorer
sensitivity of protein vs. RNA detection assays, given the low
frequency of infected cells. However, some studies have reported
the detection of HIV proteins in ex vivo T cells from individuals
on long-term ART (134). One way to infer whether ongoing
interactions occur between the immune system and HIV in
individuals on ART is to study the decay of HIV-specific immune
responses in this context.

The maintenance of effector immune responses is dependent
upon the presence of antigen (135–138). In addition to
being a general tenet of immunology, this is supported by
several lines of evidence in HIV. The first comes from the
study of rare individuals who, without ongoing ARV therapy,
exhibit extraordinary control over HIV infection as defined by
undetectable plasma viremia by a single copy assay, extremely
low to undetectable HIV DNA levels, and difficult to isolate
replication-competent virus (139). These extremely low to
absent levels of HIV were associated with the loss of HIV-
specific antibody responses (sero-reversion), and with low to
undetectable HIV-specific CD8+ or CD4+ IFN-γ responses in
ex vivo PBMCs. In vitro stimulation did however result in the
proliferation of HIV-specific T cells and subsequent antiviral
activity, suggesting that cells had been present in a memory
state. In contrast, while ART-treatment initially results in the
decay of HIV-specific T cell responses with a half-life of 38.8
weeks for ∼2 years (140), these then appear to stabilize, as
HIV-specific T cell responses are readily detectable in ex vivo
assays (ex. IFN-γ ELISPOT) in the large majority of individuals—
even those who have been on treatment for over a decade
(71). Similarly, while HIV-specific antibody responses wane upon
initiation of therapy, ART-treated individuals do not sero-revert
[with the exception of some individuals who initiate therapy
very early (141)]. The second line of evidence for ongoing
interactions between the immune system and HIV comes from
the observation that themagnitudes of HIV-specific Ab responses
correlate directly with frequencies of HIV-infected cells (HIV
DNA) in individuals on long-term ART (142). Similarly, we have
observed that T cell responses directed against the early HIV
gene product Nef correlated directly with HIV DNA in this
cohort (with Ab and T cell responses also correlating with each
other) (71). While additional longitudinal studies are needed,
these data are consistent with an ongoing interaction between
HIV-infected cells and the immune system, including CD8+ T
cells. Finally, it is interesting to note that the two individuals
who achieved long-term remission of HIV through bone marrow
transplantation—the “Berlin patient” and the “London patient”—
also sero-reverted, and the London patient lost HIV-specific T
cell responses (143, 144), though the ablation of the recipient
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immune systems does complicate the applicability of these
cases to the current argument. Thus, while additional study
is needed, we propose that the preponderance of evidence
supports some level of ongoing interaction between the immune
system and HIV-infected cells in individuals on long-term
ART. If this occurs, it would satisfy the second criteria for
the evolutionary process of immunoediting to occur—namely,
selective pressure.

How Might Reservoir-Harboring Clones
Possess Heritable Variation in
Susceptibility to Immune Clearance?
In the tumor immunoediting model, heritable variations
generally arise during the cell replication cycle due to the failure
of DNA mismatch repair enzymes to fix mutations, or when the
cell fails to undergo apoptosis following a chromosomal break
or translocation. Mutations that confer a selective advantage—
through enhanced cell proliferation, resistance to apoptosis,
and/or resistance to immune mediated elimination—are passed
on to progeny cells, which will continue accumulating mutations
that improve their survival or proliferative capabilities. Two
major pathways that are mutated in many cancers, are those
involved in MHC-I expression and BCL-2 overexpression,
paralleling observations in reservoir harboring cells: the HIV
protein Nef downregulates MHC-I expression, while Tat can
upregulate BCL-2 expression. Here, we propose three potential
sources of heterogeneity in the susceptibility of a given reservoir-
harboring cell to immune-mediated elimination in ART-treated
individuals: (i) virus intrinsic factors, (ii) host cell intrinsic factors
(iii), and proviral integration sites.

Virus Intrinsic Sources of Heterogeneity in

Susceptibility to CTL
Virus intrinsic mechanisms include variation in targeted epitopes
that affect sensitivity to CD8+ T cell recognition, as discussed
in section Immunoediting of the Virus During the Course of
Untreated HIV Infections (above), as well as variable activity
of viral immune evasion activity. As an example of the latter, it
has been recently demonstrated that viruses reactivated from the
reservoirs of ARV-treated individuals can vary greatly in their
abilities to downregulate HLA-C through the actions of HIV-Nef
(145). Of the three mechanisms of heterogeneity proposed here,
these virus intrinsic mechanisms are the most well-established,
and thus will not be a principle focus of this Hypothesis and
Theory article.

Host Cell Intrinsic Sources of Heterogeneity in

Susceptibility to CTL
With respect to host cell intrinsic mechanisms, it is known that
various CD4+ T cell subsets display natural heterogeneity in their
intrinsic susceptibility to CD8+ T cell-mediated killing. Effector
and transitional memory CD4+ T cells are more susceptible to
elimination than central memory CD4+ T cells (146), where the
majority of the latent reservoir is thought to reside in (147).
Another study observed that the CD4+ T cells of elite controllers
were intrinsically more susceptible to CD8+ T cell mediated
elimination than those from progressors, suggesting that CD4+

T cell sensitivity to killing may play a role in disease outcomes
(148). Although the mechanisms underlying this heterogeneity
within the CD4+ compartment are not well-understood, multiple
mechanisms of resistance are known in other cell types. CTL
protect themselves from this killing process by inactivating
perforin through Cathepsin B or CD107a expression (149, 150).
Similarly, macrophages and dendritic cells avoid being killed
by expressing serine protease inhibitors that degrade granzyme
B (151–154). BCL-2 can also confer resistance to CTL further
downstream in both the perforin/granzyme B and FasL/Fas
pathways by sequestering Bid, thus preventing mitochondrial
membrane permeabilization by tBid (155, 156). In recent work,
we have identified one mechanism by which HIV reservoir
harboring cells are disproportionately resistant to CTL killing:
through the over-expression of the prosurvival factor BCL-2 (50).
Interestingly, previous studies have also described a disparate
role for BCL-2 in the survival of reservoir-harboring cells
through prevention of apoptosis mediated through Casp8p41,
an HIV-protease cleavage product of procaspase-8 (157–159).
While this is a fairly nascent area of research, barring the
null hypothesis—which is that all CD4+ T cells are precisely
equal in their susceptible to killing—it stands to reason that
any heritable variation in susceptibility to CTL will influence
which infected cells survive to form the persistent reservoir,
and thus the subsequent sensitivity of the reservoir to immune-
mediated clearance.

Proviral Integration as a Potential Source of

Heterogeneity in Susceptibility to CTL
Likely the most provocative of our proposed sources of
heterogeneity in sensitivity to CTL is the potential role of proviral
integration sites. As a retrovirus, a defining step in the lifecycle of
HIV is integration of the proviral DNA into the host genomic
DNA. After reverse transcription generates a double stranded
cDNA of the viral RNA, the reverse transcription product is
shuttled into the nucleus via the nuclear pore complex as part
of a pre-integration complex (PIC). Once inside the nucleus,

Integrase (IN) resects 2 nucleotides from both 3
′

ends of the viral
DNA molecule, binds the target genomic DNA, then makes a 5-
nucleotide staggered cut in the host DNA allowing for transfer of
the viral DNA onto the host genome where host enzymes, DNA
polymerase and ligase, fill in the gaps and irreversibly ligate the
two DNA strands together—now designated the HIV provirus
[reviewed in (160)]. While HIV integration occurs across the
human genome, the chromosomal location of integration is
not completely random. In vitro studies have shown that HIV
preferentially integrates into actively transcribed genes, gene-rich
regions, intronic regions, and largely avoids promoter regions
(161). Preferences for these sites are largely mediated by cellular
cofactors that bind IN and possess chaperone-like and chromatin
tethering activity, most notably, the transcriptional activator
LEDGF/p75 (162, 163). While LEDGF/p75 plays an important
role in guiding chromosomal integration, it is not a necessary
factor as loss of LEDGF/p75 showed no decrease in the overall
frequency of HIV integration, but instead resulted in an altered
proviral landscape (164).
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In vivo studies of patients on long-term ART corroborated
in vitro findings with a preference for HIV integration into
transcriptionally active genes, and principally within introns
(165–167). In vivo studies have also identified large, clonally
expanded populations of HIV-infected cells with integration
sites within genes controlling cell growth and division (120,
121). Of note, multiple patients have been identified with
integrations in the BACH2, MKL2, and STAT5B genes. In vitro
infections of primary cells demonstrated integrations throughout
BACH2 and MKL2 with equal distribution of chromosomal
orientation. However, large clonally expanded proviral sequences
from patients on long-term ART were all in the same orientation
as gene transcription and found only within a specific subset
of introns (121). While the exact mechanism of survival is not
completely understood, it is believed that BACH2 and MKL2
gene expression may be driven by the HIV LTR promoter
[reviewed in (161)]. The existence of these clonal integrations
within genes associated with cell growth in patients on long-
term ART strongly suggests a role in maintaining the persistent
reservoir through the induction of clonal expansion. However,
to our knowledge, there are currently no studies extensively
evaluating the impact that the site of HIV integration may
have on maintaining the persistent reservoir by providing a
mechanism of resistance to immune recognition and clearance.

Our hypothesis that HIV proviral integration sites may
alter susceptibility of target cells to CTL recognition and
elimination was inspired by findings related to immunoediting
in cancer. Immunotherapies have recently achieved remarkable
success in the treatment of certain types of cancer, but exhibit
variability in responses across patients (168). A recent study
of patients undergoing anti-PD-1 therapy (pembrolizumab)
for metastatic melanoma who experienced cancer relapse after
tumor regression, found that a majority of relapsing cancer cells
contained somatic mutations in genes associated with interferon
receptor signaling (JAK1 and JAK2) or antigen presentation
(B2M) (169). These cancer cells were therefore less responsive
to IFN-γ or had reduced MHC-I surface expression, leading to
escape from immune-mediated control. Additionally, a number
of groups have employed high-throughput CRISPR screens to
identify genes controlling susceptibility/resistance to immune
clearance (170, 171). Using a large-scale CRISPR screen of a
melanoma cell line, Patel et al. found that disruptions in antigen
processing/presentation and IFN-γ signaling pathways resulted
in decreased CD8+ T cell effector functions (170). The top
hits identified in the CRISPR screen were compared back to
the TCGA database where it was demonstrated that identified
mutations in these genes naturally occur in human cancers. Thus,
the acquisition of resistance to CTLs by tumors can underlie poor
responses to immunotherapy.

Integration of the HIV genome into cellular genes has
parallels with cancer-induced mutations or CRISPR-mediated
disruptions, leading us to posit that HIV integration into genes
essential for immune recognition and signaling could reduce
CD8+ T cell killing of those cells, thereby resulting in an
immunoedited subset of survivor cells enriched for integrations
in those genes. A few important differences, however, exist
between CRISPR-mediated gene disruptions and those caused

by HIV proviral integration. First, CRISPR gRNA libraries are
developed to specifically target exonic regions, resulting in loss-
of-function mutations. As discussed previously, the vast majority
(93–96%) of HIV integrations occur within introns (165–167).
The impact of a ∼9 kb intronic insertion containing an LTR
promoter, or of a truncated defective provirus, depends upon
a number of factors, and could plausibly increase, decrease,
or not at all impact gene expression and/or protein function.
Second, HIV only integrates into a single locus of a given gene
whereas CRISPR-mediated cleavages typically disrupt both alleles
of the target gene. Therefore, HIV integration into a single allele
may not impact overall protein function. However, a number of
genes exhibit haplo-insufficiency, whereby a single copy of the
gene product is not sufficient to support normal gene function,
and thus disruption in a single allele may disrupt normal gene
function; either wholly or on a nuanced level [reviewed in (172)].

While it is possible that the site of HIV integration may
impact the susceptibility of an individual cell to recognition
and/or elimination by CD8+ T cells—thereby providing a means
of immunoediting—further research is needed to determine
if this is indeed a genuine HIV-induced survival mechanism.
There are quite daunting challenges involved in testing this
hypothesis: (i) The fact that most proviral integrations in ARV-
treated individuals are associated with defective proviruses—
many of which are non-antigenic—comprise a source of
“noise,” since only the minority of antigen-expression competent
proviruses would potentially be subject to immune selection.
Thus, bulk integration site analysis would be expected to
miss any selection for integration sites that affect immune
susceptibility. (ii) There is extensive complexity inherent in
both the vast landscape of potential unique integration sites
across the genome, and the divergent impacts that any
potential integration could have in terms of gain/loss of
function, or more exotic effects such as the generation of
novel chimeric proteins (173). This will likely make it much
more difficult to discern patterns than simple CRISPR loss
of function mutations. (iii) Any selection on the level of
integration sites would occur on the backdrop of differential
susceptibility to CTL on virus- or host-cell intrinsic levels.
As a simple example, an infected cell with an integrated
provirus that contains escape mutations to autologous CD8+

T cell responses would be exempt from any putative selection
on the level of integration sites, and thus would confound
analysis if not accounted for. Despite these challenges, the
question of whether or not integration sites affect immune
susceptibility may be addressable if one were to effectively
harness novel approaches to obtaining integration sites in
conjunction with whole provirus sequences; and to apply
sophisticated analytical approaches. Inspiration for how this
might be approached can be drawn from the study of cancer
immunotherapy resistance—ex. the TIDE (Tumor Immune
Dysfunction and Exclusion) computational framework, which
draws on transcriptomic signatures from 33,000 samples taken
across 189 studies to predict immune checkpoint blockade
responses and derive insights into immunotherapy resistance
mechanisms (174). While the outcomes of such efforts in the
setting of HIV may indeed be to find that integration sites
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FIGURE 2 | Parallels in immunoediting: comparing cancer and HIV during suppressive ART. Cancer–Elimination: Innate and adaptive immune cells work together to

destroy developing tumors before they become clinically apparent, which play critical roles in cancer immunosurveillance. Highly antigenic tumor cells are recognized

and eliminated by increased antigen presentation and IFN-γ, NKG2D, TNF, IL-12, TRAIL, Perforin, and Granzymes. Equilibrium: Tumor cells that survive elimination

may enter the equilibrium phase. T cells, IL-12, and IFN-γ work in tandem to maintain the tumor cells in a state of functional dormancy. Tumor cells are in a state of

genetic instability, and acquire an ever-increasing number of mutations to resist immune pressure. Escape: Tumor cells surviving the equilibrium phase of the cancer

immunoediting process enter the escape phase, where tumor growth is no longer blocked by immunity. Tumor cell evasion generally occurs in cases with poor

antigen presentation, and increased tumor-derived immunosuppressive cytokines, ligands, and inhibitors of T cell responses (see section Immunoediting in Cancer

Evolution). Tumor cells escaped from immune pressure can grow unchecked, resulting in clinically apparent disease progression. HIV–Elimination: Seeding of millions

of infected cells, each with a unique viral and host cell signature. The majority of infected cells die from viral cytopathicity or immune-mediated elimination following

ART initiation. Some infected cells persist. Equilibrium: low-level/episodic antigen presentation allows for ongoing selection of infected cells. Some infected cell clones

are eliminated, while others persist and expand. The overall number of infected cells remains stable. Escape: Expansion of infected cell clones with characteristics that

enhance their resistance to immune recognition and/or elimination.

have no bearing on susceptibility to CTL, the alternative result
would both have important implications for efforts to cure HIV
infection, and would comprise a potential source of fundamental
immunological insights—with the potential to cross-fertilize our
understanding of cancer immunoediting. The proposed parallels
between the immunoediting of tumors and the persistent HIV
reservoir are summarized in Figure 2.

IMPLICATIONS OF A PERSISTENT
RESERVOIR THAT HAS BEEN
IMMUNOEDITED

The potential ongoing selection of certain infected cell
populations in vivo during suppressive ART has many
implications for current cure approaches, and may help
explain the differential outcomes of these strategies in vitro vs.
in vivo. One particularly prevalent approach, termed “kick-
and-kill,” combines latency reversing agents to initiate viral
transcription, ARVs to prevent viral spread, and effectors to
eliminate reactivated virus-harboring cells. While applications

of kick-and-kill initially had shown great promise in primary
cell models of latency (175), these approaches have, thus far,
not measurably reduced the latent reservoir in multiple clinical
trials (176–182). Multiple studies have also attempted to apply
kick-and-kill approaches in further in vitro or ex vivomodels, but
have not definitively shown reductions in the natural, replication
competent reservoir (49, 179, 183, 184), suggesting that there
are intrinsic differences in susceptibility to CD8+ T cell killing
between natural and model reservoirs.

One possibility is that the remaining infected cells comprising
the latent reservoir may be adapted to survive the host immune
response, as our group has provided evidence that cells harboring
the latent reservoir may be intrinsically resistant to CD8+

T cell killing (49). We combined maximal T cell activating
agents, such as stimulation using anti-CD3/CD28 antibodies
or PMA/ionomycin, with autologous HIV-specific CD8+ T cell
clones targeting non-escaped epitopes, and still failed to detect
decreases in the number of replication competent proviruses by
QVOA. We then harvested the replication competent proviruses
that grew out in the QVOA, which are individual clonal
lineages due to the limiting dilutions utilized in QVOAs,
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and super-infected activated CD4+ T cells from the same
donor. We then co-cultured these newly infected cells to
the same HIV-specific CD8+ T cell clones as before, and
observed elimination of nearly all the infected cells. These
contrasting results of efficient CD8+ T cell elimination of
infected cells during productive infections, but inability in
eliminating latently infected cells, suggests that there likely
are host-cell associated factors that impact survival of latently
infected cells.

Drawing from the tumor immunoediting literature, we
identified overexpression of the pro-survival protein BCL-2
as one potential mechanism of resistance—which can act to
antagonize perforin/granzyme killing by sequestering truncated
BH3-only domain members of the BCL-2 family (185). Using
cells from individuals on long-term ART, we observed that
reactivated HIV reservoir-harboring cells from ex vivo CD4+

T cells over-expressed BCL-2 relative to uninfected cells (50).
In contrast, we did not observe over-expression in ex vivo HIV
infected cells from ART-naïve individuals—suggesting that this
was a unique feature of long-term reservoirs. The addition
of the BCL-2 antagonist ABT-199 to combinations of HIV-
specific CD8+ T cells and latency reversal agents resulted in
partial eliminations of ex vivo reservoirs from ARV-treated
individuals. We propose that these results comprise proof-of-
principle for the idea that reservoir-harboring cells may be
selected for resistance to CD8+ T cells, but would suggest that
BCL-2 over-expression may be just one of many mechanisms yet
to be discovered.

Other long-term implications of the potential immunoediting
of persistently HIV-infected cells during suppressive ART are
unclear. In a paired submission to this same issue, we discuss in
detail a model of virus- and host-coordinated immunoediting of
a retrovirus that causes cancer: adult T cell leukemia/lymphoma
arises in ∼5% of individuals living with the Human T cell
leukemia virus type 1 (HTLV-1), although the development
of malignancy can take 40–50 years (186, 187). The HTLV-
1 specific immune response acts in concert with cancer
immunosurveillance, driving the proliferation of immortalized
immune-evading infected clones with identical integration sites
that may acquire properties through years of equilibrium that can
drive malignancy. Virus- and host-coordinated immunoediting
sculpts the selection of a single clonal population to become
malignant after decades of latency and clonal expansion (188).
Although HIV does not persist through the classical escape
phase and is not known to cause T cell malignancy, the
immunoediting of HIV-infected cells that persist through ART
may drive the selection of clonal populations of cells arising
from a single integration site, which persist indefinitely. We
argue that this persistence may represent the escape phase
for people living with HIV on ART, particularly for clonally
expanded cells harboring replication competent HIV that remain
refractory to immunosurveillance and survive for years. The
fate of these cells remains unknown, and understanding the
mechanisms of their survival will ultimately inform their capacity
to be purged.

SUMMARY

The recent revolution in cancer immunotherapy has underscored
the potential for the human immune system to combat tumors,
and shone a spotlight on the diverse mechanisms by which
cancers can acquire cell-intrinsic immune resistance. Using
sophisticated Omics approaches, and cutting-edge technologies,
it has been revealed that both the genetic and epigenetic features
of a given tumor cell can influence its intrinsic sensitivity
to immune recognition and elimination. This variation serves
as the basis for an evolutionary process known as clonal
selection, which leads to the escape of tumors that have been
immunoedited. Some mechanisms of immunoediting may be
therapeutically targetable—e.g., IFN-γ treatment to augment
antigen processing and presentation, or PD-L1 blockade for
tumors that overexpress this co-inhibitory ligand (189). In
contrast, the field of HIV persistence has generally not considered
the idea that reservoir-harboring cells themselves may differ
intrinsically in their susceptibilities to CTL, focusing instead on
the roles of virus expression/latency, and on aspects of CTL
functionality. Here, we have attempted to build a case for the
potential role of cell-intrinsic immunoediting in the persistence
of the HIV reservoir; including preliminary evidence supporting
this model, suggested mechanisms for how this may arise, and a
discussion of how this theory can be further evaluated. In moving
forward, we propose drawing on the concepts, technologies,
and methodologies that have been developed to study tumor
clonal section and immunoediting to accelerate progress toward
understanding the nature of HIV persistence, and how this may
be overcome to cure infection.
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