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For many decades, glucocorticoids have been widely used as the gold standard

treatment for inflammatory conditions. Unfortunately, their clinical use is limited by severe

adverse effects such as insulin resistance, cardiometabolic diseases, muscle and skin

atrophies, osteoporosis, and depression. Glucocorticoids exert their effects by binding

to the Glucocorticoid Receptor (GR), a ligand-activated transcription factor which both

positively, and negatively regulates gene expression. Extensive research during the past

several years has uncovered novel mechanisms by which the GR activates and represses

its target genes. Genome-wide studies andmousemodels have provided valuable insight

into the molecular mechanisms of inflammatory gene regulation by GR. This review

focusses on newly identified target genes and GR co-regulators that are important for

its anti-inflammatory effects in innate immune cells, as well as mutations within the GR

itself that shed light on its transcriptional activity. This research progress will hopefully

serve as the basis for the development of safer immune suppressants with reduced side

effect profiles.
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INTRODUCTION

Glucocorticoids as Immunomodulators
Glucocorticoids (GCs) are steroid hormones secreted in a diurnal and stress responsive manner,
under the control of the hypothalamic-pituitary-adrenal (HPA) axis (1).GCs regulate numerous
essential physiological and developmental processes, ranging from lung maturation to glucose
metabolism and immune responses. This is clearly demonstrated in mice with abrogated GC
signaling, which die perinatally due to pulmonary atelectasis (2). The effect on lung maturation
is not merely limited to mice: in clinical practice, pre-term neonates are given GCs to accelerate
pulmonary development (3). In adult mammals, endogenous GCs play important homeostatic
roles. For instance, GCs increase glucose production through glycogenolysis and gluconeogenesis
in the liver upon fasting, and as part of daily rhythmic energy mobilization (4, 5).

Pharmacologically, GCs are widely used to treat acute and chronic inflammatory diseases, such
as asthma, allergies, rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis etc., due
to their potent anti-inflammatory actions. In addition, GCs are commonly prescribed to prevent
graft-vs.-host immune responses after organ transplantation and for certain cancer types, such as
lymphoma (6, 7). Currently, it is estimated that 1–3% of the adult Western population are receiving
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GCs, demonstrating their broad applications (8). GCs have been
used for over 70 years as anti-inflammatory drugs, despite their
adverse effects on systemic metabolism, which were noted soon
after their first clinical use (9). Long term exposure to GCs
induces adipocyte hypertrophy, glucose intolerance and insulin
resistance, hypertension, muscle and skin atrophy, osteoporosis,
glaucoma, impaired wound healing and psychological effects
such as mood changes, insomnia, and depression (4, 10).
Long term GC exposure due to increased secretion from
endocrine tumors or chronic exogenous administration, often
causes a pathological condition known as Cushing’s syndrome
(11). Cushing’s manifests as debilitating muscle wasting, fat
accumulation, and susceptibility to infection and can be fatal if
left untreated.

Separating beneficial therapeutic properties from detrimental
side effects based on a molecular understanding of GC action
is a long-term goal of biomedical research. Furthermore, the
glucocorticoid receptor (GR) has been key to understanding the
basic molecular concepts of GC action. There have been several
paradigm shifts of the molecular understanding of GC/GR
mechanisms since cloning of the receptor more than 30 years ago
(12). The generation of GR mutants that interfere with specific
functions of the receptor, the introduction of several mutants
into preclinical models and the characterization of genome wide
profiles all revolutionized our view of GC action. In this review,
we summarize recent insights into the anti-inflammatory effects
of GR, focusing on mechanisms of macrophage gene regulation,
GR co-regulators, novel GR target genes, and mouse models of
inflammation. We also summarize the current understanding of
immune modulatory mechanism in the innate immune system
based onmousemutants. Thesemight explain why, despite much
progress, developing novel immune modulators that match the
efficacy of GCs but avoid the adverse effects remains a major
challenge for the field.

The Glucocorticoid Receptor
The endogenous GC, cortisol in humans and corticosterone
in rodents, binds to the GR, encoded by the NR3C1 gene.
GR belongs to the nuclear receptor superfamily of ligand
activated transcription factors. It consists of threemajor domains,
the central DNA binding domain (DBD), the N-terminal
transactivation domain (NTD), and the C-terminal ligand
binding domain (LBD) [(12); Figure 1].

The NR3C1 gene encodes several isoforms that are generated
by alternative splicing and alternative initiation of translation
(10, 13). The full-length isoform GRα-A is the focus of this
review. GRβ, a second splice variant, and other GR isoforms,
are known to modify GC sensitivity, but are discussed in detail
elsewhere (14).

In the absence of ligand, GR resides in the cytoplasm,
bound to heat shock proteins 70 and 90 (Hsp70 and Hsp90)
together with other chaperones and immunophilins (15). Upon
binding of GCs, GR translocates to the nucleus where it binds
to DNA sequences. In this way, GR is recruited to target
gene enhancers and promoters where it can both activate and
repress transcription (16, 17). Canonical binding sites for the
GR are called glucocorticoid response elements (GREs) and

are composed of two 6bp palindromes (half sites) separated
by a 3bp spacer, with the consensus AGAACAnnnTGTTCT.
However, GR binding sites (GBS) in the genome vary to a certain
degree of motif mismatch, expanding the number of possible
target sequences. Furthermore, the context of neighboring
transcription factor binding sites and the ensuing crosstalk is
relevant for the regulation of inflammatory genes by the GR. The
beauty of using GR as a model transcription factor is that its
ability to regulate genes can be easily controlled in vitro and in
vivo by the absence or presence of the GC ligand.

Chromatin Residence Time and
Multimerization of the Glucocorticoid
Receptor
GR, along with other transcription factors, was assumed to bind
DNA in a relatively static manner, “sitting down” for long periods
of time to regulate gene expression. However, visualization of
the dynamics of fluorescent-tagged GR in living cells led to the
insight that occupancy of dimeric GRmolecules at GREs is rather
in the order of seconds and less (18). Only a small portion of
available molecules are specifically bound to chromatin at a given
time, suggesting that transcription factors and co-factors have
a transient rather than stable interaction at genomic response
elements (19).

GR acts as a monomer (20), dimer (21, 22), and even tetramer
(23–25) depending on the subcellular localization, presence
of ligand, GREs, or artificial response elements such as the
MMTV array. Interestingly, DNA binding was proposed to
trigger allosteric regulation of GR, followed by a change in
its oligomeric state (24). Ligand bound GR is mainly nuclear
and dimeric. Interestingly, upon DNA binding, the structural
LBD rearrangement promotes the formation of higher order
oligomers, predominantly tetramers, through unstudied LBD
surfaces (25). The physiological relevance and implications
of a tetrameric GR, however, are still open for debate and
further investigation.

In general, chromatin binding and gene regulation by GR
appear to be much more dynamic than previously thought, and
the residence time of GR on chromatin may have differential
effects. The LBD seems to regulate the number of GR molecules
bound at a specific genomic region, which may also affect the
transcription of target genes.

Glucocorticoid Receptor Co-regulators
All nuclear receptors (NRs), including GR, require a host
of co-activators and co-repressors to ultimately control the
transcriptional apparatus.

Steroid receptor coactivator-1 (SRC-1, also known as nuclear
receptor co-activator 1, NCOA1) was one of the first identified
(26), followed by glucocorticoid receptor interacting protein
(GRIP1, SRC-2, and NCOA2) (27). Originally found to be a co-
activator of the progesterone receptor (PR), SRC-1, and GRIP1
were shown to directly interact with GR and other steroid
receptors. This direct co-activator interaction with GR depends
on the evolutionarily conserved LXXLL motif, or NR-box, and
without this motif, GR loses transcriptional activity (28). SRC-1
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FIGURE 1 | Overview of the glucocorticoid receptor protein. The Glucocorticoid Receptor (GR) is organized into three main domains: the N-terminal Transactivation

Domain (NTD), the DNA-Binding Domain (DBD), and the Ligand Binding Domain (LBD). In addition, there are the transactivation domains 1 and 2 (AF-1 and AF-2).

These mutations numbered above are relevant for GR’s immunomodulatory effects. Numbers are amino acids of the human protein.

FIGURE 2 | Glucocorticoid receptor co-regulators. The Glucocorticoid Receptor (GR) binds to Glucocorticoid Receptor Binding Sites (GBS) in open chromatin. GR

interacts with other transcription factors (TFs) and recruits co-activators or co-repressors, such as: the Steroid Receptor co-activators 1, 2, and 3 (SRC-1, SRC-2, and

SRC-3); the histone acetyl transferases CREB binding protein (CBP) and p300; the Nuclear Receptor co-repressors NCOR1 and NCOR2 (NCOR, SMRT), which

recruit histone deacetylases 1 and 3 (HDACs); and the SWItch/Sucrose-Non Fermentable (SWI/SNF) chromatin remodeling complex.

directly activates genes with its histone acetyltransferase (HAT)
domain that decondenses chromatin [(29); Figure 2].

The strength of GR’s interaction with SRC-1 and GRIP1 might
determine the steroid responsiveness of cancer cells, suggesting
that the loss of GC-induced apoptosis or growth arrest is due to,
at least in part, co-activator recruitment (30). However, GR seems
to preferably interact with GRIP1 over SRC-1, while the opposite
is true for PR, which confers selectivity of GR activation and PR
activation on chromatin modifications (31).

Importantly, the co-activator GRIP1 can also act as a co-
repressor. Depending on the individual GR target gene, GRIP1
functions as either an activator or repressor by using its co-
repressor domain. For example, GRIP1 was described to act
as a co-repressor at the osteocalcin promoter (32). Moreover,
the functionality of GRIP1 is modulated by post-translational
modifications. CDK9 mediated phosphorylation of GRIP1 was
shown to increase GR dependent activation, but had no effect on
repression (33).

SRC-3 (NCOA3), another member of the SRC family,
was originally identified through interaction with the estrogen
receptor (ER) (34). Similar to SRC-1 and GRIP1, SRC-3 is
recruited in a locus-specific manner (35).

In the mid-1990s, the discovery of two nuclear receptor
co-repressors (NCOR)—NCOR1 (36), and NCOR2 (otherwise
known as SMRT, silencing mediator co-repressor) drove further
research into the field of NR co-regulators (37). The NCOR
family interacts with nuclear receptors via the coRNR-box,
consisting of the consensus sequence LXX I/H I XXX I/L, which
contacts the AF-2 domain of NRs (38, 39). This is analogous
to the LXXLL sequence in co-activators and occupies a similar
location on the receptors.

While the NCOAs display intrinsic HAT activity, the co-
repressors NCOR/SMRT were described to interact with the
histone deacetylase HDAC3 (40). Both NCOR1 and SMRT were
able to recruit HDAC3 to condense chromatin as part of their
repressive mechanism (41).

SUMOylation of mouse GR at K310 was shown to be essential
for repression, and in point mutant mice, neither NCOR1, SMRT
nor the associated HDAC3 complex were recruited (42, 43).
GCs down-regulate expression of GR itself, through a negative
feedback loop. This occurs by recruitment of a GR-NCOR1-
HDAC3 complex to an nGRE in exon 6 of the NR3C1 gene (44).
GC-mediated suppression of natural killer cells activity however,
was described to be mediated by HDAC1 and SMRT specifically
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(45). The differential control of GR action by recruitment of
alternative co-activators and co-repressors, in tissue or signal
specific contexts, is still an open area of investigation. Different
GR ligands selectively recruit alternate co-factors (46), suggesting
that ligand induced conformational changes might have discrete
effects on GR target genes, adding another level of complexity to
GR mediated gene regulation.

Two major proteins that are recruited by co-activators are
CBP (CREB binding protein) and p300. Both CBP and p300
are histone acetyl transferases (HATs), and induce chromatin
relaxation (47) (Figure 2). SRC-1 was shown to recruit p300 into
a complex with nuclear receptors to activate transcription (48).
Part of GR’s repressive action might involve competition for CBP
and p300, as GR repression of an AP-1 (Activator Protein 1)
reporter was abolished by overexpression of CBP and p300 (49).
Moreover, enhanced engraftment of hematopoietic stem cells in
response to GCs was described to be controlled by SRC-1 and
p300 recruitment to the CXCR4 gene, with acetylation of histones
H4K5 and H4K16 upregulating CXCR4 (50).

GR and the tumor suppressor protein 53 (p53) were shown to
interact in a ligand dependent manner via Hd2m (a transcription
factor), which enhanced the GC-induced degradation of both
GR and p53 (51). In fact, the interaction between GR and p53
is important for the repression of NF-κB (nuclear factor-κB)
responsive genes. Without p53, GR did not repress inflammation
in a mouse model of endotoxic shock (52).

Finally, GR interacts with components of the SWI/SNF
complex (SWItch/Sucrose-Non Fermentable). These highly
evolutionarily conserved ATP-dependent chromatin remodelers
use energy from ATP hydrolysis to alter nucleosome positioning.
GR was shown to directly interact with the Baf250, Baf57, and
Baf60a subunits of SWI/SNF complexes, further demonstrating
the ability of GR to modify the chromatin architecture
[(53–56); Figure 2].

In summary, GR recruits co-activators such as SRC
family members, which in turn assemble a transcriptional
complex containing histone modifying enzymes and chromatin
remodelers to control the transcriptional machinery and RNA
Pol II activity. These interactions are crucial for its anti-
inflammatory actions and might present novel therapeutic
targets in the future.

Mechanistic Insights Into
Immunomodulation From GR Point
Mutations in vitro
Introducing point mutations into the NR3C1 gene significantly
contributed to our understanding of the molecular mechanisms
of GR action. Here, we briefly address the insights gained from
specific residues that revealed certain GR functions essential to
suppress inflammation in cultured cells.

Besides promoter/enhancer occupancy, post-translational
modifications of GR play a major role for transcriptional
control. Three key phosphorylation sites were identified in
the human GR: S203, S211, and S226 (57–59). All of them
are located in the AF-1 domain, which is crucial for protein-
protein interactions with TATA-box binding protein and others
(60). By using phospho-deficient (S211A) or phospho-mimetic

(S211D) mutations, it was shown that phosphorylation of GR
at S211 increases association with the MED14 subunit of the
mediator complex, a key bridge to the transcriptional machinery
(59). In confirmation, the S211A mutant displays reduced
expression of the GR targets GILZ and IRF8. S226A mutation
however, had the opposite effect. The phosphorylation-deficient
mutant S226A showed increased expression of GILZ and IRF8,
suggesting an inhibitory role (59). In addition, S404, a site for
GSK3β phosphorylation, regulates GR transcriptional activity.
Mutation to S404A rewired the GR-regulated transcriptome,
interestingly increasing its repressive capacity (61). Moreover,
the SUMOylation-deficient murine GR K310R was shown
to affect repression and the recruitment of co-regulators
[(42, 43); Figure 1].

The AF-2 domain, located within the LBD (62), has additional
sites modulating GR function. The mutation C656G within
the AF-2 domain of the rat GR (C638 in human) reduced
the ligand concentration required for activation of the PEPCK
promoter (63). Mutations within the “charge-clamp”—that is the
co-activator interaction site of K579 and E755—resulted in loss
of transcriptional activation, but had no effect on repression (64).

Applying a random mutagenesis approach in yeast,
Yamamoto and colleagues showed that multiple mutations
within the zinc finger of the DBD impede GR binding to GREs
in vitro, demonstrating the importance of this particular domain
(65). Further mutagenesis studies in the 1990s identified a
multitude of important amino acids involved in activation and
repression. For example, the mutations S425G and L436V in the
DBD could double the activation in a reporter assay, but almost
completely abolished repression by GR (66).

Mutations in the dimer interface are also central for the
understanding of GR biology. The GRdim (human A458T),
corresponding to rat A477T (67), and GRmon (mouse
A465T/I634A) (68) mutations disrupt the dimer interface.
Further mutation of A458T outside the D-loop to the double
N454D/A458T further increased the capacity of GR to repress a
reporter in vitro (66). Generation of the GR(D4X), a quadruple
mutant GR with the residues N454D, A458T, R460D, and D464C
in the dimerization region of mouse GR provided deeper insight
into the monomer/dimer action of GR. The GR (D4X) had
equivalent repressive activity to wild type, while activation
capacity as measured in reporter assays was near zero. This
mutant demonstrated that opposition of TNF-α involved both
activation of IKKB and repression, since mutant GR was unable
to induce IKKB, but repressed the production of TNF-α (69).
There is significant work on the GRdim mutation in vivo, covered
in the next section. Early in vitro work however, showed that
the A477T mutation induced loss of the dimer interface and
reduced DNA residence time, making target gene regulation
by A477T rather difficult to interpret (70). Both wild type GR
and GRmon bound GRE half sites, but A447T was incapable of
binding classic, full length GREs, which are occupied by receptor
dimers [(67); Figure 1].

Another mutation in the second zinc finger of the DBD
in rat GR R488Q (R469 in the human GR) was designed
to discriminate between interactions with NF-κB and AP-
1. Overexpressing GR R488Q in activated CV-1 cells under
inflammatory conditions failed to suppress NF-κB reporter

Frontiers in Immunology | www.frontiersin.org 4 August 2019 | Volume 10 | Article 1859

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Escoter-Torres et al. Inflammatory Gene Regulation by GR

activity, whereas AP-1 inhibition was preserved (71). Additional
GR mutations with less impact on inflammation are reviewed in
more detail elsewhere (72).

Taken together, these GR point mutants show the importance
and complexity of GR interactions with transcription factors and
chromatin modifiers. In fact, several discrete mutations within
the GR AF-1, AF-2 domains and the dimer interface alter its
activity in a gene-specific manner, indicating that different parts
of the receptor are dispensable for certain gene regulatory events,
but essential for others (32). Differentially interfering with GR
function therefore affects multiple physiological processes, and
distinct types of inflammatory responses.

Lessons Learned From Genome-Wide
Studies
Chromatin as a key determinant of GR function has been
highlighted in multiple genome-wide ChIP-sequencing studies
since the early 2010s. For instance, GR gene regulation is
determined by the chromatin architecture of the responsive
cell. GR does not act as its own pioneer factor, but rather
cell-type-specific gene regulation is dependent on pre-existing
available binding sites, determined by chromatin accessibility
(73). The pro-inflammatory transcription factor AP-1 governs
a large subset of GR regulatory sites, making areas of DNA
accessible to GR (74). As GR is largely dependent on pre-
existing open chromatin for binding, it cemented the possibility
that stimuli which are known for chromatin remodeling, for
example inflammation, alters GR binding. Indeed, treatment with
TNF-α amends the transcriptional response to GCs, as well as
chromatin occupancy of GR, and surprisingly GR activation
also transformed the occupancy of NF-κB (75). Recent data
showed that GR could indeed act as a pioneer factor for other
transcription factors, such as FOXA1, but only at a minority of
genomic sites, and thus far this effect has not been demonstrated
in immune cells (76).

When assessing GR activity in a more relevant cell-type,
macrophages treated with LPS, GR, p65 (part of the NF-κB
complex), and c-Jun (one of the members of the AP-1 dimer)
binding overlapped significantly (see below). However, the
directionality of the gene regulatory response did not correlate
well with the type of interaction. That is, contrary to established
models, GR binding to NF-κB loci did not only result in
repression of target genes, but either repression or activation
depending on the particular locus. The inverse is also true,
that GR binding to canonical GREs did not only result in up-
regulation of transcription at the assigned gene. Rather than
the presence or absence of GR as the determining factor, the
recruitment of different chromatin modifiers, such as GRIP1,
were the prime measure of whether the particular gene would be
activated or repressed (77).

Moreover, GR effects can be dependent on the timing of the
inflammatory signal. Pre-treatment of macrophages with GCs
before LPS stimulation resulted in differential gene regulation
compared to treatment with GCs after LPS stimulation. In
addition, a large part of GR’s anti-inflammatory action can
be accounted for by the induction of negative regulators of

inflammation such as Mkp1, GILZ, and A20, see below (78).
GRdim macrophages treated with LPS and Dex also showed that
the dimerization impaired GR preferentially occupied GR-half
sites (16), a phenomenon also observed in cells overexpressing
GR A477T (67).

Importantly, all these studies showed that GR not only binds
to GREs, but occupies motifs near lineage determining factors,
such as PU.1 in macrophages. Again this underscores the idea
that GR requires open, pre-programmed chromatin for finding
its genomic target sites (16, 74, 77–79). The chromatin landscape
is cell-specific and depends on pioneer factors, cell lineage
transcription factors and epigenetic marks that all predetermine
GR binding. Only a minority of GR peaks are found in
inaccessible chromatin and trigger chromatin remodeling upon
hormone treatment (16, 73, 79–82). These findings strongly
suggest that other DNA-binding proteins prime the chromatin
landscape prior to GR arrival. The collaborative binding of
lineage-determining transcription factors results in nucleosome
remodeling, which generates open regions of chromatin. This
provides access to signal-dependent transcription factors to
bind open regions and modulate gene transcription in a cell-
specific manner (83). In the context of macrophages, PU.1
and C/EBP are essential for the development of the myeloid
lineage and have been shown to establish the monocyte-specific
enhancer landscape (83, 84). PU.1 deletion results in loss of
macrophages, neutrophils and B cells (85, 86). Importantly, PU.1
and C/EBP transcription factors often co-localize with GR in
macrophages (16).

This new methodology has given deeper insights into the
mechanisms by with GR regulates gene expression, identifying
chromatin remodeling, and cooperation with other transcription
factors, as a key determinants of GR activity. Importantly, GR’s
reliance on other factors to define its binding sites underscores
the necessity of studying GC responses in a tissue-specific
manner, rather than extrapolating effects from one cell-type
to another.

Molecular Mechanisms of
Immunomodulation by the Glucocorticoid
Receptor
Non-genomic Actions of GR
Some therapeutic GC effects, such as bronchodilation, resolution
of airway irritation or suppression of inflammation, occur almost
too rapidly to result from transcription, raising the possibility of
non-genomic GR actions (87, 88). These could be GR-unspecific
interactions with cellular membranes, functions of membrane-
bound GR or specific interactions with cytosolic GR, thereby
altering posttranslational modifications like phosphorylation, or
other mechanisms (89).

Membrane-bound GR was described in human monocytes
and B cells (90, 91), and non-genomic functions have been found
in macrophages (92), lung epithelial cells (93), and T-cells (94).

Downstream of inflammatory MAPK signaling, mitogen- and
stress-activated protein kinase-1 (MSK1) is an essential kinase
for NF-κB p65 S275 phosphorylation (95).Interestingly, GC-
mediated repression of NF-κB targets involves loss of MSK1
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kinase recruitment at inflammatory promoters and nuclear
export of MSK1 via cytosolic GR (96). Putatively, GR can also
crosstalk with AKT, GSK-3β, and mTOR signaling (93).

These non-genomic effects might be very interesting for the
development of novel therapeutics, and will benefit from future
studies, for example with novel cell lines or mouse models to
dissect these complex interactions.

Genomic Actions of GR
Lipopolysaccharide (LPS) is a molecular component of the
cell wall of Gram-negative bacteria commonly used to study
inflammation (97, 98). On macrophages, LPS binds to Toll-Like
Receptor 4 (TLR4) and activates a signaling cascade that results
in NF-κB and AP-1 nuclear translocation. Together with other
inflammatory transcription factors, these two protein complexes
then activate pro-inflammatory gene expression (99, 100). TLR4
activates AP-1 via the MAPK signaling pathway and NF-κB via
degradation of the cytosolic IKK complex that frees the NF-κB
transcription factor (Figure 3).

GR can antagonize or synergize with pro-inflammatory
signaling, depending on the context of promoters or enhancers.
For antagonism of pro-inflammatory signaling, several
mechanisms are proposed. These include the direct interference
with MAPK or JNK signaling (101, 102), leading to repressive
actions at the gene regulatory level. Conversely, repression
of GR-target genes might be explained by tethering to other
transcription factors or trans-repression, negative GREs (nGREs,
with a different sequence), composite GREs, non-canonical novel
GREs, DNA as a modulator of GR, and consensus classical GREs.

Most frequently, GR tethering to AP-1 or NF-κB via protein-
protein interactions (trans-repression), instead of direct DNA
binding, was suggested to underlie its repression of inflammatory
responses (103, 104). In other words, GR has been shown
to represses genes via protein-protein interactions with AP-
1 (105), NF-κB (106), STAT3 (107), and other DNA-bound
transcription factors (Figure 3). Interestingly, STAT3 tethering
to GR resulted in synergistic gene regulation, and increased
target gene expression in AtT-20 cells. On the other hand,
GR tethering to DNA-bound STAT3 resulted in transcriptional
repression (107).

Negative GREs (nGREs) were originally described as GREs
motifs in the promoters of repressed target genes. nGREs can be
found in very different cell types and genes involved in various
processes, for example: HPA axis (POMC and CRH) (108, 109),
lactation (PRL3) (110, 111), bone homeostasis (osteocalcin) (112),
skin structure (keratins) (113), and inflammation (IL-1β) (114).

However, the definition of nGREs has not yet reached
consensus in the literature, and subsequently, GBS with non-
classical consensus sequences, near repressed targets, are also
named nGREs. One study described a variation of nGREs, termed
“inverted repeat (IR) nGRE.” IR nGRE is a complex GBS with the
following consensus motif: CTCC(n)0−2GGAGA, which differs
from the classical GRE (AGAACAnnnTGTTCT) or nGRE (115).
These elements however, have not been identified by ChIP-seq,
questioning how relevant they are to GR responses.

Similar to nGREs, composite elements, such as degenerate
GREs overlapping with other transcription factor consensus

motifs, may also affect the transcription of inflammatory targets.
For example, a 25-base pair composite element (plfG element)
in the promoter of the proliferin gene, is regulated by GR and
AP-1 (116, 117). Furthermore, the GR DNA-binding domain
(DBD) can bind a newly identified motif inside NF-κB consensus
sequences. Crystal structures of the GRDBD demonstrated direct
binding of GR to the AATTT nucleotides within the NF-κB
motif from the promoter regions of CCL2, IL-8, PLAU, RELB,
and ICAM1. This cryptic GR-binding site overlapping the NF-
κB response element was named κBRE and was highly conserved
between species (118).

An important aspect is the concept of DNA being an
allosteric modulator of the GR. Here, the precise nucleotide
sequence in a GBS is proposed to function as a shaping ligand
that specifies GR’s transcriptional activity. X-ray crystallography
of GR DBD dimers bound to different GBSs showed that
conformation of the lever arm in the DBD appeared to be
influenced by the DNA sequence (24, 119). Furthermore, the
addition of a single GR-binding site was sufficient to convert a
gene, which was normally not regulated by GR, into a target
gene, such as IL-1β and IL1R2 in U2OS cells (120). The
presence of classical GREs in GR-bound enhancers near both
activated and repressed genes in murine bone marrow-derived
macrophages (BMDM) stimulated with LPS and Dexamethasone
(Dex) challenge these models. These findings suggest that first,
direct GR:GRE binding is relevant for repression of inflammatory
genes. Secondly, that the classical models described above are
not sufficient for prediction of GR mediated activation or
repression. Therefore, the presence of a different combination
of cofactors in activated vs. repressed sites could explain
or contribute to the up- or down-regulation of GR target
genes (77, 118, 121, 122).

Taken together, how GR activates one set of target genes
while repressing another is still an open question, and the
molecular mechanisms specifying the repression of inflammatory
genes remain unknown. Repression by GR is a complex
process which likely involves different determinant factors.
One factor is GR itself (phosphorylation, post-translational
modifications and ligand-specific conformations), another factor
is the DNA sequence, the cell type-specific chromatin landscape
and the cooperation with co-regulators and other transcription
factors. All of these, together with potentially unknown
factors, ultimately determine which target genes are up-
or down-regulated.

Mechanistic Insights Into
Immunomodulation From GR Point
Mutations in vivo
As described above, one particular class of point mutations,
which interfere with GR dimerization, caught considerable
attention. In tissue culture experiments expressing these GRdim

mutants (human GR A458T, mouse GR A465T, and rat A477T),
the concept was developed that abrogation of dimerization
could be beneficial to limit side effects of anti-inflammatory
treatments. Therefore, pharmaceutical companies directed their
research to develop dissociated ligands favoring GR monomer
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FIGURE 3 | Models for inflammatory gene regulation by the glucocorticoid receptor. Upon ligand binding (GCs), the glucocorticoid receptor (GR) is released from heat

shock proteins (Hsp) and translocates to the nucleus. Inflammation can be activated by lipopolysaccharide (LPS) binding to Toll-like receptor 4 (TLR4). TLR4 signaling

results in the activation of NF-κB, AP-1, and other inflammatory transcription factors that bind and regulate pro-inflammatory target genes. Different mechanisms have

been proposed for GR’s potent anti-inflammatory actions, i.e., binding to Glucocorticoid Response Elements (GREs), to composite GREs together with other

transcription factors, to negative GREs (nGRE), by tethering to DNA-bound transcription factors, by competing with other factors for DNA binding sites or by

non-genomic actions.

dependent favorable effects and reducing unwanted GR dimer
action (123, 124).

Various selective GR agonists (SEGRAs), such as RU24858,
RU24782, and non-steroidal ligands (LDG552, ZK216348,
Compound A), were examined for desired anti-inflammatory
effects with the hope that there would be minimal metabolic
actions (124, 125). Only a few of these compounds, however,
showed promise in preclinical trials (126). Their limited
success arose from the generalized and oversimplified view
that the GR monomer mediates trans-repression (anti-
inflammatory) and the GR dimer regulates only unwanted
effects (127). The disappointing conclusion of these programs
for SEGRAs and non-steroidal ligands and their translation
to the clinic called for new perspectives in the context of
pathophysiology (10, 16, 104, 127–129). With knowledge
gained from the GRdim mouse and others, the development
of selective monomerizing GRagonists or modulators
(SEMOGRAMs) and selective dimerizing GRagonists or
modulators (SEDIGRAMs) has begun to make progress
(130). To find SEDIGRAMs, a screening identified Cortivazol
and AZD2906 as compounds that increase GR dimerization
and enhance the transactivation capacity. Both chemicals,
however, still have GR monomer activity, indicating that
these are not yet the ideal SEDIGRAMS (129). Efforts are still

ongoing to identify perfect GR modulators separating dimer
from monomer.

In 1998, the GR A465T mutation was introduced into mice
(131, 132). Intriguingly, mice born with this mutation survived
in certain backgrounds (131), and simple inflammatory models,
such as phorbol ester induced skin irritation, responded to GC
treatment in these animals. This indicated that GRmonomer and
thus transrepression by tethering might be sufficient to reduce
inflammation. However, for most other inflammatory models,
GCs failed to have an effect in these GRdim mice (Figure 4A).

For instance, during LPS, CLP (cecal ligation and
puncture), and TNF-α induced shock, GRdim mice were
highly susceptible to inflammation and cytokine production,
impaired thermoregulation and metabolic alterations (133–135).
Furthermore, macrophages from GRdim mice were unable to
efficiently repress cytokines in response to LPS (135). Moreover,
GRdim mice treated with exogenous GCs showed impairment
of anti-inflammatory responses in models of acute lung injury
(ALI), arthritis, contact allergy, and allergic airway inflammation
(136–139). During ALI, this was partially due to diminished
expression of the GR-dimer target gene Sphk1 (138) (see
above). In models of allergic airway inflammation, contact
hypersensitivity, antigen-induced arthritis (AIA) or serum
transfer-induced arthritis (STIA), GRdim mice failed to repress
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FIGURE 4 | Glucocorticoid receptor mutant mouse models of inflammation. Overview of the mouse lines discussed in this article. (A) GRdim mice are more sensitive

during LPS-, CLP-, or TNF inflammation. GRdim mice are refractory to GC treatment in models of skin inflammation, acute lung injury and arthritis. (B) In GRLckCre

mice, GR is lacking in T-cells, making them refractory to GC treatment during arthritis. (C) GRCol1a2CreERT2 (lacking GR in fibroblasts) show delayed GC-induced

suppression in arthritis. (D) GR K310R mutant mice lack GR SUMOylation and show impaired control of skin inflammation. (E) GR-C3 mice, lacking the most active

GR isoform C3, are more sensitive to LPS-induced endotoxic shock. (F) During fracture, GR is necessary in all cells, as shown by GRgtRosaCreERT2

(tamoxifen-induced ubiquitous Cre-mediated recombination) for fracture healing. (G) GRLysMCre mice (GR is deleted in myeloid cells) show no proper healing in LPS-

or CLP-sepsis, skin inflammation, acute lung injury, DSS colitis, cardiac healing, and Parkinson disease. The skin, lungs, bones, intestine, heart and brain cartoons

were obtained from Servier Medical Art.

inflammation when given GC therapy (136, 137, 139, 140). In
the model of AIA, GR dimerization was shown to be essential
in T cells (GRLckCre mice) to reduce inflammation [(137);
Figures 4A,B]. More recently, GRdim mice reconstituted with
wild type hematopoietic stem cells failed to induce non-classical
(CD11b+, F4/80+, Ly6C−), non-activated (CD11b+, F4/80+

MHCII−), anti-inflammatory (CD163, CD36, AnxA1, Axl,
and MertK) macrophages during STIA, while cytokines were
repressed normally (140). This strongly indicated that intact
dimerization in stromal non-immune cells could contribute
to the suppression of inflammation. More precise, the GR in
fibroblast-like synoviocytes (GRCol1a2CreERT2) was crucial to
reduce STIA (140) (Figure 4C). GRdim mice were also resistant

to GC treatment during TNF-induced inflammation, and
exhibited increased gut barrier leakiness, cell death of intestinal
epithelial cells and cell death. An increased STAT1-responsive
interferon-stimulated gene signature was observed in the gut of
GRdim mice (141).

Whereas, the GRdim knock-in mice were intensively studied,
less is known about other point mutations. The GRK310R
mutation, which abrogates SUMOylation of the GR, failed to
respond to GCs during skin inflammation. This was in part due
to reduced SMRT/NCoR-co-repressor recruitment to GR/NF-
κB/AP-1 repressive complexes [(42, 43); Figure 4D].

Finally, Cidlowski and colleagues published a knock-in mouse
of the most active GR isoform C3. The lethality of these mice
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could be overcome by antenatal GC administration, and adult
mice were hypersensitive to LPS administration. This indicated
that either the absence of other isoforms like the most abundant
GR-A, or indeed the specific overexpression of GR-C3 might
confer anti-inflammatory actions [(142); Figure 4E]. However,
further studies are warranted to dissect these observations in
more detail.

Taken together, GR point mutations introduced in vivo,
namely the GRdim mutation, but also the more recent mutations,
have yield valuable insight into the molecular features of GR.
With the emergence of CRISPR/Cas9 gene editing technology,
more in vivo models for specific GR functions will help our
understanding of GR in physiological processes in the future.

Glucocorticoid Action on Macrophages
GCs exert their immunosuppressive effects through many cells of
the innate immune system, including dendritic cells, mast cells,
neutrophils, and eosinophils (143, 144). GCs also play a major
role in the regulation of adaptive immunity. For example, GCs
decrease the proliferation of early B cell progenitors (145) and
induce apoptosis in B cells and T cells (145–149). In this review,
we will focus mainly on the effects of GCs in macrophages, since
these innate immune cells are essential mediators of defense
responses, beyond the mere removal of pathogens, and regulate
tissue homeostasis in a myriad of ways (150).

Macrophages reside in many different tissues and are the
first line of defense against pathogens (151). Depending on
the activating stimulus, they can be categorized as M1-like
and M2-like macrophages. The M1-like macrophages (classically
activated macrophages) mediate pro-inflammatory actions. They
are activated by exposure to LPS, INFγ, TNF-α, or pathogen-
and danger-associated molecular patterns (PAMPs and DAMPs,
respectively) (151–153). GCs suppress inflammatory responses
downstream of TLRs, in part by interfering with the NF-κB- and
AP-1-activated transcription of pro-inflammatory cytokines and
chemokines (154, 155).

The M2-like macrophages on the other hand, are
characterized by their anti-inflammatory potential and are
activated by cytokines involved in inflammatory resolution,
like IL-4, IL-10, and IL-13 (151, 153, 156). GCs can also
polarize macrophages to an M2-like phenotype by regulating the
expression of anti-inflammatory proteins (153, 156). A major,
yet undervalued aspect of GC control of anti-inflammatory
macrophage polarization is the regulation of efferocytosis. GCs
enhance the clearance of apoptotic cells, which in itself can
augment the development of an anti-inflammatory macrophage
phenotype (157, 158).

In sum, GCs can modulate macrophage activity in a number
of different and intricate ways, which include suppressing the
production of pro-inflammatory proteins and inducing anti-
inflammatory mediators.

Glucocorticoid Receptor Target Genes Mediating

Immune Modulation
GC stimulated macrophages shift to an M2-like anti-
inflammatory and inflammation-resolving phenotype
(156). These effects are achieved by the repression of

pro-inflammatory genes, the induction of gene products
antagonizing pro-inflammatory signaling, and by synergism
with pro-inflammatory signaling pathways to activate genes
resolving inflammation.

While the mechanisms of gene repression have been
extensively discussed [referring to interleukins, chemokines,
matrix metalloproteinases, inducible nitric oxide synthase
(iNOS), and other mediators], the activated anti-inflammatory
genes have only recently received attention (Table 1).

Prominent examples are the induction of MAPK phosphatase
1 (Mkp1 or Dusp1), that interferes with the p38MAPK
pathway; GC induced leucine zipper (GILZ/Tsc22d3), which
binds to the NF-κB subunit p65; the induction of IκBα and
β, which oppose NF-κB activity; the activation of kruppel like
transcription factors (Klf), which are important for alternative
macrophage polarization, and many others (Table 1). This
upregulation of anti-inflammatory genes further emphasizes
that both gene repression and activation are required for the
immunomodulatory effects of GCs.

More recently, there were intriguing observations that GCs
not only antagonize inflammatory signaling, but also synergize
with pro-inflammatory signaling pathways (Table 1). GCs
synergize with Haemophilus influenzae activated inflammatory
pathways in macrophages, bronchial epithelial cells (BEAS-
2B) and lung epithelial cells (A549) to induce IRAK-M, a
negative regulator of TLR signaling (203). Mechanistically, this
synergistic activation of Irak-M/Irak-3 transcription is dependent
on binding of both GR and p65 to its promoter, showing a
cooperative induction byNF-κB andGR that limits inflammation
(203). Similarly, GCs activate TLR2 expression synergistically
with H. influenza signaling in vitro (194).

In ALI models, GR was shown to cooperate with LPS-induced
p38MAPK-Msk1 to induce Sphingosine Kinase 1 (SphK1)
expression in macrophages (138). SphK1 produces the active
mediator Sphingosine-1-phosphate (S1P), that binds to the S1P
receptor 1 (S1PR1) on endothelial cells to reduce vascular leakage
and infiltration during lung inflammation (138, 204–208). In
ALI, mice lacking SphK1 in macrophages were resistant to GC
treatment and showed reduced S1P levels. Additional examples
of synergistically regulated genes important for modulation of
inflammation are acute phase proteins like Serpin A3 (α1-
antichymotrypsin) (195) and Metallothioneins (Mt1 and Mt2)
(196, 197).

The synergistic regulation of immune-modulating genes by
GCs and pro-inflammatory pathways is an important component
of their mechanism, but the underlying dynamics and time
windows are still poorly understood.

Loss of Function Models of GC Signaling in

Macrophages
Strong evidence for the role of GR during homeostasis and
inflammation was derived from conditional loss-of-function
studies in mice. Applying the Cre/LoxP system, GR tamoxifen-
inducible mice (GRgtROSACreERT2) could be used to determine
the impact of GR deletion in adult animals, circumventing
the lethality of global GR knockouts. For example, they have
been useful to study GR during inflammation-dependent bone
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TABLE 1 | GR target genes relevant for (anti-) inflammatory action.

GC-regulated genes Targets GC effect on immune responses References

Cytokines Il-1α, Il-1β, Il-6, Il-8, and Il-12 Repression of cytokine production (114, 159, 160)

Chemokines Ccl2, Ccl3, Ccl4, Cxcl9, and Cxcl11 Suppression of chemokine release (77, 160–162)

Matrix

metalloproteinases

Mmp12 and Mmp13 Reduction of extracellular matrix remodeling, proteolytic

processing

(77, 161)

MAPK phosphatase 1 Induction of Mkp1 Suppression of Jnk and p38Mapk (133, 163–169)

GC-induced leucine

zipper (Tscd22d3)

Induction of Gilz Inhibition of NF-κB (170–177)

IκBα and IκBβ Induction of IκBα and IκBβ Trapping NF-κB in the cytoplasm, reduced NF-κB activity (178, 179)

Kruppel-like factor 2 Induction of Klf2 Competition with AP-1 and NF-κB, reduction of inflammatory

cytokines

(180–182)

Kruppel-like factor 4 Induction of Klf4 Inhibition of NF-κB (180, 183)

A3 adenosine receptor Upregulation of A3AR Enhanced Erk1/2, anti-apoptotic and pro-survival (184)

Annexin A1 Induction of Annexin A1 Induction of efferocytosis and monocyte recruitment (185–189)

Pparγ Upregulation of Pparγ Reduced migration (190)

Tristetraprolin Induction of TTP Destabilization of TNF-α (191–193)

Irak-M Irak-M induction through synergistic action

of GC/GR and NF-κB

Suppression of pro-inflammatory mediators (193, 194)

Sphingosine Kinase 1 Sphk1 induction through synergism of

GC/GR and p38Mapk-Msk1

Reduced vascular leakage and infiltration during acute lung

injury

(138)

Serpin A3 Serpin A3 induction through synergism

GC/GR and TNFSR1

GR recruitment to Serpin A3 TSS by Dex and TNF-α

treatment

(195)

Metallothioneins Mt1 induction through synergism of Il-6

and GC/GR

Increased susceptibility in inflammatory model in the absence

of Mts

(196–202)

repair after fracture (209). Overall, the mice displayed a mild
increase in inflammation, with elevated serum IL-6 levels and
increased IL-1β levels at the fracture hematoma, accompanied
by increased CD3+ and CD8+ cells. Consequently, the lack
of GR and potentially the elevated inflammation, caused a
delayed endochondral regeneration and maturation of callus and
a decreased healing response [(209); Figure 4F].

Since the publications of conditional GR alleles in 1999 (210),
2003 (211), and 2012 (212), many cell types have been targeted
with specific Cre lines to characterize specific functions of the GR
in numerous cell types in the brain, muscle, heart, T lymphocytes,
and others.

Insights into the function of GR in macrophages in vivo
mainly stems from Lysozyme 2 (LysM)–Cre mice crossed to GR
floxed alleles, which causes deletion in the myeloid cell lineage
(monocytes, mature macrophages, and granulocytes) [(135, 136,
163, 213); Figure 4G].

In both the LPS-induced endotoxic shock model and during
CLP, myeloid GR is crucial for the repression of inflammatory
cytokines and for survival (135, 163). Not only in LPS-
induced inflammation, but also in dextran sodium sulfate (DSS)-
induced colitis, the action of endogenous GCs in macrophages
was essential to reduce intestinal inflammation (214). Mice
deficient for macrophage GR had a higher disease score, with
increased infiltration of neutrophils, T cells and macrophages
in the colon, which was associated with enhanced serum
IL-6 (214). Moreover, macrophages were shown to play an
essential role for cardiac healing, tissue repair and hence
survival in myocardial infarction (215). Deletion of GR in

macrophages delayed cardiac healing 7 days after myocardial
infarct, with impaired cardiac function, collagen scar formation
and neovascularization, and largermyofibroblasts. Consequently,
targeting macrophage GR during myocardial infarction might be
a potential pharmacological intervention for tissue repair (215).
In contrast, in a mouse model of atherosclerosis, macrophage
GR deletion was beneficial and showed reduced levels of
vascular calcification, due to reduced RANKL, BMP2, and Mx2
expression (216).

During skin inflammation in a model of contact
hypersensitivity, the anti-inflammatory effects of GCs required
GR in myeloid cells (136). Additionally, in a model of ALI,
GRLysMCre mice were resistant to GC therapy, did not reduce
cellular infiltration in the lung and did not induce the endothelial
barrier stabilizing sphingosine-1-phosphate [(138); Figure 4G].

GRLysMCre mice were shown to efficiently express Cre in
microglia, knocking out GR in brain resident macrophages.
Studies on the function of microglial GR during acute
inflammation demonstrated more cellular lesions, damage,
demyelination in the corpus callosum, and increased neuronal
degeneration. It also significantly increased pro-inflammatory
cytokines after LPS injections (217). The activation of
microglia induces secretion of pro-inflammatory proteins
that contribute to dopaminergic neuronal death, a major
a hallmark of Parkinson’s disease. The absence of GR in
microglia revealed that increased death of dopaminergic
neurons in Parkinson’s may contribute to neurodegenerative
processes (218). Additionally, recent studies suggest that
the absence of microglia GR facilitates TLR9 activation
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of inflammatory processes and affects Parkinson’s disease
progression (219).

In summary, the genetic deletion of GR in myeloid cells in
various inflammatory models demonstrated the pivotal role of
this cell type for GC actions. However, one of the limitations
of the LysMCre mouse is the recombination in other myeloid
cells such as neutrophils, whose contribution cannot be excluded.
Nonetheless, this wealth of data supports the concept that
selective targeting of glucocorticoids to macrophages, while
sparing other cell types, could be a promising approach to
optimize therapy.

CONCLUSION

During the past decade, much has been learned about the
immunomodulatory mechanisms employed by GR: analyzing
various mouse models, creating distinct mutations, mapping
GR target genes genome-wide, functionally characterizing
individual proteins mediating GC responses, studying different
inflammatory settings, identifying essential co-regulators, and
applying novel molecular biology methods, have broadened
our understanding of these steroids’ intricate actions. Taken
together, it becomes obvious how basic research is fundamental
in enabling drug development. However, we now realize that GR’s
molecular mechanisms are very complex, cell-type, locus- and
signal-specific, and much more sophisticated than we previously
anticipated. Intra- and extra-cellular signals can control GR

function on many levels, and these multi-layered machineries
demand new interpretation of previous over-simplified models.
In the future, the rapid advancement of high-throughput
technologies such as machine learning, genomics, proteomics,
genome engineering, etc. will be key to the development of safer
immunomodulators or novel GR ligands.
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