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Mediterranean mussels (Mytilus galloprovincialis) are sessile filter feeders that live in

close contact with numerous marine microorganisms. As is the case in all invertebrates,

mussels lack an adaptive immune system, but they respond to pathogens, injuries or

environmental stress in a very efficient manner. However, it is not known if they are

able to modify their immune response when they reencounter the same pathogen. In

this work, we studied the transcriptomic response of mussel hemocytes before and

after two consecutive sublethal challenges with Vibrio splendidus. The first exposure

significantly regulated genes related to inflammation, migration and response to bacteria.

However, after the second exposure, the differentially expressed genes were related

to the control and inhibition of ROS production and the resolution of the inflammatory

response. Our results also show that the second injection with V. splendidus led to

changes at the transcriptional (control of the expression of pro-inflammatory transcripts),

cellular (shift in the hemocyte population distribution), and functional levels (inhibition

of ROS production). These results suggest that a modified immune response after the

second challenge allowed the mussels to tolerate rather than fight the infection, which

minimized tissue damage.

Keywords:Mytilus galloprovincialis, Vibrio splendidus, hemocyte, RNA-Seq, immune priming, ROS, inflammation,

apoptosis

INTRODUCTION

Mytilus galloprovincialis is widely distributed throughout the world and has a high ecological and
economic impact (1). Due to their status as sessile and filter-feeding animals, bivalves are exposed
to a continuous stream of microorganisms, some of them pathogens (2), and environmental
pollutants (3). Consequently, mussels have been used as sensors in ecotoxicological studies
to monitor the quality of the marine environment (4, 5). Bivalves, such as Crassostrea gigas,
are susceptible to diseases that may cause massive mortality (6, 7). Surprisingly, despite living
in the same ecosystem and being exposed to the same pathogens, no significant mortality in
M. galloprovincialis has been reported (8, 9).

Although lacking acquired immune response, hemocytes, which are the immune cells in
bivalves, respond to pathogens with chemotaxis, encapsulation, phagocytic activity and the release
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of oxygen and nitrogen radicals (10). Moreover, hemocytes can
recognize pathogen-associated molecular patterns (PAMPs) via
pattern recognition receptors (PRRs) to activate intracellular
signaling pathways to finally trigger the synthesis of antimicrobial
effectors (11, 12). In this sense, transcriptomic information
regarding the modulation of the hemocyte immune response
in bivalves remains scarce (13–17). In mussels, several genes
related to key immune functions have been characterized over
the past few years. These include different molecules involved in
specific pathogen recognition, such as C-type lectins (18), C1q
domain-containing proteins (19), and proteins with a fibrinogen-
related domain (FReD) (20). Compared to other bivalves, mussels
are also particularly rich in antimicrobial peptides (AMPs), and
myticin C is an example of an important immune effector
with chemotactic, antibacterial and antiviral activities (21, 22).
Lysozyme, which is able to hydrolyze the central components of
the bacterial wall, is another key player in the effector arm of
the mussel immune response (23). Gerdol and Venier (24) have
reviewed the presence and the interplay between the different
molecular components of the mussel immune defense system by
using information found in public sequence databases.

In recent years, some studies have suggested that invertebrates
may respond to an infection due to some degree of innate
immune memory or “priming.” Because of this, exposure to a
non-lethal dose of a pathogen could provide protection against
later infection with the same pathogen (10, 25). Several studies
have recently reported the protection of oysters (Crassostrea
gigas) from subsequent infection with ostreid herpesvirus
(OsHV-1) by the use of poly I:C as a priming effector (26–28).

The main objectives of the present study were to characterize
the transcriptomic and functional response of mussel hemocytes
after injection with Vibrio splendidus, which has been reported
to produce mortality in mussels (9), and to analyze whether
a different type of response could be elicited after a second
interaction with the same pathogen. The outcome of this
experimental approach might help to reveal the trainability of the
mussel immune response and to identify genes associated with
this process.

MATERIALS AND METHODS

Animals
Adult M. galloprovincialis with shells 8–10 cm in length were
obtained from a commercial shellfish farm (Vigo, Galicia, Spain)
and maintained in open circuit filtered seawater tanks at 15◦C
with aeration. The animals were fed daily with Phaeodactylum
tricornutum and Isochrysis galbana. Prior to the experiments, the
animals were acclimatized to aquarium conditions for 1 week.

Experimental Approach
Twenty mussels were marked and notched in the shell, and
hemolymph (500 µl) was withdrawn from the adductor muscle
of each mussel with a 0.5mm diameter (25G) disposable needle.
The hemolymph sampled at time zero (t0) was centrifuged at 4◦C
at 3,000 g for 10min, and the pellet was resuspended in 500 µl
of TRIzol (Invitrogen), immediately homogenized and stored at
−80◦C until RNA isolation.

After 1 week, 10 mussels were injected in the adductor muscle
with 100µl of filtered seawater (FSW). The other 10mussels were
injected in the same way with 100µl of a solution ofV. splendidus
(reference strain, LGP32) at a non-lethal concentration (1 ×

107 UFC/ml). One day post injection (24 hpi) and 7 days
post injection, hemolymph (500 µl) was sampled again from
individual mussels and centrifuged in the same conditions, and
the pellet was resuspended in 500 µl of TRIzol (Invitrogen).
Samples were immediately homogenized and kept at−80◦C until
RNA isolation.

After 2 weeks, the 10 mussels injected with FSW were
injected again with FSW. The mussels previously exposed to V.
splendidus were injected again with a solution of V. splendidus
(reference strain, LGP32) at a non-lethal concentration (1 ×

108 UFC/ml). One day after the second injection (24 hpi2),
hemolymph (500 µl) was sampled again from individual mussels
and centrifuged in the same previously described conditions, and
the pellet was resuspended in 500 µl of TRIzol (Invitrogen). The
samples were immediately homogenized and kept at−80◦C until
RNA isolation.

Seven days later (7 d), hemolymph (500 µl) was sampled
again from the mussels and centrifuged in the same previously
described conditions, and the pellet was resuspended in 500
µl of TRIzol (Invitrogen). The samples were immediately
homogenized and kept at−80◦C until RNA isolation.

Vibrio splendidus Clearance Assessment
The clearance of V. splendidus was assessed to make sure that
the second injection was made after a complete overcome of a
possible infection. cDNA was synthesized from samples taken at
t0, 24 hpi, and 7 days after the first infection with 100 ng of total
RNA using an NZY First-Strand cDNA Synthesis Kit (nzytech).
Gene expression of V. splendidus 16S and mussel 18S (used as a
reference gene) was analyzed in a Stratagene Mx3005P thermal
cycler (Agilent Technologies). In addition, ten-fold dilutions of
V. splendidus DNA was included in the plate to extrapolate the
bacterial load of each sample.

For 16S detection, 5 µl of five-fold-diluted cDNA template
was mixed with 0.6 µl of each primer (10µM), 0.4 µl of 16S
probe (10µM) and 10 µl of Brilliant III Master Mix 2x Ultrafast
(Agilent Technologies) in a final volume of 20 µl. For 18S
detection 1 µl of five-fold-diluted cDNA template was mixed
with 0.5 µl of each primer (10µM) and 12.5 µl of Brilliant II
SYBR Green (Agilent Technologies) in a final volume of 25 µl.
The standard cycling conditions were 95◦C for 10min, followed
by 40 cycles of 95◦C for 15 s and 60◦C for 30 s. All reactions
were performed as technical triplicates. The relative expression
levels of the genes were normalized using 18S as a reference
gene following the Pfaffl method. One-way ANOVA was used to
analyze differences in normalized gene expression and bacterial
load among the studied samples.

RNA Isolation, cDNA Production, and
Illumina Sequencing
RNA isolation was carried out using TRIzol (Invitrogen)
according to the manufacturer’s protocol. RNA purification was
performed after DNase I treatment with the RNeasy Mini Kit
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(Qiagen). Next, the concentration and purity of the RNA were
measured using a NanoDrop ND1000 spectrophotometer, and
the RNA integrity was verified with an Agilent 2100 Bioanalyzer
(Agilent Technologies). Only the best RNA samples (in terms of
RNA quantity and quality) from four sampling points (t0, 24 hpi,
24 hpi2, 7 d) were chosen for the preparation of cDNA libraries
compatible with Illumina sequencing. The chosen samples were
from the mussels control 2, control 3, control 4, infected 1,
infected 2 and infected 10. A total of 24 samples were selected
for sequencing that consisted of 2 conditions, 4 sampling points
and 3 biological replicates. Some of the samples corresponding to
7 days after the first injection were not of sufficient quantity to be
sequenced, and therefore this sampling point was excluded from
the analysis.

A TruSEq library preparation kit from Illumina was used
according to the manufacturer’s instructions. Briefly, eukaryotic
mRNA was extracted from total RNA using oligo (dT) magnetic
beads and cleaved into short fragments using fragmentation
buffer. A cDNA library was then prepared from the fragmented
mRNA via reverse transcription, second-strand synthesis and
the ligation of specific adapters (paired-ends) after cDNA
purification using the QIAquick PCR Purification Kit (Qiagen).
The amount of cDNA in each library was quantified through
spectrofluorometric analysis using the Qubit system. Paired-end
sequencing (2 × 100) was performed using an Illumina HiSeqTM

4000 platform by Macrogen Korea.
A schematic representation of the experimental design for the

sequenced samples is shown in Figure 1. The raw sequencing
data have been deposited in the NCBI Short Read Archive
database under the accession ID SRP145077.

Bioinformatics and RNA-Seq
The CLC Genomics Workbench, v.11.0.1 (CLC Bio; Qiagen),
was used to process the raw sequencing output for the de novo
assembly of the reference transcriptome and to perform the
statistical analyses of gene expression by comparing the three
biological replicates for the control and infected mussels at
different time points. The raw reads were trimmed to remove
adaptor sequences, low quality bases (quality score p-value
limit of 0.05), and residual sequences shorter than 70 bp.
All reads obtained from the 24 libraries were assembled to
obtain a complete reference transcriptome with default word
size and bubble size parameters. The assembly was cleaned
to remove sequences originating from mussel ribosomal RNA
and mitochondrial mRNAs, as well as contaminant transcripts
from V. splendidus, ciliates and microalgae. These filtering
steps were performed with BLASTn analyses (e-value threshold
1e-10) that were carried out in parallel with the reported
assembled mussel genome (29) and the targets mentioned above
(the Vibrio splendidus genome from strain NCCB 53037, the
ciliate Pseudocohnilembus persalinus genome, the Phaeodactylum
tricornutum genome and the Isochrysis galbana transcriptome
from BioProject PRJNA248394 were used as references). Contigs
that produced a more significant hit when compared to the
sequences of the putative contaminants than to the mussel
genome were discarded. The quality and completeness of the
transcriptome were assessed with BUSCO v.3 (30), which was

based on the detection of metazoan Benchmarking Universal
Single Copy Orthologs (BUSCOs) according to release 9
of OrthoDB.

The reads of each individual mussel and sampling were
mapped onto the clean transcriptome with the RNA-Seq tool
using the following parameters: mismatch cost = 2, length
fraction = 0.8, similarity fraction = 0.8, and maximum hits per
read = 10. Differentially expressed genes (DEGs) were identified
with a statistical analysis based on generalized linear models
and by assuming a negative binomial distribution for the read
counts (31). For each set of comparisons, transcripts with an
absolute fold change (FC) value > 2 and an FDR-corrected
p < 0.05 were considered differentially expressed and retained
for further analyses. To find the DEGs at each time point after
the Vibrio challenges, the injected samples were compared with
their respective controls. To find primed and tolerized genes,
the Vibrio challenged samples from the second injection were
compared with the challenged samples from the first injection,
and the same comparison was made in the controls to confirm
that the selected genes were not modulated in control animals.

BLAST Annotation, GO Assignments, and
Enrichment Analysis
The transcriptome was functionally annotated with the Blast2GO
software (32) by assigning gene ontology (GO) terms based on
the significant BLASTx matches found in the UniProt/Swissprot
database. To improve the annotation rate, we performed an
additional BLASTn analysis against an in-house database, which
included all the molluscan sequences present in the NBCI
nucleotide database. In both cases, the e-value threshold for
annotation was set to 1e-3. Then, functional enrichment analyses
of the DEGs (test set) were conducted using the full mussel
transcriptome as the reference set. For this purpose, a two-tailed
Fisher’s exact test was performed with the default parameters and
a p-value cut-off of 0.05. The test was performed on the basis of
overrepresented biological process (BP) gene ontology terms.

Functional Assays: Hemocyte Distribution,
Apoptosis, and ROS Analyses
The previously described experimental design was repeated
using eight biological replicates (each replicate included a single
mussel) to determine whether functional immune parameters
were also affected by a second exposure to the same bacterial
pathogen. Hemolymph was collected from the adductor muscle
of the eight individual mussels using a disposable syringe, and the
cell concentration was adjusted to 106 cells ml−1 with FSW.

The hemocyte populations were evaluated by flow cytometry.
Two FSC/SSC gates were created that included both the viable
granulocyte and the hyalinocyte populations. Data were acquired
using a FACS Calibur flow cytometer (Becton and Dickinson),
and the analysis was carried out using CellQuest software (Becton
and Dickinson).

To investigate the possibility that the mussels that received
a single and two subsequent injections of V. splendidus showed
changes in cell death rates, an apoptosis analysis was performed.
Hemocytes were centrifuged and resuspended in 1ml of binding
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FIGURE 1 | Experimental design used for the stimulation of mussels.

buffer (BB1X). Then, 5 µl of annexin V (Invitrogen) and 5
µl of actinomycin (BD Pharmingen) were added to the cell
suspensions. The samples were incubated for 15min at room
temperature in the dark and analyzed by flow cytometry.

The respiratory burst activity of hemocytes was determined
by the luminol-enhanced chemiluminescencemethod (CL) in 96-
well-plates. We used 5-amino-2,3-dihydro-1,4-phthalazinedione
(luminol, Sigma Aldrich) as a light emitter and phorbol myristate
acetate (PMA, Sigma Aldrich) or zymosan A (Sigma Aldrich)
to trigger the production of reactive oxygen species (ROS).
A stock solution of 0.1M luminol was prepared in dimethyl
sulphoxide (DMSO, Sigma Aldrich) and diluted in FSW to obtain
the luminol working solution (final concentration of 10mM).
Zymosan A (20mg ml−1) was diluted in the luminol working
solution to obtain a final concentration of 1mg ml−1. The
PMA stock solution (1mg ml−1 in ethanol) was also diluted
in the luminol working solution to obtain a final concentration
of 1 µg ml−1.

One hundred microliters of hemolymph was dispensed into
each well of the 96-well-plates. After 30min of incubation at
15◦C, 100 µl of luminol, PMA or zymosan A were added per
well. The relative luminescence units (RLU) were measured
in a luminometer (Fluoroskan Ascent, Labsystems) six times
at intervals of 5min with an integration time of 1,000ms for
each measurement.

RESULTS

Assembly and Annotation of the Mussel
Transcriptome
The sequencing of the individual hemocyte samples yielded an
average of 74.11 million raw reads for each of the 24 libraries.
The trimming procedure removed, on average, 0.83% of the raw
reads, and a total of 1,778 million reads were assembled into a

reference mussel transcriptome containing 260,664 contigs with
an average length of 512 bp. The reference transcriptome was
highly complete, as just 2% of metazoan BUSCOs were absent,
and displayed a fragmentation rate equal to 22%, which was
in line with what was expected for such a highly heterozygous
species (Table 1).

Two different BLAST approaches were used to annotate the
assembled transcriptome. In brief, 42.64% of the contigs were
found to have a significant match in the custom database,
which included all the mollusk nucleotide sequences available
from NCBI, and Blast2GO was used to annotate 19.93% of
the contigs through a BLASTx search of UniProt/SwissProt
(Supplementary File 1). Based on these results, gene ontology
(GO) terms were assigned to 23.35% of the contigs.Table 1 shows
the sequencing output of all the samples and the main metrics of
the transcriptome assembly and annotation.

Transcriptomic Response After Injection
and Reinjection With the Same Pathogen
We carried out a differential gene expression analysis to gain
insights into the dynamics of the transcriptional response
of mussel hemocytes to an experimental infection with V.
splendidus. First, the clearance of V. splendidus by the
injected mussels was confirmed 7 days after the first injection:
V. splendidus detection increased 24 hpi and was rapidly
controlled 7 days after the injection, returning to control
levels (Supplementary File 2). To analyze the transcriptomic
response at each sampling point, theVibrio injected animals were
compared to control animals (FSW-injected) (Figure 2A). The
monitoring of the transcriptional profiles enabled us to assess
whether a second interaction with the same pathogen could elicit
a different type of response compared to the response elicited
by the first injection. A total of 1,216 differentially expressed
genes (DEGs) were detected 24 h after the first injection (24 hpi).
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TABLE 1 | Summary of the transcriptome bioinformatics pipeline.

Sample Raw Trimmed

C2 t0 78,426,948 99.59%

C3 t0 44,346,854 98.03%

C4 t0 100,814,198 99.59%

I1 t0 17,696,894 98.08%

I2 t0 93,114,098 99.60%

I10 t0 96,780,602 99.64%

C2 24h 95,296,484 99.49%

C3 24h 51,708,988 97.62%

C4 24h 92,661,282 99.65%

I1 24h 52,102,302 98.77%

I2 24h 90,965,875 99.52%

I10 24h 99,262,970 99.55%

C2 24h2 93,665,372 99.96%

C3 24h2 47,632,114 99.09%

C4 24h2 83,629,996 99.62%

I1 24h2 25,833,124 98.25%

I2 24h2 90,636,926 99.60%

I10 24h2 101,411,946 99.64%

C2 7d2 78,528,396 99.55%

C3 7d2 46,511,774 99.36%

C4 7d2 95,180,866 99.69%

I1 7d2 13,593,322 97.43%

I2 7d2 90,614,296 99.31%

I10 7d2 98,236,250 99.57%

Assembly statistics

Contigs 260,664

Range contig length 200–15,624

Average contig length 512

N50 576

Complete metazoan BUSCOs 740/978 (75.69%)

Fragmented metazoan BUSCOs 218/978 (22.29%)

Missing metazoan BUSCOs 20/978 (2.04%)

Blast

Contigs with hit in Uniprot/SwissProt 19.93%

Contigs with hit in mollusks database 42.64%

GO analysis

Annotated contigs 23.35%

KEGG analysis

Pathway assigned contigs 7.27%

However, this number dramatically decreased to 236 DEGs 24 h
after the second injection (24 hpi2) and dropped further to 80
DEGs when the transcriptional profiles were compared 7 days
after reinjection (7 d) (Figure 2B).

To detect any significant alteration in biological pathways,
a Fisher’s exact test was performed. An enrichment analysis
of the GO annotations associated with the DEGs at each
sampling point (24 hpi, 24 hpi2, and 7 d) was conducted. The
30 most significantly enriched GO terms for each sampling
point are shown in Figure 3. After the first injection (24
hpi), GO terms related to the immune system were found,

such as those related to the regulation of innate immune
response, inflammatory response, cell migration and defense
response to bacteria. After the second injection (24 hpi2),
genes related to the inflammatory response seemed to also
be modulated and were represented in processes involved in
the regulation of the NF-kB signaling pathway. Moreover,
processes involved in defense response to bacteria and fungi, the
negative regulation of ROS, apoptosis and glucose homeostasis
appeared to be regulated after reinjection. The last sampling
point (7 d) showed a modulation of genes related to GO
terms involved in neural processes (long-term memory and
learning), tissue regeneration (cell population proliferation
and proteoglycan, glycosaminoglycan, mucopolysaccharide,
and collagen metabolism) and the resolution of infections
(oxidation-reduction processes and defense response
to pathogens).

The most highly expressed genes at each sampling
point are shown in Table 2 (complete information in
Supplementary File 3). After the first exposure, several genes
showed high expression values and were significantly decreased
as the experiment progressed (reinjection and 7 d). This was
the case for perlucin-like protein, which is directly involved in
pathogen recognition, the spore cortex-lytic enzyme, which can
destroy the bacterial cell wall, and the henna protein, which is
important for melanization; all of these genes could play crucial
roles in the killing and sequestration of invading pathogens.
These genes reached very high fold-change values after the first
injection, and they decreased after reinjection and exhibited
their lowest values 7 days after reinjection. Other interesting
genes related to recognition (lectin, neurocan, and galaxin),
acute phase response (HSP70 and sacsin), antimicrobial response
(apextrin) and apoptosis (caspase 3 and the GTPase IMAP family
member 4) were up- or down-regulated in a balanced manner
(15 up- and 10 down-regulated). However, 1 day after the second
challenge, the majority of the most highly regulated genes were
down-regulated (23 down- and 2 up-regulated). For example,
antimicrobial peptides such as defensin MGD-1 or myticin B
were not differently regulated after the first injection, but they
were indeed inhibited after reinjection (FC −1,360) and 7 days
after the second injection (FC−3,745) (Supplementary File 3).

Changes in the Response After the Second
Encounter With the Same Pathogen
Next, we looked for trainable genes with different expression
values after reinjection compared to those after the first injection.
We compared the transcriptomes of the challenged animals
after the first and second exposures and selected primed
genes, which were those with increased expression values after
the second encounter with the same pathogen, or tolerized
genes, which were those that showed decreased expression
after reinjection (Figure 4A). A schematic representation of the
expression behavior of these genes during the first and second
injections with regard to naïve animals is shown in Figure 4B.
Thirty-nine genes showed significantly increased expression
after previous stimulation with V. splendidus, and 31 showed
decreased expression. The expression levels of all these genes
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FIGURE 2 | (A) Representative scheme of the comparisons made for the differential expression analysis between injected and control individuals at the analyzed

sampling points. The thresholds used to detect statistical significance were a fold change (FC) > |2| and an FDR < 0.05. (B) Distribution of the response magnitudes

of the DEGs. Statistically significant gene modulation is shown according to intensity (fold-change) and direction (up- and down-regulation).

did not change in control animals after the first or second
stimulation (Figure 4C).

The list of the annotated primed and tolerized DEGs is
shown in Table 3. The regulation of these genes suggests an
attenuation of inflammation, a decrease in radical oxygen
species (ROS) production and the inhibition of apoptosis
in the second contact with V. splendidus. Primed genes
with increased expression in the second encounter, such as
those encoding myomodulin neuropeptides, furin-like protease
(KPC-1), and plasminogen/apolipoprotein(a), were directly or
indirectly related to the control and inhibition of inflammatory
processes. Moreover, there was high expression of genes
involved in the inhibition of ROS, such as mitochondrial
uncoupling protein 2-like (UCP2), oxidative stress-induced
growth inhibitor 1 (OKL38), and NAD kinase. Finally, genes
involved in the reduction of cell death (inhibitor of p53-
induced apoptosis-beta) and DNA repair (DNA repair protein
complementing XP-A cells) were also present in our set of primed
genes. However, tolerized genes with a reduced expression
level after the second encounter were associated with the

activation of apoptosis and inflammatory response and included
regulator of nonsense transcripts 1 (UPF1), nephrin, H/ACA
ribonucleoprotein complex subunit 4 (DISKERIN), nuclear
migration protein (nudC), and the dual serine/threonine and
tyrosine protein kinase (RIP5).

Priming Induces the Modification of
Functional Hemocyte Responses
Flow cytometry was used to better understand how two
consecutive injections of V. splendidus affected mussel
hemocytes. Two cell populations, granulocytes (R2) and
hyalinocytes (R3), were well-defined in the control group
(mussels injected with FSW at both sampling points)
(Figure 5A). When mussels were injected with V. splendidus,
the cell population structure was altered, and it was almost
impossible to establish two separate populations of granulocytes
and hyalinocytes. However, if mussels were stimulated with
V. splendidus and received a second injection with the same
pathogen, the hemocyte population structure was restored
to that found in naïve mussels and showed a distribution
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FIGURE 3 | Enrichment analysis of DEGs according to the experimental design. Bars represent the proportions between the percentages of sequences in the test set

(our DEGs list) and the reference set (transcriptome). (A) Biological processes overrepresented in infected mussels 24 h after the first infection. (B) Biological

processes overrepresented 24 h after the second infection. (C) Biological processes overrepresented 7 d after the second infection.
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TABLE 2 | Top 25 DEGs at each sampling point. FC, fold change.

I24h vs. C24h I24h2 vs. C24h2 I7d vs. C7d

FC Description FC Description FC Description

−6068.31 Caspase-3 −20257.80 Vitellogenin −3745.45 Myticin B

−5928.63 Neuronal acetylcholine receptor

subunit alpha-2

−7278.01 TRPM8 channel-associated

factor 2

−1031.26 Nacre apextrin-like protein 1

−5633.81 Metalloproteinase inhibitor 3 −5276.43 Latrophilin Cirl −956.71 Neurocan core protein

−5114.18 GTPase IMAP family member 4 −5076.28 Cytochrome c oxidase subunit 3 −712.63 Putative L-cysteine

desulfhydrase 1

−3240.46 Hepatic lectin −4899.42 Phosphoenolpyruvate

carboxykinase

−693.30 Glyoxylate

reductase/hydroxypyruvate

reductase

−3109.94 Nacre apextrin-like protein 1 −4849.28 Bacterial hemoglobin −620.87 Complement C1q-like protein 3

−2965.72 Nephrin −3940.14 Betaine–homocysteine

S-methyltransferase 1

−607.11 Metalloproteinase inhibitor 3

−2778.00 Neurocan core protein −3754.37 Lysosome membrane protein 2 −596.49 Phosphate carrier protein

−2611.24 Sacsin −3724.18 Multi-CRP-I 3 −562.79 Glyoxylate

reductase/hydroxypyruvate

reductase

−2395.37 Hemicentin-1 −3590.02 40S ribosomal protein SA −510.31 Neuronal acetylcholine receptor

subunit alpha-2

2410.00 TLD domain-containing protein 1 −3381.63 Venom allergen 5.01 −407.37 Probable cysteine protease

RD21B

2436.01 Polyubiquitin −3007.79 Vitellogenin-2 −246.99 Multi-CRP-I 3

2489.15 Hemicentin-1 −2451.55 Metalloproteinase inhibitor 3 −203.99 Hepatic lectin

2502.58 MAM and LDL-receptor class A

domain-containing protein

−2405.10 Nacre apextrin-like protein 1 −198.48 Tubulin alpha chain

2725.96 D-arabinono-1,4-lactone oxidase −2107.39 Myticin B 165.42 Sushi, nidogen and EGF-like

domain-containing protein 1

3084.32 2
′

-5
′

-oligoadenylate synthase 1A −1566.39 Papilin 197.54 C3a anaphylatoxin chemotactic

receptor

3102.00 WAP four-disulfide core domain

protein 2

−1482.80 Malate dehydrogenase,

cytoplasmic

212.68 Mammalian ependymin-related

protein 1

3139.69 Shell protein-5 −1466.81 Heme-binding protein 2 317.59 Proprotein convertase

subtilisin/kexin type 5

3251.22 Galaxin −1444.83 Stress-associated endoplasmic

reticulum protein 2

336.24 Perlucin-like protein

3255.70 Netrin receptor DCC −1435.92 Cytochrome c oxidase subunit 2 359.33 Peroxidasin homolog

3294.33 Nephrin −1360.83 Defensin MGD-1 419.55 Spore cortex-lytic enzyme

4011.09 Spore cortex-lytic enzyme −1283.57 Cytosolic

10-formyltetrahydrofolate

dehydrogenase

427.42 Phenylalanine-4-hydroxylase

4027.72 Protein henna −999.46 Glyceraldehyde-3-phosphate

dehydrogenase

735.42 Protein henna

4927.82 Heat shock 70 kDa protein 12B 1357.30 Allene oxide

synthase-lipoxygenase protein

915.43 Collagen alpha-2 (VIII) chain

5793.60 Low-density lipoprotein

receptor-related protein 6

1451.53 Spore cortex-lytic enzyme 4103.11 Lysozyme

similar to that in the controls. Quantitatively, the numbers
of granulocytes and hyalinocytes were significantly reduced
in mussels injected once with the bacteria compared to
control animals. However, when mussels had been previously
injected and received a second bacterial challenge, both
cell types reached similar values to those found in the
control (Figure 5B).

To confirm the results of the transcriptomic analysis that
suggested the inhibition of respiratory burst activity after the
second injection, we looked closely at the expression values
(TPM values) of some representative genes (OKL38 and UCP-
2) in individual mussels. All challenged animals exhibited a
significant increase in the expression of these two antioxidant
genes after reinjection (24 hpi2) (Figure 6A). We also analyzed
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FIGURE 4 | (A) Representative scheme of the comparisons made to select

the primed and tolerized genes. The statistical parameters used as thresholds

were an FDR < 0.05 and a fold change (FC) > |2| in the case of Vibrio injected

individuals and a FC < |2| in control mussels. (B) Mean of the tendency of the

primed and tolerized genes. (C) Fold change of each primed and tolerized

gene and their respective controls. The mean and standard error of all

represented genes is also shown.

ROS production in hemocytes from treated mussels. Respiratory
burst activity when there was no triggering molecule or
that was triggered by PMA was notably decreased after the
second injection (Figure 6B), supporting the results of the
transcriptomic analysis. Respiratory burst activity mediated
by zymosan A did not show significant differences among
the three groups of mussels (FSW-FSW, FSW-bacteria, and
bacteria-bacteria), which was probably due to the strong
stimulating effect of zymosan A that masked the natural
response (33).

TABLE 3 | Identified primed and tolerized DEGs.

Contig name FC Description

PRIMED DEGs 24h2 VS. 24h

Mg_contig_5596 423.00 Myomodulin neuropeptides

Mg_contig_14406 230.36 Mitochondrial uncoupling protein

2-like: UCP2

Mg_contig_1335 193.45 Tetraspanin-7

Mg_contig_9808 155.40 Mitochondrial uncoupling protein

2-like: UCP2

Mg_contig_4328 142.49 Furin-like protease: KPC-1

Mg_contig_30535 136.05 Tubulin beta chain

Mg_contig_14134 128.00 Plasminogen

Mg_contig_3665 57.18 Cytochrome P450 3A24

Mg_contig_50120 34.93 DNA repair protein complementing

XP-A cells: XPA

Mg_contig_24689 30.88 Solute carrier family 12 member 8

Mg_contig_16026 30.15 Ropporin-1-like protein

Mg_contig_21973 27.24 Inhibitor of p53-induced

apoptosis-beta

Mg_contig_13532 26.93 Zinc finger protein Eos

Mg_contig_3349 25.19 Oxidative stress-induced growth

inhibitor 1: OKL38

Mg_contig_13357 23.18 Apolipoprotein(a)

Mg_contig_41851 22.52 Tetratricopeptide repeat protein 38

Mg_contig_36957 22.50 Hydrocephalus-inducing protein

Mg_contig_32198 22.28 Solute carrier family 12 member 8

Mg_contig_45429 18.20 Alpha-L-fucosidase

Mg_contig_15455 17.40 Solute carrier family 46 member 3

Mg_contig_13725 14.90 NAD kinase

TOLERIZED DEGs 24h2 VS. 24h

Mg_contig_49351 −157.33 Usherin

Mg_contig_53728 −69.50 NFX1-type zinc finger-containing

protein 1

Mg_contig_88014 −40.66 Regulator of nonsense transcripts 1:

UPF1

Mg_contig_50460 −22.38 NFX1-type zinc finger-containing

protein 1

Mg_contig_38773 −21.16 Nephrin

Mg_contig_1952 −19.36 H/ACA ribonucleoprotein complex

subunit 4: DISKERIN

Mg_contig_2166 −18.87 Phenylalanine-tRNA ligase beta

subunit

Mg_contig_39783 −17.22 Nuclear migration protein: nudC

Mg_contig_7966 −16.66 Phenylalanine-tRNA ligase alpha

subunit B

Mg_contig_13367 −16.20 Dual serine/threonine and tyrosine

protein kinase: RIP5

Mg_contig_14736 −13.65 Phenylalanine-tRNA ligase beta

subunit

The transcriptomic analysis showed that apoptosis was
another central process in the response that appeared to be
strongly inhibited after the second Vibrio injection (24 hpi2);
therefore, we analyzed the expression of cell death inducers
such as UPF1, RIP5, and nephrin in individual mussels
(Figure 7A) and confirmed the results observed in the global
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FIGURE 5 | FACS analysis of the cell population distribution of mussel hemocytes after subsequent FSW/bacteria injection. (A) Dot plot of a total count of 100,000

events for hemolymph. R2, granulocytes; R3, hyalinocytes. (B) Statistical analysis of the hemocyte population in the different experimental conditions. Asterisks show

the statistical significance: *p < 0.05 and ***p < 0.0001. Subsequent stimulations are indicated as follows: F-F, FSW and FSW; F-B, FSW and bacteria; B-B, bacteria

and bacteria.

analysis. We next performed an experiment to analyze whether
two subsequent challenges resulted in changes in cell death.
The number of apoptotic granulocytes and hyalinocytes was
significantly increased when mussels were injected with V.
splendidus. However, if mussels were injected two consecutive
times with a resting time in between, the number of apoptotic
cells was similar to that detected after the first injection without
any further increase in the apoptotic rate (Figure 7B).

Our transcriptomic and functional results suggest that there is
a modulation of the immune response after a second encounter
with the same pathogen. Primed genes are involved in the
resolution of the inflammatory process and the inhibition of
ROS; however, repressed transcripts are related to inflammatory
reactions and oxidative stress. There is a shift toward an anti-
inflammatory response that attempts to minimize the damage
caused by the second encounter with V. splendidus (Figure 8).

DISCUSSION

One of the characteristics of the innate immune system is its
lack of immunological memory. However, in recent years, there
is increasing evidence that innate immune cells can become
reprogrammed to develop immunological memory after previous

encounters with non-self-molecules (34–36). Bivalves, like all
invertebrates, do not have an adaptive immune system and,
due to their status as filter-feeding animals, are constantly in
contact with microorganisms and environmental pollutants. Our
results suggest that mussels may control the magnitude of their
immune response, which allows them to deal with the continuous
exposure to potential pathogens. A continuous reaction in these
animals against all pathogenic and non-pathogenic microbes
would potentially result in a constant state of inflammation that
may be detrimental for the organism.

After the first V. splendidus exposure, there was an initial
response represented by a high number of modulated genes,
which decreased after the second exposure and almost returned
to a basal level at the end of the experiment. The decrease in
the number of differentially expressed genes after the second
injection is in concordance with previous findings in Crassostrea
gigas (37), in which specific protection against a viral infection
was achieved after poly I:C priming and a later exposure
to the pathogen did not trigger an antiviral response. This
suggests that in our experimental design, the primary challenge
with a pathogen triggered immune processes that could be
reprogrammed afterwards.

When comparing the processes significantly enriched during
the two subsequent encounters, a shift from an inflammatory
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FIGURE 6 | (A) Expression values (TPM) for two representative inhibitors of oxidative stress (OKL38 and UCP-2) in the six studied individuals (C2, C3, C4, I1, I2, and

I10) at two experimental time points (24 hpi and 24 hpi2). (B) Respiratory burst assay. Bars represent the mean percentage and standard error of the relative

luminescence units (rlu) for the total hemocytes in eight individual mussels. Asterisks show the statistical significance: *p < 0.05; **p < 0.001; and ***p < 0.0001.

Subsequent stimulations are indicated as follows: F-F, FSW and FSW; F-B, FSW and bacteria; B-B, bacteria and bacteria.

to an anti-inflammatory state can be observed. After the first
injection, the expected response would involve the positive
regulation of the inflammatory response and the migration
of hemocytes, as seen in other bivalves (10, 38). However, a
strong decrease in the number of DEGs and the strict control
of inflammation, which is a potentially harmful process, could
be observed after the second challenge, which was possibly a
consequence of the inhibition of the NF-kB signaling pathway
(39). Taking into account that Vibrio splendidus was used at a
sublethal dose and also that the infection was cleared before the
second injection, it is unlikely that bacteria virulence factors have
been responsible for the regulation of the inflammatory response.
Also, we cannot know if the response after the second injection
would be the same if a different pathogen was injected. These
aspects should be further investigated.

Inflammation is critical in the response against infection;
however, this process cannot last for a long time, and a
return to a non-inflammatory state requires specific suppressor
molecules (40). The expression of primed and tolerized genes
in the mussel transcriptome suggests a combined response that
attempts to control and limit three key immune processes:
inflammation, ROS production, and apoptosis. The primed genes
are involved in the attenuation of inflammation by regulating
the transport of ions [myomodulin neuropeptides; (41, 42)],

inhibiting NF-kB via ubiquitination [KPC-1; (43)], or inhibiting
inflammatory pathways [plasminogen/apolipoprotein(a); (44–
46)]. On the other hand, the tolerized genes (inhibited in the
second challenge) are involved in the regulation of cell death
[RIP5; (47)].

As is the case for the inflammatory process, an excess of
reactive oxygen species can be harmful to the organism. At
physiological levels, ROS are involved in intracellular signaling
and defense, but uncontrolled production yields oxidative stress.
Therefore, ROS are strictly controlled in all organisms to prevent
self-inflicted damage (48, 49). The production of ROS is a well-
characterized defense process in bivalves (50), but after the
second exposure to the same pathogen, the mussels seemed to
actively control oxidative stress by inhibiting respiratory burst
activity with the expression of genes such as UCP2 (51), OKL38
(52), and NAD kinase (53). It seems that the control of oxidative
stress is one of the central modulated processes after repeated
encounters. Accordingly, at the functional level, we observed
that the ROS levels were reduced after two subsequent V.
splendidus challenges, suggesting that hemocytes could prevent
an uncontrolled respiratory burst. Moreover, hemocytes seem to
avoid cellular impairment caused by DNA damage resulting from
previous oxidative stress (54), with the overexpression after the
second injection of the DNA repair protein XPA (55).
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FIGURE 7 | (A) Expression values (TPM) for three representative apoptosis inducers (RIP5, UPF1, and nephrin) in the 6 studied individuals (C2, C3, C4, I1, I2, and I10)

at two experimental time points (24 hpi and 24 hpi2). (B) Apoptosis analysis. Bars represent the mean percentage and standard error of apoptotic cells in total

hemocytes, hyalinocytes and granulocytes in eight individual mussels. Asterisks show the statistical significance: *p < 0.05 and **p < 0.001. Subsequent stimulations

are indicated as follows: F-F, FSW and FSW; F-B, FSW and bacteria; B-B, bacteria and bacteria.

FIGURE 8 | Summary of the main biological processes regulated during the subsequent Vibrio challenges. Note that the trained genes shift in terms of response from

pro- to anti-inflammatory.
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A strong link between oxidative response and apoptosis,
which is the other strongly modulated process in our results,
has been reported (56, 57). The tolerized genes include
several modulators of apoptosis. These genes, which have
a predominantly pro-apoptotic function, are inhibited after
the second exposure and include UPF1 (58), nephrin (59),
DISKERIN (60), RIP5 (47), and nudC (61). At the functional
level, the number of apoptotic cells was significantly increased
after a single injection and wasmaintained, rather than increased,
after the second injection.

In addition, the loss of the hemocyte population distribution
after the first challenge and the restoration to normal conditions
after the second challenge are in concordance with the presence
of a priming process and reflect hemocyte recovery after
the previous V. splendidus encounter. In our opinion, this
evident change in hemocyte populations is very revealing and
complements previous priming results in mollusks (62–65), and
it should be further explored.

Eventually, 7 days after the second exposure, the resolution of
the infection occurred. Processes related to tissue regeneration
and learning are represented in our results, including the
up-regulation of proliferation (C3a anaphylatoxin chemotactic
receptor, skin secretory protein xP2, sushi, nidogen, and
EGF-like domain-containing proteins), maintenance of
the extracellular matrix (collagen, techylectin, perlucin,
neurocan, and glycoproteins), and learning (phenylanaline-4-
hydroxylase/henna protein). The presence of neural processes
related to the generation of memory at all sampling points
is remarkable. Although this might be due to the strong bias
in the GO database in terms of model organisms, we cannot
discard genuine evidence of a process that occurs during
infection. The protein related to these GO terms, which is
involved in the melanization cascade in invertebrates, could
also be related to ancient cognition and behavior mechanisms,
which are known to occur in invertebrates (66). In any case,
it seems that certain processes, such as the metabolism of
phenylalanine, could be involved in the generation of innate
immune memory. Previous studies in mammals have shown
the impairment of cognitive function due to phenylalanine
hydroxylase deficiency (67–69), showing a possible link to
learning processes and the evolutionary conservation of
this mechanism.

In summary, the immune responses of M. galloprovincialis
after the first and second encounter with V. splendidus were
different. The analysis of the differentially expressed genes
suggests that, after the second contact with the bacteria,
the mussel hemocytes attempted to control and resolve the
inflammatory response to avoid subsequent DNA damage and
cell death. There appears a tightly regulated response shifting
from a pro-inflammatory response to an anti-inflammatory and
probably regenerative phenotype. In conclusion, these results
indicate the existence of a secondary immune response inmussels
oriented to tolerate infection by inducing anti-inflammatory
processes to minimize tissue damage.
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