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Kristýna Fiedorová 1,2,3, Matěj Radvanský 4, Juraj Bosák 5, Hana Grombiříková 1,3,
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Common Variable Immunodeficiency (CVID) is the most frequent symptomatic immune

disorder characterized by reduced serum immunoglobulins. Patients often suffer from

infectious and serious non-infectious complications which impact their life tremendously.

The monogenic cause has been revealed in a minority of patients so far, indicating

the role of multiple genes and environmental factors in CVID etiology. Using 16S and

ITS rRNA amplicon sequencing, we analyzed the bacterial and fungal gut microbiota,

respectively, in a group of 55 participants constituting of CVID patients and matched

healthy controls including 16 case-control pairs living in the same household, to explore

possible associations between gut microbiota composition and disease phenotype. We

revealed less diverse and significantly altered bacterial but not fungal gut microbiota in

CVID patients, which additionally appeared to be associated with a more severe disease

phenotype. The factor of sharing the same household impacted both bacterial and fungal

microbiome data significantly, although not as strongly as CVID diagnosis in bacterial

assessment. Overall, our results suggest that gut bacterial microbiota is altered in CVID

patients and may be one of the missing environmental drivers contributing to some of the

symptoms and disease severity. Paired samples serving as controls will provide a better

resolution between disease-related dysbiosis and other environmental confounders in

future studies.
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INTRODUCTION

Common Variable Immunodeficiency (CVID) is the most
frequent symptomatic immune disorder, estimated to affect 1
in 25,000 people worldwide, although the prevalence can vary
across different countries (1, 2). CVID includes clinically and
genetically heterogeneous disorders characterized by reduced
serum immunoglobulins IgG, IgA, and inconstantly also IgM.
As a result of a defect in antibody production, most patients
suffer from severe, recurrent infections, mainly of the respiratory
and gastrointestinal tract, and have impaired vaccine responses
(3, 4). These often manifest as autoimmune complications or
inflammatory conditions. Malignancy occurs more frequently
in CVID than in the general population (5). Owing to clinical
heterogeneity, the disease cannot be determined by a single
clinical or laboratory feature. Various diagnostic criteria have
been proposed for CVID diagnosis (1, 3, 6, 7). The monogenic
cause was revealed in <10% of patients so far, indicating
both genetic and environmental factors’ contribution in CVID
etiology (3, 8).

Recently, human gut microbiota research and its implications
in health and disease has attracted tremendous attention.
Technological progress in high throughput sequencing has
enabled us to associate alterations in gut microbiota composition
to a wide variety of human diseases (9, 10) and the expanding
knowledge of how gut microbiota affects the host led to
new clinical procedure development (11). Recent murine and
human studies found gut microbiota to be a crucial factor in
shaping and modulating immune system responses (12–14).
Gut microbiota modulates the host’s immune system via its
structural components and metabolites (15, 16). Microbiota-
derived metabolites maintain a homeostatic environment of
mucus and trigger different immune gene transcription (17, 18).
The immune system preserves gut homeostasis and regulates
commensal microbiota via immunoglobulin A (IgA) antibodies
(19). Schofield and Palm suggested that IgA shapes the gut
microbiota in a similar way to how it protects against pathogens
in the context of specific species growth restriction (20). Kubinak
and Round observed that IgA preferentially targets, and thus
limits the levels of microorganisms found in the mucosa while
promoting overall microbial diversity via antibody-mediated
immunoselection (AMIS), nevertheless the exact mechanisms are
poorly understood (21).

Impairing IgA antibody production has been associated
with reduced microbiota diversity, and imbalanced microbiota
composition resulted in systemic immune activations in mice
models (22, 23). One of the possible explanations is an increased
opportunity for microbial translocation due to a lack of IgA,
which leads to local mucosal inflammation (24). Thus, it
has been hypothesized that gut microbiota might be one of
the environmental drivers in CVID pathophysiology. To date,
only few studies have attempted to describe gut microbiota
associations with CVID or selective IgA deficiency syndrome
(25–28). Jørgensen et al. showed a positive correlation between
disease severity expressed by complication occurrence with
higher microbiota dysbiosis and elevated immune activation
markers alongside increased lipopolysaccharide (LPS) levels (26).

Shulzhenko et al. observed lower mucosal IgA levels in CVID
patients suffering from enteropathy than CVID patients without
enteropathy and identified three different bacterial taxa that
potentially contribute to CVID enteropathy (28).

These studies’ results have provided a valuable insight into
immunological processes occurring in CVID. However, they
have not lead to a clear answer whether gut microbiota
composition is causative or a consequence of a CVID phenotype,
and thus further studies are needed to elucidate the true
effects of low IgA levels. In addition, all studies have been
focused on the microbiota’s bacterial part and knowledge about
fungal microbiota (mycobiota) contribution to CVID etiology is
completely lacking. The mycobiota role is relevant in mediating
tissue homeostasis (29, 30) and its dysbiosis has been linked to
various pathological conditions as well (31, 32). Furthermore,
none of the mentioned studies used patients’ partners living in
the same household as healthy controls to alleviate the impact
of environmental cofounders on gut microbiota composition,
which is very variable (33).

In this study, we attempted to expand on bacterial
gut microbiota knowledge and, for the first time, fungal
gut microbiota composition and its association with disease
pathogenesis in CVID patients using 16S and ITS rRNA amplicon
sequencing. To decrease the impact of the various environmental
factors on gut microbiota composition, we also examined case-
control couples living in the same household.

METHODS

This study was approved by the Ethic Committee of the Faculty
of Medicine, Masaryk University (Protocol no. 37/2016). All
enrolled subjects provided written informed consent.

Subject Recruitment and Sample/Data
Collection
CVID patients (n = 27) fulfilling International Consensus
Document (ICON) diagnostic criteria for CVID (3) were
recruited from St. Anne’s University Hospital in Brno and the
University Hospital Hradec Kralove in the Czech Republic,
and characterized according to Ameratunga (1) and Chapel
(34) classifications (Supplementary Table S1). Nine patients
were treated with regular intravenous immunoglobulin
substitution (IVIg) and 18 with subcutaneous immunoglobulin
substitution (SCIg). Five patients (18.5%) were treated with
immunosuppressive medication. Twenty-two (81.5%) patients
suffered from one or more of the following complications:
bronchiectasis (n = 5), autoimmunity (n = 9), splenomegaly
(n = 18), chronic diarrhea (n = 3), atrophic gastritis (n = 5),
and nodular hyperplasia (n = 2); where 16 patients were not
examined for the latter two conditions. Healthy controls (n= 28)
included an age-, sex-, and BMI- matched cohort. Together, 27
CVID patients and 28 healthy controls formed the “ALL” group.
Out of the “ALL” group, 16 healthy individuals shared the same
household with 16 CVID patients as theirs partners, representing
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TABLE 1 | General characteristics of study groups (ALL, PAIRS) and cohorts (CVID, CONTROLS): (a) T-test; (b) Fisher’s exact test.

ALL (n = 55) PAIRS (n = 32)

CVID (n = 27) CONTROLS (n = 28) p-value CVID (n = 16) CONTROLS (n = 16) p-value

Age in years 45.8 ± 12 44.8 ± 12.2 0.7505a 45.4 ± 11.9 44.8 ± 10.9 0.8818a

Mean ± SD (range) (26–70) (23–67) (26–66) (25–67)

Male (%) 37 42.9 0.7848b 31.3 68.8 0.0756b

BMI 24.8 ± 3.7 26.7 ± 4.6 0.1032a 24.7 ± 4.1 26.8 ± 4.1 0.1747a

Mean ± SD (range) (17.7–33.1) (19.8–38.6) (18.8–33.1) (20.1–33.3)

Smokers; Ex-smokers (n) 0;6 1;6 1b 0;4 3;1 0.1429b

ATB last year (>1 month) (n) 14 4 0.0041b 7 1 0.0372b

P-values < 0.05 (bold) are considered significant.

the “PAIRS” subgroup (n = 32). The clinical characteristics for
the study cohorts are summarized in Table 1.

All participants provided self-report questionnaire data along
with a fecal sample in a sterile container, according to
the standardized International Human Microbiome Standards
(IHMS) protocol SOP 03 V1 (35) recommended by the
International Human Microbiome Consortium. Participants
were excluded if they had been treated with antibiotics <1
month prior to sampling. Stool samples were accurately weighed
to 200mg aliquots and frozen at −80◦C within 24 h of
collection. CVID patients’ IgG, IgA, and IgM serum levels were
measured during routine medical visits on the day of stool
sample collection.

DNA Extraction and Quantification
Fecal samples were processed using the current standard
operating procedure, IHMS protocol Q (36), with minor
modifications. Briefly, a frozen aliquot (200mg) of each sample
was thawed and homogenized with 0.6 g of sterile 0.1 and 0.5mm
diameter zirconia beads (BioSpec, Inc., USA) along with 1mL
ASL lysis buffer (Qiagen, Germany). Sample homogenization was
undertaken on the Vortex-Genie 2 mixer (MO BIO Laboratories,
Inc., USA) for 10min and the RNase incubation step was omitted.
DNA concentration and purity were determined via 260/280
and 260/230 ratios measured on the NanoDrop 1000 (Thermo
Fisher Scientific, USA). DNA eluates were stored at −20◦C
until processing. Sterile water (B. Braun Medical, Inc., Germany)
was used as no template control in each DNA extraction
round (n= 9).

Library Preparation and Sequencing
The fecal and control samples were profiled by high-throughput
amplicon sequencing using the Illumina MiSeq platform
(Illumina, USA). The V3-V4 region of the bacterial 16S rRNA
gene was amplified using the primer pair (Bakt_341F/Bakt_805R)
containing Illumina adapter sequences (37). Primer pairs
ITS1F/ITS2 recommended by the Earth Microbiome Project1

with unique barcode sequences designed in our laboratory (38)
were used to amplify the fungal internal transcribed spacer
region 1 (ITS1) of the rRNA operon. The 16S Library was
constructed according to the “16S Metagenomic Sequencing

1http://www.earthmicrobiome.org/protocols-and-standards/its/

Library Preparation protocol” (37). The ITS1 Library was
constructed in a similar manner to the 16S Library, with minor
modifications as described previously (38). As a positive control
for the sequencing process, the Human Microbiome Project
mock community HM-783D (obtained through BEI Resources,
NIAID, NIH) also underwent PCR alongside samples and no
template controls.

Bioinformatics
Sequence data analysis for both libraries was processed using
Quantitative Insights Into Microbial Ecology (QIIME) pipeline
(v.1.9.1.) (39). The ITS1 read pairs were demultiplexed based on
the unique barcodes. Paired reads were merged and chimeric
sequences were removed using VSEARCH (v. 2.6.1) (40) with
the Greengenes reference database (v. 4feb2011) (41) for the 16S
library and UCHIME (v. 7.2) (42) reference dataset for the ITS1
library. Chimera-free sequences were clustered into Operational
Taxonomic Units (OTUs) at 97% threshold using VSEARCH de
novo. BothOTU sets were assigned to taxonomy at 97% similarity
using the Greengenes database (v. gg_13_8_otus) and Uclust (v.
1.2.22q) (43) in bacterial analysis, and BLAST (44) and UNITE
(v. 7.2)2 in fungal analysis, resulting in the OTU tables in BIOM
format with the singletons discarded.

Further, sparse OTUs with a number of sequences <0.005%
of the total sequence number were filtered out of the bacterial
dataset (45). PyNAST (v. 1.2.2.) (46) was used to align
representative sequences to build a phylogenetic tree using
FastTree (v. 2.1.3) (47). QIIME was also used to calculate
phylogenetic-based metrics (weighted and unweighted UniFrac
distance matrices). Rare taxa with <0.01% relative abundance
across all samples were excluded from the fungal OTU table using
the Calypso online tool (v. 8.72) (48).

Statistical Analyses
All analyses were performed using R software (v. 3.5.2) (49)
or the Calypso online tool (version 8.72) (48). OTU tables
were normalized via total-sum scaling (TSS) followed by
centered-log ratio transformation. All data were tested for
normal distribution using the Shapiro-Wilk test for normality,
and parametric or non-parametric tests were used when

2PlutoF biodiversity platform Available at: https://plutof.ut.ee/#/datacite/10.15156

%2FBIO%2F587476
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appropriate. The presented p-values were adjusted for multiple
comparison corrections when appropriate. P-values below 0.05
were considered statistically significant.

The subjects’ clinical characteristics are represented as the
mean ± SD, which were determined using the T-test. Fisher’s
exact test was used to assess gender, smoking status, and previous
antibiotic use differences.

Alpha-diversity expressed by the Shannon diversity, Richness
and the Chao1 indices was calculated and visualized in Calypso.
The Shannon diversity index measures the overall diversity
(number of present OTUs, evenness), the Richness index
expresses the number of present OTUs, and the Chao1 index
also measures, besides OTU richness, the ratio of singletons to
doubletons to give more weight to rare species (50). The t-test
and the paired t-test were used to determine alpha-diversity
differences between study cohorts.

Beta-diversity analyses were performed to explore associations
between the microbial composition in the samples and
various environmental variables via Analysis of similarities
(ANOSIM), Permutational Multivariate Analysis of Variance
Using Distance Matrices (ADONIS+) and Redundancy analysis
(RDA+) tests were implemented in Calypso. The ANOSIM and
ADONIS+ test use selected distancematrices (weighted UniFrac,
unweighted UniFrac, Bray-Curtis dissimilarity). ANOSIM is
a rank-based test which compares intra-group and inter-
group community distances. ADONIS+ is a multivariate test
which tests if the variance in microbial composition could be
explained by the different explanatory variables (“ALL” and
“PAIRS” groups: diagnosis, household, age, BMI, sex, ATB,
and smoking status, “Patients” cohort: clinical classifications,
treatment type, complication type, immunoglobulin levels).
RDA+ is a supervised multivariate method which explores
complex associations between microbial composition and
different explanatory variables independently on a distance
matrix. Selected data associations were visualized via 2D
principal coordinate analysis (PCoA) plots using selected
distance matrices.

Differences in microbial composition between study cohorts
were identified via the: Linear discriminant analysis Effect
Size (LEfSe), Differential gene expression analysis based on
the negative binomial distribution (DESeq2), and regression
analyses, as implemented in Calypso. LEfSe was used to identify
taxa potentially associated with health status. LEfSe analysis finds
taxa which are most likely to explain the differences between
study cohorts. DESeq2, a test developed for count data and
small sample cohorts, finds taxa which differ in their relative
abundances between cohorts. Correlations between taxa and
health status were assessed by regression analysis using the
Spearman’s correlation coefficient. Taxa which were significantly
different between cohorts were visualized via stripchart plots and
paired dot plots.

RESULTS

Study Population Characteristics
In this study we assigned the participants to two groups. The first
main group termed “ALL” was constituted of all 55 participants

TABLE 2 | Characterization of the bacterial and fungal microbiome properties at

genus level.

Genus Level

(n = total

number)

Unique

(1 sample)

Frequent

(> 50% samples)

Common

(all samples)

n % n % n %

Bacteria (n = 86) 0 0 67 77.9 25 29.1

Fungi (n = 68) 12 17.6 9 13.2 2 2.9

Unique, Number of taxa present in only one sample; Frequent, Number of taxa present in
at least half of the samples; Common, Number of taxa present in all samples.

enrolled in this study, 27 patients with CVID, and 28 healthy
controls. The second group (a subgroup within the “ALL” group)
termed “PAIRS” was consisted of 16 patients and their 16 partners
from the same household, who served as controls to reduce the
different environmental impacts on gut microbiota composition.
The patient and control cohorts were homogeneous in age, sex,
BMI, and smoking status in both groups (Table 1). Previous
antibiotic use (more than 1 and <12 months prior to sampling)
was significantly higher in the patients’ cohort in both the ALL
and PAIRS group (Table 1).

Bacterial Microbiota Differs From Fungal
Microbiota
After quality-filtering steps, a total of 20,756,053 16S rRNA
gene sequence reads and 1,789,802 ITS1 rRNA gene sequence
reads were obtained from all 55 participants, with an average
377,383 ± 90,742 bacterial and 32,542 ± 10,768 fungal reads per
sample. Reads were clustered in 552 and 163 bacterial and fungal
OTUs, respectively, at 97% similarity level. Bacterial OTUs were
distributed to 86 taxa, of which 63 taxa (68.2% of total reads) were
assigned to the genus level. Ten OTUs from ITS1 analysis (0.42%
of total reads) were not assigned to the kingdom Fungi, and the
remaining 153 fungal OTUs were distributed to 68 taxa at the
genus level (92.3% of total reads).

On average, 63 bacterial genera (range: 50–71) and 12 fungal
genera (range: 6–21) were detected per sample. The general
properties of bacterial and fungal microbiota differed. Fungal
microbiota was less rich and more variable than bacterial
microbiota. We detected 12 fungal genera singletons, and only
two genera (2.9%) were shared by all participants, compared
to 25 genera in bacterial microbiota (29.1%) shared across
all samples and no singleton genus detected (Table 2). We
detected 22 genera and 14 families in bacterial microbiota and
9 genera and 8 families in fungal microbiota with an average
abundance over 1%. All taxa above a 1% average relative
abundance including numbers of positive samples are listed in
Supplementary Table S2.

Differences in Bacterial but Not Fungal
Alpha-Diversity Between CVID and
Controls
The alpha-diversity of the CVID and Control cohorts’ gut
communities in both groups was evaluated in terms of a number
of observed OTUs (Richness), Shannon index and Chao1 index.
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Generally, the bacterial diversity was ∼10 times higher than
fungal diversity (Table 3), however, different sequence filtration
steps were applied during analyses (see Methods). In bacterial
microbiota, all measured alpha-diversity indices were lower in
the CVID cohorts than in the Control cohorts, but only the
difference in the Richness index was statistically significant
in the ALL group (p = 0.0256), in contrast to the PAIRS
group, where all the differences reached statistical significance
(Table 3; Figure 1). In the case of fungal microbiota, alpha-
diversity with health status associations were not observed in any
group (Table 3).

Health Status and Sharing the Same
Household Impact the Beta-Diversity
To identify the complex associations between the gut microbiota
composition and environmental factors such as health status,
same household, age, BMI, sex, antibiotic use, and smoking
status, we calculated the samples’ beta-diversity using the
unweighted andweightedUniFrac distances (only in the bacterial
analysis) and the Bray-Curtis dissimilarity distance (bacterial and
fungal analyses). The Principal Coordinates Analysis (PCoA)
based on Bray-Curtis measures (Figure 2) revealed that the
CVID patients’ bacterial microbiota was distinct from the
healthy controls in both groups (ANOSIM, ALL: r = 0.118,
p = 0.001; PAIRS: r = 0.178, p = 0.001). These observations
were confirmed by multivariate tests ADONIS+ and RDA+,
in which the health status was the most significant factor
followed by household (PAIRS), and age (ALL) factors (Table 4).
Similar results were obtained when using unweighted and
weighted UniFrac distance matrices (Supplementary Table S3).
Contrary to the bacterial analyses, clustering according to health
status was not observed in any fungal analyses (Figure 2).
The most significant impact on fungal microbiota composition
was the same household factor (ANOSIM, PAIRS: r = 0.47,
p = 0.001), as was also confirmed by ADONIS+ and RDA+
analyses (Table 4). Age and sex were also detected as significant
factors; however, their results were inconsistently significant
among analyses.

CVID Patients Harbor an Altered Bacterial
but Not Fungal Gut Microbiota
To characterize the differences in bacterial and fungal
microbiota abundance between CVID patients and healthy
controls, we performed three different statistical tests
(see Methods): The linear discriminant analysis effect
size (LEfSe) (Supplementary Table S4), differential gene
expression analysis based on the negative binomial distribution
(DESeq2) (Supplementary Table S5), and regression analysis
(Supplementary Table S6). Taxa were considered significantly
shifted if at least two separate statistical tests discovered
these taxa as biomarkers (LEfSe) or significant (p < 0.05;
DESeq2, regression analysis). This combined analysis
showed clear bacterial gut community alterations in CVID
characterized by shifts in eight and 12 taxa at family
and genus level, respectively (Table 5). These taxa were
visualized by stripchart or paired dot plots of both groups T
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FIGURE 1 | Bacterial alpha-diversity of gut microbiome between CVID patients and healthy controls; Strip chart plots (group “ALL”) and paired dot plots (group

“PAIRS”) depict microbiome diversity differences according to the Richness index (A,D), Shannon index (B,E), and Chao1 index (C,F). Each letter in paired dot plots

represents one pair of CVID and healthy control from the same household.

FIGURE 2 | Beta-diversity according to the health status and same household factor; Beta-diversity was calculated from total sum scaling (TSS) normalized OTU data

followed by centered log-transformation ratio using the Bray-Curtis distance matrix and visualized using principal coordinate analysis (PCoA) plots. Samples are

colored according to the health status (both groups), and the same household (group “PAIRS”). Bacterial beta-diversity: (i) according to the health status: group “ALL”

(A), group “PAIRS” (B); (ii) according to the same household (group “PAIRS”) (C). Fungal beta-diversity: (i) according to the health status: group “ALL” (D), group

“PAIRS” (E); (ii) according to the same household (group “PAIRS”) (F). Quantitative differences between cohorts are listed in Table 4.

(Figure 3). Using the same approach, we detected some shifts
in the fungal composition in the context of health status
(Supplementary Tables S4–S6); however, the results were

not consistent between methods or ceased to be significant
after multiple comparison correction adjustments. Only the
Blastobotrys genus from the Trichomonascaceae family remained
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significantly associated with CVID, although it was present in
only seven samples.

More Severe CVID Phenotype and
Unmeasurable Serum IgA Levels Are
Associated With More Reduced Bacterial
Alpha-Diversity
The CVID patient cohort (n = 27) was further analyzed
for phenotype severity, serum immunoglobulin (IgA,
IgM) levels, complication occurrence and its association
with gut microbiota diversity (Supplementary Table S1).
Patients were characterized in this study using disease
classifications according to Ameratunga (1) and Chapel
(34) (Supplementary Table S1). The CVID phenotype severity
in the Ameratunga category was relatively assessed in our
CVID cohort using the median as a threshold to obtain
two groups—less severe (n = 15) and more severe (n = 12)
phenotype. The CVID phenotypes in the Chapel category were
divided into two main groups “Infection only” (n = 15) and
“Complications” (n = 12) according to previously defined
criteria (34).

We divided CVID cohort into two groups according to
the CVID phenotype severity in the Ameratunga category
and compared them with the Control cohort (Figure 4). We
observed that less severe CVID phenotype was comparable to
the controls in alpha-diversity measurements, although alpha-
diversity tended to be slightly lower in CVID. Contrary to
the less severe phenotype, all alpha-diversity indices in the
more severe phenotype were significantly decreased than in the
Control cohort (Figures 4A–D). CVID phenotype differences
were also reflected in beta-diversity analysis (Figure 4E). The
less severe phenotype group overlapped the Control cohort
more, indicating similar microbiota composition, and the
more severe phenotype tended to cluster separately, suggesting
greater differences in microbiota composition. We also observed
significant differences in alpha-diversity between the controls
and the “Complications” subgroup assessed by Chapel category
(Supplementary Table S7). Differences in fungal alpha-diversity
associated with the mentioned classifications were not detected.

Next, bacterial alpha-diversity was lower in patients
with unmeasurable serum IgA levels (<0.07 g/l)
(Supplementary Figure S1), but only the Chao1 index indicates
a significant decrease (p = 0.015). However, only four patients
had measurable serum IgA levels in a sampling day.

We did not observe any other conclusive differences in
bacterial or fungal alpha-diversity in a complication occurrence
context (bronchiectasis, autoimmunity, splenomegaly,
chronic diarrhea, atrophic gastritis, and nodular hyperplasia)
(Supplementary Table S8), treatment administration (antibiotic
use, substitution therapy type or immunosuppression), or serum
IgM levels, however, data analyses in most groups/categories may
be burdened by a small number error. Therefore, interpreting
the results of these analyses is difficult and more samples would
be needed to analyze these complications to resolve whether gut
microbiota is affected or not.

DISCUSSION

In this study, we attempted to: (i) Assess whether the
bacterial and/or fungal gut microbiota is affected in CVID
by comparing the gut microbiota composition between CVID
patients and healthy control cohorts in two groups constituting
all participants and case-control pairs who shared the same
household, respectively; and (ii) Expand general knowledge
about fungal gut microbiota composition, since gut fungi
are still relatively understudied and new findings are needed
regardless of the study’s primary purpose. To achieve these
goals, we used alpha- and beta- diversity measurements
alongside taxonomic comparisons. Alpha-diversity shows how
many and how many different microbes can be found
within one sample. Beta-diversity shows how these samples
or groups of samples (i.e., CVID vs. Controls) vary against
each other, and taxonomic comparisons specifically show
these differences.

Our results indicate that CVID patients harbor less diverse
and significantly altered bacterial communities in their gut.
It also appears that the gut bacterial microbiota is associated
with the CVID phenotype severity, which is in concordance
with the previous study’s outcome that bacterial microbiota
may be involved, at least partially, in systemic immune
activation in CVID (26). Contrary to bacterial analyses, only
one relatively underrepresented fungal genus Blastobotrys was
associated with CVID in our study, however, this genus was
present in only a few samples, and thus mycobiota statistical
analyses exhibited no conclusive health status associations
indicating that fungi are probably not relevant contributors
to the CVID phenotype. In parallel, we examined a group of
16 case-control couples who shared the same household to
decrease the different environmental impact on gut microbiota
composition. We found that sharing the same household
is a strong factor influencing the microbiome data. While
in the case of bacterial analyses, the household’s impact
was strong but did not outweigh the influence of the
health status on microbiota diversity, in the case of fungal
analyses, the household was the most significant diversity
determining factor.

Gut Microbiota in CVID
In last few decades we have expanded our understanding of the
role of the human gut microbiome in health and disease. Many
studies associated gut microbiomes not only with gastrointestinal
tract diseases, but also with extra-intestinal conditions including
immune system disorders [reviewed in (51)]. Nevertheless,
studies linking the gut microbiome to CVID are still rare. To
the best of our knowledge, only three studies have focused on
gut microbiota composition in CVID patients (25, 26, 28), and
none of them analyzed gut mycobiota or used paired controls
from others sharing the same household. We provide a new
view on CVID bacterial microbiota alongside previous findings’
comparisons, and at the same time provide unique findings
from CVID gut mycobiota analysis. Our results from bacterial
analyses could be most easily compared to Jørgensen et al. (26)
study results since other two mentioned studies (i) used different
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TABLE 4 | Bacterial and fungal beta-diversity by environmental variables.

Parameter ADONIS+ Bray-Curtis Anosim Bray-Curtis RDA+

All (n = 55) Pairs (n = 32) All (n = 55) Pairs (n = 32) All (n = 55) Pairs (n = 32)

R2 P R2 P R P R P Variance F P Variance F P

BACTERIA

Diagnosis 0.0665 0.0003 0.0862 0.0003 0.118 0.001 0.178 0.001 20.50 2.11 0.001 30.43 1.86 0.003

Household ND ND 0.585 0.0027 ND ND 0.352 0.002 ND ND ND 291.10 1.19 0.03

Age category 0.109 0.006 0.0887 0.63 0.118 0.004 0.156 0.018 51.44 1.32 0.004 60.46 0.92 0.729

BMI category 0.0608 0.146 0.0402 0.726 0.064 0.077 −0.021 0.609 33.34 1.14 0.149 29.88 0.91 0.716

Sex 0.0133 0.669 0.0221 0.555 −0.008 0.541 0.036 0.139 8.55 0.88 0.772 14.30 0.87 0.742

ATB 0.0166 0.414 0.0159 0.868 0.04 0.234 0.041 0.335 9.23 0.95 0.570 13.99 0.85 0.765

Smoking 0.0396 0.201 0.0421 0.663 0.041 0.333 0.097 0.213 20.61 1.6 0.283 30.3 0.92 0.711

FUNGI

Diagnosis 0.0213 0.29 0.0173 0.528 0.004 0.341 −0.031 0.851 3.10 1.00 0.426 3.73 0.79 0.760

Household ND ND 0.701 0.0007 ND ND 0.47 0.001 ND ND ND 97.05 1.37 0.033

Age category 0.102 0.052 0.122 0.0733 0.047 0.096 0.14 0.04 15.90 1.29 0.003 23.38 1.24 0.220

BMI category 0.0417 0.818 0.0375 0.501 0 0.504 0.032 0.283 11.68 1.26 0.175 7.15 0.76 0.833

Sex 0.0205 0.318 0.0123 0.78 −0.086 0.996 −0.031 0.841 3.43 1.11 0.223 10.11 2.15 0.021

ATB 0.0059 0.984 0.0041 0.993 −0.005 0.517 0.042 0.318 2.40 0.78 0.906 2.41 0.51 0.965

Smoking 0.0391 0.415 0.0082 1 −0.08 0.775 −0.097 0.779 5.68 0.92 0.657 4.62 0.49 1

Beta-diversity was calculated from total-sum scaling (TSS) normalized OTU data followed by centered-log ratio transformation using the Brays-Curtis dissimilarity distance matrix. Analysis of variance using distance matrix (ADONIS+)
adjusted for multiple variables: R2 value indicates effect size. Analysis of similarities (ANOSIM): R is constrained between the values −1 to 1, where positive numbers suggest more similarity within sites, negative numbers more similarity
between sites and values close to zero represent no differences. Bray-Curtis distance independent redundancy analysis (RDA+) adjusted for multiple variables. P-values below 0.05 (bold) were considered significant.
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TABLE 5 | Bacterial taxa at genus and family level significantly associated with health status across at least two of three statistical tests.

Selected taxa Associated group LEfSe LDA score DESeq2 p-value (FDR) Regression analysis p-value

FAMILY LEVEL

Campylobacteraceae CVID 3.09 0.0000000013 0.0013

Streptococcaceae CVID 3.96 0.0000021 0.0074

Lactobacillaceae CVID NS 0.00011 0.05

Gemellaceae CVID 2.95 0.00014 0.00078

Unclassified.Lactobacillales CVID NS 0.013 0.0097

Enterobacteriaceae CVID 3.68 NS 0.0089

Erysipelotrichaceae CONTROL 3.73 0.019 0.031

Unclassified_Clostridiales CONTROL 4.12 0.042 0.01

GENUS LEVEL

Campylobacter CVID 2.27 0.0000000063 0.0012

Anaerotruncus CVID 2.44 0.0000044 0.00086

Streptococcus CVID 3.95 0.0000063 0.012

Gemella CVID 2.29 0.00052 0.00096

Lactobacillus CVID NS 0.00073 0.038

Eggerthella CVID 2.61 0.0047 0.0013

Unclassified.Lactobacillales CVID NS 0.0047 0.0092

Enterococcus CVID NS 0.0047 0.02

Unclassified_Enterobacteriaceae CVID 3.72 NS 0.0015

Mitsuokella CONTROL 3.02 0.00014 NS

Unclassified_Clostridiales CONTROL 4.11 0.0039 0.0092

Unclassified_Coriobacteriaceae CONTROL 3.22 0.026 0.007

Taxa are listed by the DESeq2 significance in each cohort. LEfSe, The linear discriminant analysis (LDA) effect size; DESeq2, Differential gene expression analysis based on the negative
binomial distribution; NS, Not significant.

FIGURE 3 | Comparison of total sum scaling (TSS) and centered log-ratio transformation data from bacterial taxa according to health status in group “ALL” (stripchart

plots) and group “PAIRS” (paired dot plots). Figure shows 8 and 12 taxa at family and genus level, respectively, significantly altered in CVID patients (Table 5).
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FIGURE 4 | CVID phenotype severity comparison; CVID patients with less severe (n = 15) and more severe (n = 12) disease phenotype assessed by “Ameratunga

category” (Supplementary Table S1) were compared to Control cohort. Stripchart plots depict bacterial microbiome diversity differences according to the Richness

index (A), Shannon index (B), and Chao1 index (C). P-values were calculated using t-test (D). Principal coordinate analysis (PCoA) plot of beta-diversity depict

clustering according to the health status and CVID phenotype severity (E).

methodology and/or sample type, (ii) analyzed a small number of
CVID patients, and (iii) did not report the full list of CVID taxa
abundance for comparison.

Bacterial Gut Microbiota in CVID
In agreement with previous findings (25, 26), we observed
reduced bacterial diversity in CVID patients. Recently reduced
bacterial alpha-diversity was recognized as a possible universal
gut microbial biomarker of common human intestinal diseases
(52). The main idea of the hypothesis that higher microbiota
diversity is connected with better health status lies in the greater
ability to adapt to possible perturbations. However, diversity
alone may be a poor marker of disease (53), and sometimes
“the higher microbiota diversity the better” hypothesis does not
hold true (54). On the other hand, low diversity combined with
microbial dysbiosis might have a biological significance (53).
We detected perturbations in taxa abundance in CVID patients,
also reflected the in the beta-diversity analyses, where the CVID
cohort tended to cluster separately from the Control cohort.
For example, increased Streptococcaceae, Lactobacillaceae, and
Enterobacteriaceae families in our CVID cohort alongside
reduced diversity have been linked to other diseases inside
(52), and also outside (55) the gut, suggesting the existence
of the common dysbiosis feature (56). It is also noteworthy
to mention that human-pathogenic genus Campylobacter was
exclusively present in our seven CVID patients with no GIT
symptoms reported suggesting their different susceptibility to
Campylobacter colonization and the inability of their immune
system to adequately respond to it (57).

We also suggest that reduced diversity in CVID patients in
our dataset has biological significance, since patients with a
more severe CVID phenotype displayed more decreased alpha-
diversity than patients with a less severe CVID phenotype.

CVID patients also clustered more distantly in beta-diversity
analyses, which indicates differentmicrobiota composition. Next,
alpha-diversity was also lower in patients with unmeasurable
serum IgA levels; however, as low IgA levels are typical for
CVID, there were only four with measurable serum IgA for
comparison in our group. These results partially correspond
with results of Jørgensen et al. (26), where CVID patients
with complications, and/or with decreased plasma IgA levels
also had reduced alpha-diversity when compared with patients
suffering from infections only, and/or with normal plasma IgA
levels. However, plasma/serum IgA levels do not necessarily
correspond with secretory IgA levels, which are known to
impact CVID gut microbiota directly (28). In their study,
Shulzhenko et al. observed that CVID patients with low levels
of secretory IgA developed CVID enteropathy whereas patients
with normal secretory IgA levels did not. Despite the secretory
IgA antibodies being polyreactive, they are only able to coat
a restricted spectrum of microbes (58). Species known to
be IgA-coated mainly include members of the Proteobacteria
phylum (i.e., Enterobacteriaceae) and Firmicutes phylum (i.e.,
Lactobacilli) (19). These members are also relatively elevated
in our CVID cohort, and it can be speculated that the
“CVID dysbiosis” may be associated with depleted secretory
IgA. Nevertheless, these results should be verified in larger
patient cohorts with known plasma/serum and secretory IgA
levels. Furthermore, it has been very recently described that
systemic IgG and secretory IgA bind a common spectrum of
gut microbiota, therefore secretory IgA depletion alone may
often remain asymptomatic since IgG may provide a second
level of protection (59). However, IgG protection seems to
be personalized, and although immunoglobulin replacement
therapy administered to CVID patients contains an extended set
of anti-commensal IgG, it seems to bind CVID microbiota less
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efficiently, and thus may lead to microbiota dysregulation and
possible dysbiosis (59).

We further compared all taxa significantly altered in our
study to the CVID microbiota results from other studies (25,
26, 28). Our main results were mostly in agreement with
these studies; however, some contradictories were detected.
First, Shulzhenko et al. (28) did not observe any significant
differences in bacterial abundance between CVID and controls,
which is in contrast to our results; however, a low number
of duodenal biopsies had been evaluated in their study
so the results are not easily comparable. Second, Fadlallah
et al. (25) described low Actinobacteria phylum diversity
in their CVID patients with very low secretory IgM levels,
which was also not observed in our study, however, we
did not measure intestinal immunoglobulin levels; therefore
we cannot exclude CVID phenotype differences’ impact in
our cohorts. Last, Jørgensen et al. (26) calculated a “CVID
specific dysbiosis index” using several taxa significantly altered
in their CVID cohort. These taxa did not differ from the
healthy control group in our study except taxa from Bacilli
class and Enterobacteriaceae family. Furthermore, we even
detected Anaerotruncus and Eggerthella genera to be significantly
increased in CVID, which was opposite to their results.
Therefore, we suppose that the taxa differences may not
be strongly associated with the CVID phenotype, or other
confounding factors may have influenced the resulting outcome
such as (i) geographical origin, (ii) different CVID spectrum
analyzed, and (iii) other factors including methods and cohort
size differences.

In parallel, within our participant group, we analyzed 16
CVID patient-partner pairs sharing the same household to
diminish the impact of different environmental factors. We
confirmed that most pairs were more similar to each other than
to the strangers in terms of bacterial microbiota composition,
which corresponds to previous findings (60, 61). However,
despite the similarities between the pairs, the health status
remained the most significant feature in beta-diversity analyses.
Furthermore, health status differences become even more visible
in alpha-diversity analyses as well as in taxa abundance analyses
when performing paired tests (see Methods). These results
indicate that despite the high inter-individual and inter-pair
variability, the CVID phenotype was well reflected in the
bacterial data.

Fungal Gut Microbiota Properties
Fungal gut microbiota research lags way behind those for
bacteria, although it has recently attracted more attention. One
of the Human Gut Microbiome Project (HMP) studies has
widened our knowledge about “healthy” fungal gut microbiota
(62), and there are many other studies correlating gut mycobiota
composition and its role in various health issues and disease
conditions [reviewed in (63)]. There, gut fungi were characterized
as low in diversity and very variable between individuals
(62, 64, 65). In line with previous findings, we observed
a higher fungal variability between samples and ∼10 times
lower fungal diversity than the bacterial analyses in our
study. On average, one participant harbored 12 fungal genera;

however, only a few fungal genera were shared by more than
a third of participants, and these genera represented a core
mycobiome in this study. The most abundant core mycobiome
genera were identified as Saccharomyces, Penicillium,Dipodascus,
Debaryomyces, Candida, Pichia, Aspergillus, Rhodotorula, and
Hanseniaspora. The mentioned fungal genera were also found
in various abundance in the stool samples by others (62, 64,
66), however, some genera such as Malassezia or Cryptococcus,
commonly detected elsewhere (62, 67), were not present in our
samples. Inconsistencies in results may be partially explained
by the different methodology, such as different fungal primers
used across the studies. For example, primer pair targeting
the ITS1 region, which was used in this study, is known to
underrepresent Malassezia genus abundance (68). The current
nomenclatural changes implemented in the UNITE database
(69, 70) provide another explanation and affect many fungal taxa
including Cryptococcus genus, which was taxonomically assigned
to its homotypic synonyms (Filobasidium, Vishniacozyma,
Naganishia, Filobasidium, and Cutaneotrichosporon) in our data.
Moreover, geographical-based differences might also impact
the results similarly as described in bacterial gut microbiota
research (71).

Fungal Gut Microbiota in CVID
To the best of our knowledge, this is the first study analyzing
gut mycobiota in CVID patients; therefore, there is no other
similar dataset for an appropriate comparison. First, we report
no differences in fungal alpha-diversity between patients and
controls; however, the impact of fungal alpha-diversity on human
health is still unclear. Overall fungal alpha-diversity was ∼10
times lower than bacterial alpha-diversity, and contradictories
in the same disease-related alpha-diversity measurements were
reported (29, 72), suggesting that fungal alpha-diversity may
not be critical in disease evaluation. Second, we did not
observe any obvious taxonomic differences between patients
and controls in our study, indicating that gut mycobiota may
not affect the CVID phenotype, at least not in a detectable
way. Nevertheless, we observed one fungal CVID phenotype
association, specifically Blastobotrys genus, although it was
present in only six CVID and one control sample. This genus
was not previously reported in the context of the human
gut, and therefore it may not be a true gut colonizer. On
the other hand, Blastobotrys species are capable of growing
in 37◦C, and they were reported to cause invasive fungal
infections, although extremely rare, in immunocompromised
patients (73). Therefore, this possible association deserves deeper
examination. All in all, we did not find any convincing
associations between gut mycobiota and CVID phenotype,
however, since the properties of fungal composition differ from
bacterial composition tremendously, as described above, we
cannot exclude the fungal impact may lie in other aspects than
in taxa diversity or abundance differences. For example, various
fungal species overgrowth, which was not measured in our study
since only taxa relative abundance was assessed, has been often
found to correlate with disease state in other similar mycobiota
studies (29), and thus our study may not have revealed all
possible associations.
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Similar to bacterial analyses, we further evaluated a smaller
“PAIRS” group in terms of mycobiota diversity, and we did
not observe any health status associations in this dataset,
which corresponds with the results stated above. Instead,
most of the paired samples clustered close to each other in
beta-diversity analyses, indicating a similar fungal mycobiota
composition in members of the same household. It agrees
with the correlative associations observed both in a mice
study, where mice from the same cage were colonized with
specific fungi differing from other cages (74), and in only one
human study, focusing on human mycobiota transfer from
mother to offspring (75). Other data from human research
are unfortunately lacking, therefore the biological relevance
of these correlations remains unknown. Thus, future studies
using paired samples from the same household could provide
a new research opportunity to assess whether gut mycobiota is
truly capable of colonizing human gut and can be transferable
between partners, or is only the transiently present fungal DNA
originating from the environment, as was previously outlined
elsewhere (76).

CONCLUSION

In summary, our study extends previous findings of the
correlation between the bacterial gut microbiota and CVID and
provides new insights into overall gut mycobiota composition.
Furthermore, we reveal the strong impact of sharing the
same household on bacterial and fungal microbiome data,
although weaker than that of CVID diagnosis in bacterial
assessment. This suggests that paired samples serving as
controls in future studies would provide a better resolution
between disease-related dysbiosis and other environmental
confounders. The cause of CVID still remains unknown
in most cases; however, gut microbiota may be one of the
missing environmental drivers contributing to some of the
symptoms and their severity. Although, due to the high
CVID heterogeneity and the limits of current methodology,
it is still unclear whether CVID results in dysbiosis and/or
dysbiosis contributes to the CVID phenotype. Therefore,
the larger metacentric studies including gut microbiota
profiles, metagenomics, metabolomics, as well as more
detailed and topical immunological evaluation will be
needed to further establish the relevance of gut microbiota
in CVID.
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