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Trans-generational immune priming (TGIP) refers to the transfer of the parental

immunological experience to its progeny. This may result in offspring protection

from repeated encounters with pathogens that persist across generations. Although

extensively studied in vertebrates for over a century, this phenomenon has only been

identified 20 years ago in invertebrates. Since then, invertebrate TGIP has been the

focus of an increasing interest, with half of studies published during the last few years.

TGIP has now been tested in several invertebrate systems using various experimental

approaches and measures to study it at both functional and evolutionary levels. However,

drawing an overall picture of TGIP from available studies still appears to be a difficult task.

Here, we provide a comprehensive review of TGIP in invertebrates with the objective of

confronting all the data generated to date to highlight the main features and mechanisms

identified in the context of its ecology and evolution. To this purpose, we describe all

the articles reporting experimental investigation of TGIP in invertebrates and propose a

critical analysis of the experimental procedures performed to study this phenomenon. We

then investigate the outcome of TGIP in the offspring and its ecological and evolutionary

relevance before reviewing the potential molecular mechanisms identified to date. In the

light of this review, we build hypothetical scenarios of the mechanisms through which

TGIP might be achieved and propose guidelines for future investigations.

Keywords: trans-generational immune priming, invertebrate immunity, host-pathogens interaction, ecology and

evolution, molecular mechanisms, scenarios

INTRODUCTION

Parasites/pathogens can cause significant damage to host fitness. In response, hosts have evolved
a range of defense mechanisms reducing their negative impact (1). These mechanisms include
behavioral defenses and physical barriers that help to prevent infection, and the immune system
that has evolved to control infection inside hosts. In vertebrates, the efficiency of the immune
system relies on a combination of innate and acquired responses and on the ability of recovered
hosts to remain protected for an extended period of time (2). Furthermore, an important aspect of
the acquired immune response of vertebrates is the production of specific immune effectors, the
antibodies. These can be transferred by infected mothers to their offspring via the placenta and
milk in mammals, or via the egg yolk in birds, reptiles, and fishes (3). Such a maternal transfer
of immunity provides newborns with early protection against prevalent parasites/pathogens while
their own immune system becomes mature.
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Invertebrates lack the immune machinery responsible for
the acquired immune response of vertebrates (4). Their innate
immunity mainly depends on germ-line encoded receptors
recognizing generic conserved pathogen epitopes. Despite this,
cumulative evidences now demonstrate that the innate immune
system of invertebrates can produce immune responses involving
memory, either non-specific or specific (5, 6). As different
mechanisms underlie acquired immunity in vertebrate taxa, the
general term “immunological priming” (or immune priming)
is currently used to refer to the “adaptive” innate immune
response of invertebrates (7). Moreover, although invertebrates
lack antibodies that vertebrate females transfer to their offspring,
maternal (and paternal) effects on the offspring immunity
occur in invertebrates too (5). This is also called “trans-
generational immune priming” (TGIP) (8). In invertebrates,
TGIP specifically refers to the vertical transmission of the
immunological experience from the parent(s) to the offspring,
which may also include horizontal transfers between adults
and between adults and other parents’ offspring (9). Such a
transmission of the parental immunological experience may take
different forms. Parents could transfer either immune effectors
or signals to the offspring that may prepare or stimulate its
immune system to deal with the pathogens previously met by
the parents. The involvement of each of these processes or
both is not known from a functional point of view yet. TGIP
currently raises considerable questions related to its mechanisms,
its epidemiological impact on disease dynamics and its evolution.
Since its characterization two decades ago, invertebrate TGIP has
been the focus of an increasing interest. The phenomenon of
TGIP has now been tested in several invertebrate systems with
the aim to study it at both functional and evolutionary levels.
However, drawing an overall picture of TGIP from available
studies is a tedious task. The major issues encountered are the
lack of clear and consistent evidence for TGIP. This is not
only due to the sheer complexity of different pathways and
mechanisms that can lead to TGIP, but also because of the biases
and inconsistent experimental designs that have been used to
assay TGIP. Several attempts to review TGIP have already been
made. TGIP was generally a specific part of a more general
immunological review (4, 10–14) and only few dedicated reviews
were published (9, 15, 16). Their objective was to provide a global
overview rather than an in-depth systematic and extensive review
of all aspects of TGIP.

The present review therefore aims to confront all the data
published to date in order to establish a theoretical and
practical framework for helping in the experimental design
and data analysis of future studies on TGIP. The novelty of
our review relies on the unprecedented combination of an in-
depth analysis of the ecological and evolutionary features of
TGIP with a comprehensive and critical investigation of the
molecular mechanisms of TGIP identified and/or suspected. To
this purpose, after a description of all the articles reporting
experimental investigation of TGIP in invertebrates, we propose
a critical analysis of the experimental procedures performed to
study TGIP. From the most recent advances on TGIP, we also
examine whether this aspect of invertebrate immunity could be
adaptive from selective pressures by repeated parasite/pathogen

infections, and consider the ecological conditions that may
affect its evolution and shape its characteristics. Finally, we
review the different potential molecular mechanisms identified
to date, build hypothetical scenarios of the mechanisms leading
to TGIP based on empirical data and propose guidelines for
future investigations.

Occurrence of TGIP in the Tree of Life
The existence of TGIP was already hypothesized in the early
1900s (17). The first empirical evidence of TGIP was provided
in 1999 in the crustacean P. monodon. Mothers exposed to β-
glucans induced protection of offspring against the white spot
syndrome associated virus (WSSV) (18). Since then, a total of 57
articles investigating TGIP in invertebrates has been published
(Figure 1). The details of each of these articles can be found in
the Supplementary Table 1. The number of articles published
on this topic remained low for more than a decade and then
increased, with half of the articles published during the last 5
years, reflecting the recent interest for this new field of research
in invertebrate immunity (Figure 1). Interestingly, a drop in the
total number of articles published since 2017 has been observed.
This sudden pattern of publication dynamics does not reflect
that every aspect of invertebrate TGIP is known. Instead, it may
indicate how difficult it is now to propose real groundbreaking
progress on the understanding of this phenomenon. Indeed,
the majority of the studies published until 2017 mostly
reported the phenomenal occurrence of TGIP in invertebrates.
Very few of them attempted to figure out a comprehensive
description of its functional processes and/or its evolution,
which is a much more difficult and time-consuming task. Since
2017, articles tend to be more comprehensive and investigate
the details of the mechanisms and evolutionary ecology of
TGIP. So far, TGIP has been investigated on 25 different
invertebrate species (Figure 2; Supplementary Table 1). TGIP
studies are strongly biased toward arthropods, representing
∼90% of all TGIP articles, and many groups have not been
investigated yet (Figure 2).

While TGIP has been evidenced in all coleopteran,
crustacean, hymenopteran, orthopteran, and mollusk species
investigated to date, some other phylogenetic groups exhibit
more contrasted patterns (Figure 2). Indeed, only one out
of the five articles on Diptera provided evidence for TGIP
(Supplementary Table 1). TGIP was found in Anopheles
gambiae larvae to the microsporidia Vavraia culicis (21), whereas
exposure of Drosophila melanogaster mothers to bacteria, and
exposure of three mosquito species to Plasmodium sp. and to
negatively-charged beads did not trigger any increased immune
protection of the offspring (22–25). Similarly, for Lepidoptera,
two articles focusing on Plodia interpunctella exposed to the
bacteria B. thuringiensis and on Trichoplusia ni challenged with
Autographa californica multiple nucleopolyhedrovirus did not
find evidence of TGIP (26, 27). Interestingly, parental challenge
of the same lepidopteran species to different pathogens (i.e., P.
interpunctella to the granulosis virus (PiGV) and T. ni to the
bacteria Escherichia coli and Micrococcus luteus) provided an
immune protection of the offspring (28–30). This suggests that
TGIP might depend on the pathogen used for priming and/or on
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FIGURE 1 | All the 57 articles published in peer-reviewed journals that investigated TGIP in invertebrates. Articles quantifying the consequence of parental pathogen

exposure on the outcome of infection in offspring (e.g., parasite prevalence and intensity, host fitness, and survival) are indicated as TER (trans-generational effect on

resistance; gray color). Articles focusing on the impact on offspring immunity (e.g., number of hemocytes, modified expression or activity of AMPs, PPO, or immune

pathways) are indicated as TEI (trans-generational effect on immunity; black color), following the updated nomenclature proposed by Pigeault et al. (19). Articles that

evaluated both parameters are hatched in black and gray and indicated as TER+TEI. All information relative to the 57 TGIP articles published to date are available in

Supplementary Table 1. Considering that the term TGIP is not used by all authors and that some investigated it without highlighting it clearly in the title and/or

abstract, complementary searches were performed to retrieve all TGIP articles. Different search engines were used for identifying peer-reviewed (PubMed, Web of

Science, Google Scholar, Biological Abstracts) and preprint articles (bioRxiv). We used different combination of keywords including notably “transgenerational immune

priming,” “immune priming across generations,” “multigenerational immunity,” “vertical transfer immunity,” “maternal/parental transfer immunity,” “maternal/parental

effect immunity,” “transfer immune memory,” “offspring immunity invertebrate,” “offspring immunity insect.” In addition, several articles dealing with within-generation

invertebrate immune priming and immune memory were investigated for evidence of experimental design and results that relate to TGIP.

the procedure used for infection (discussed in detail afterwards),
without excluding additional effects such as the host genotype.

The current overview of the presence/absence of TGIP in

the tree of life must be considered with caution for two main

reasons. First, there is a high heterogeneity in the TGIP articles

published, both in term of experimental approaches and in their
reliability. While some studies provide reliable data, others suffer
from biases that can affect the outcome of the experiments and
question whether their results really demonstrate the presence
of TGIP. This includes pseudoreplication in the experimental
design, non-adequate statistical tests, and/or low statistical power
due to small sample sizes (risk of type 1 errors), potential direct
transmission of the pathogen, etc. (Supplementary Table 1).
This phenomenon is widespread notably in many case reports
published before 2017 as stated above. It, however, tends to
disappear with the establishment of TGIP as a standalone field
of research with few recognized teams of scientists aiming at
publishing more comprehensive and detailed studies. Second,
TGIP studies are biased toward model species and positive
results, with only 12.2% of studies reporting an absence of TGIP.
This bias can be explained by the higher difficulty to publish
negative than positive results, providing a distorted view of the
occurrence of TGIP in invertebrates (31). In order to provide
a representative overview of TGIP in the tree of life, additional
relevant host/pathogen combinations, including neglected non-
model species, should be studied. However, absence of evidence

does not always mean evidence of absence for TGIP. Studies
might just lack statistical power to demonstrate the absence of
TGIP and/or miss the conditions in which TGIP occurs. Special
care should be given to the experimental design, the adequate
infection procedure to both the pathogen and the host, and
the replication procedure to ensure that proper statistics can be
conducted to demonstrate the presence or absence of TGIP in
each case. These points are discussed in the following parts and
guidelines are provided to help in the design of future studies.

CRITICAL ANALYSIS OF APPROACHES
USED TO STUDY TGIP

The different studies exhibited a high variation in the procedure
that they used to investigate TGIP. This could influence the
outcome of the experiments and whether the presence (or
absence) of TGIP reported is biologically relevant (Table 1;
Supplementary Table 1). Most notably, we identified threemajor
parameters that showed high variability between studies and
that we believe are key to compare the results obtained from
different groups of scientists, between different pathogens from
the same study, and to properly discuss the relevance of the
results obtained: the infection procedure, the sex of the insect
host and the developmental stage studied. The influence of some
of these parameters has already been discussed in the context
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FIGURE 2 | Phylogeny of invertebrates, adapted from Tree of Life Web Project (20). Taxa in which transgenerational immune priming has been investigated are boxed.

The circle charts indicate the proportion of TGIP studies that reported the presence (dark gray) and the absence (light gray) of TGIP for each phylogenetic group

boxed. The number indicated inside the circle chart is the number of TGIP studies reported to date for each phylogenetic group. The group of Chordata, which

includes the vertebrates, is highlighted by a dotted box.

of immune priming and within-generation immunological
memory in invertebrates (5). Here, we focus on the trans-
generational consequences.

The Infection Procedure
The method used to infest the host with the pathogen is
chronologically the first step of any experiment. The choice
of the procedure of infection and of the pathogen studied
orientate and determine the extent to which the analysis and
conclusions can be drawn from it. The use of inactivated or
living pathogens through either artificial or natural routes of
infection should be clearly justified. Considering that these
different procedures may generate different outcomes, their
relative relevance needs to be taken into account and discussed
in regard with the objective of the study; i.e., simply aiming at
identifying presence/absence of TGIP or examining its ecological
significance under parasitic threat.

Injection vs. Ingestion
Most TGIP articles reported parental priming by
injection/pricking (61%) while animals were fed with the
pathogen in 39% of cases. In only one case, insects (ants
Crematogaster scutellaris) were dipped in a solution containing
the entomopathogenic fungus Metarhizium anisopliae to let
it attach to the host’s external cuticle and naturally infect the
host [(59); Supplementary Table 1]. Far from being trifling, the

immune response of the host can greatly vary depending on the
infection route of the pathogen (73). The choice of the infection
procedure must take into account the pathogen biology and
ecology, and must be driven by the co-evolutionary interactions
between the host and the pathogen (74, 75). One good example
comes from Caenorhabditis elegans exposed to Orsay virus,
which is a virus that specifically infects C. elegans nematodes
by oral route (76). Two articles have been published to study
TGIP upon exposure of C. elegans to Orsay virus: one reported
the presence of TGIP after parental larval ingestion of the virus
(71) while the other did not present any evidence for improved
offspring immunity when Orsay virus was injected to adult
parents (77).

Many TGIP studies compared different pathogens while
using the same infection procedure. They usually drive general
conclusions without taking into account the adequacy between
the infection procedure and the pathogens studied. This
particular point requires specific attention to ensure that no
overstated conclusions are driven, which could bemisleading and
lead to an erroneous view of the universality of TGIP process and
mechanisms. Selecting the infection procedures that mimic the
natural route of infection should be used wherever possible, as
it is the most ecologically relevant and it should maximize the
response of the parents and the offspring if TGIP is adaptive.
Injection or pricking could be used when the natural route of
infection is through mechanical injury, notably to mimic an
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TABLE 1 | Summary of the main features of TGIP identified in different phylogenetic groups and species.

Group

studied

Species studied Parental

priming

Priming way TER benefit TEI benefit TGIP Costs References

Coleoptera Anoplophora glabripennis Bacteria † and

fungi◦†
Injected Survival (adults) Not tested Not tested (32)

Rhynchophorus ferrugineus Bacteria◦ Injected Not tested Enhanced PO and antibacterial activity

(larvae)

Not tested (33)

Tenebrio molitor Bacteria†,

fungi† or LPS

Injected Survival (adults) Enhanced antibacterial activity (larvae).

Enhanced antimicrobial activity (eggs).

Enhanced hemocyte concentration or PO

activity (adults)

Trade-off between maternal immune

response and egg protection

(antibacterial activity). Longer

offspring development time.

(8, 34–40)

Tribolium castaneum Bacteria◦†

and/or

parasite◦

Injected,

ingested or

parasitized

Survival (adults).

Modified bacterial

density dynamics.

Modified gene expression (eggs, larvae).

Enhanced expression of PGRP receptors

and enhanced PO activity (adults)

Lower antibacterial activity in adults.

Longer developmental time. Lower

offspring fecundity

(41–47)

Crustacea Artemia sp. Bacteria◦ Ingested Survival (larvae) Enhanced gene expression (larvae) Not tested (48, 49)

Daphnia magna Bacteria◦ Ingested Lower susceptibility

(larvae)

Not tested Not tested (50, 51)

Penaeus monodon b-1,3-1,6-

glucan

Injected and

ingested

Survival (larvae) Not tested Not tested (18)

Diptera Anopheles gambiae Microsporidia◦ Ingested Lower susceptibility

(adults)

Not tested Longer offspring developmental time (21)

Hemiptera Myzus persicae Parasitoid◦ Parasitized Lower susceptibility

(nymphs)

Not tested Not tested (52)

Hymenoptera Apis mellifera Bacteria† Injected Survival (larvae) Enhanced prohemocytes-to-hemocytes

differentiation (larvae)

Not tested (53)

Bombus terrestris Bacteria† or

LPS

Injected Not tested Enhanced antibacterial activity (worker

adults, eggs). Enhanced PO activity (male

adults). Enhanced gene expression

(worker adults)

Parents produced less offspring.

Decreased PO in offspring adults

workers. Increased susceptibility in

adults to a parasite unrelated to the

maternal challenge

(54–58)

Crematogaster scutellaris Fungi◦† Contact Survival (larvae) Not tested Not tested (59)

Lepidoptera Galleria mellonella Bacteria◦ Ingested Not tested Modified gene expression (eggs) Not tested (60)

Manduca sexta Peptidoglycan,

bacteria◦†
Injected Reduce parasitoid

development and

emergence (eggs).

Faster infection

clearance

Enhanced PO and antibacterial activity

(eggs, larvae). Enhanced gene expression

(eggs, larvae). Decreased DNA

methylation. Increased histone acetylation

Faster reduction of antibacterial

activity in adult offspring. Reduced

offspring fecundity. Longer larval

development

(61–65)

Plodia interpunctella Virus◦ (not

efficient with

bacteria◦ and

fungi◦)

Ingested Lower susceptibility

(adults)

Not tested Not tested (29)

Trichoplusia ni Bacteria◦ (not

efficient with

virus◦)

Ingested No (but just tested with

one virus)

Enhanced PO activity (larvae). Modified

gene expression (eggs, larvae)

Not tested (28, 66)

(Continued)
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overload of pathogen associated molecular patterns (PAMPs) in
the hemolymph that results from septicemia, but results obtained
should be analyzed carefully in regard with the limitations of this
technique (see detailed comments in the part below).

Inactivated vs. Living Pathogen
Half of TGIP studies used living pathogens for priming
the parents while one quarter used specific immunogens,
such as peptidoglycans (PGNs) and lipopolysaccharides (LPS),
and the other quarter used inactivated pathogens, mostly by
heat treatment (Supplementary Table 1). Living pathogens are
generally used at a sub-lethal dose to avoid confounding TGIP
with the effect of selection (11). This confusion happened in
one TGIP study on D. melanogaster in which the authors used
the LC50 (i.e., dose killing half of the population) to prime the
parental generation (23). Additionally, one should be careful
that the pathogen is not directly transmitted to the offspring,
as it could be the case for viruses for example (78, 79). One
study concluded that TGIP was observed after exposure of Plodia
interpunctella larvae to a granulosis DNA virus (29), without
ruling out the vertical transmission of the virus that is known to
occur in this species (80). In that case, a direct priming of the
offspring might be observed in addition to TGIP, which could
lead to confounding effects. This phenomenon has not been
discussed in TGIP articles yet. Forthcoming studies should first
determine if vertical transmission can occur with the pathogen
studied, especially for viruses, before willing to investigate any
TGIP process.

At the opposite, high concentration of inactivated pathogen
is generally injected into the host, which is supposed to mimic
an infection in the hemolymph with a massive load of PAMPs.
However, it is lacking the response of the host to its pathogenicity.
The inactivation procedure itself, notably by heat treatment,
can also affect the immunogenicity of the pathogen and the
corresponding response of the host, either by increasing the
release of PAMPs or by altering their three-dimensional structure
(5). Although the presence of PAMPs from uncommon pathogen
might trigger some immune response (81), this response might
not be complete and might lack all damage-associated immune
mechanisms of host response (82–84). Conversely, if TGIP is
triggered by a PAMP dose-dependent mechanism, sub-lethal
doses of living pathogen might not be sufficient to induce a
full within-generation and trans-generational immune priming
(5, 85). Results obtained in this case must be very carefully
and critically discussed to avoid any over-interpretation that
might bias our overall understanding of TGIP in invertebrates.
All the limitations associated with this infection procedure
(dead pathogen, no damage induced, natural physical barriers
bypassed) must be properly acknowledged.

The Sex of Parents and Offspring
The Sex of Parents
Mothers and fathers have been shown to both participate
to offspring’s immunity; however, this protection can be
qualitatively and quantitatively different between the two sexes.
This has been evidenced in studies investigating the effect
of both mother and father, exposed separately to bacteria or
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LPS, on the offspring immune status of the lepidopteran T.
ni (28), the orthopteran Teleogryllus oceanicus (72) and the
coleopterans Rhynchophorus ferrugineus (33), T. molitor (34),and
Tribolium castaneum (41). In 25% of TGIP studies, parents were
not separated according to their sex, essentially because they
were exposed at the larval stage, at which sex identification
can be tricky in invertebrates (Supplementary Table 1). The
main problem is that maternal and paternal effects might be
confounded. If only one of the two parents is providing most, if
not all, trans-generational immune protection, this effect might
be diluted and potentially not detected or underestimated.

An additional factor could bias the experiments performed
on unseparated sex. In Drosophila, males are known to enhance
female immunity after mating. This is mediated by the transfer
of male seminal fluid proteins (SFPs), activating Imd and Toll
pathways, and stimulating antimicrobial peptide (AMP) gene
expression in females (86, 87). These SFPs can also affect
Drosophila female’s behavior by decreasing their receptivity to
further mating and by increasing egg laying (88, 89), which
could also affect the extent of egg immune protection. A role
of SFPs on females’ immunity and physiology has also been
evidenced in several other invertebrate species such as Aedes
aegypti, An. Gambiae, and Apis mellifera (90). This suggests
that paternal effects might bias any maternal TGIP if not
controlled, and that it should be monitored and quantified (if
any) beforehand. To date, the consequence of paternal priming
on offspring immune status through mating-associated increased
maternal immunity has only been investigated indirectly once.
Lytic activity of unchallenged females was similar if they
were mated with a challenged or unchallenged male, and
offspring’s one was not affected by the challenge of any of
the two parents (72). Either there is no effect of the father
on mother’s immunity and of that of their offspring, or
the immune parameter measured was not a good reporter
parameter for characterization of TGIP in this host-pathogen
system. The same procedure followed by McNamara et al. (72),
i.e., mating unchallenged females with either challenged or
unchallenged males and measuring immune parameters in both
the mother and the offspring, should be applied to other species.
Other parameters should be monitored, such as expression
of immune genes or measurement of prophenoloxidase and
antimicrobial activities that are generally more responsive to
TGIP. TER parameters should not be omitted, notably offspring
survival to challenge with the same pathogen used for paternal
priming (8, 34, 56, 65).

Data on TGIP are essentially biased toward the maternal effect
(Supplementary Table 1). While parental care theory assumes
an important investment of females to the offspring, TGIP
derived from fathers may highlight paternal care through cryptic
investments (91). Under pathogenic threat, both fathers and
mothers may gain benefits from improving their offspring
immunity. This protection that offspring receives from mothers
and fathers may be more than additive and could result in a
general improvement in protection against pathogens. There is a
need to increase the number of studies including paternal effect to
provide a more comprehensive view of the sex-dependent TGIP
process (41, 42, 47).

The Sex of Offspring
In the oceanic field cricket, T. oceanicus, the antibacterial
immune response of male offspring was mediated by a complex
interaction between maternal and paternal immune status
(72). Moreover, a sexually dimorphic TGIP was found, as
female offspring did not exhibit immune protection when male
offspring did (72). Sex-specific changes in the expression of
some immune-related genes have been observed in offspring
Manduca sexta larvae from parents challenged with E. coli and
Serratia entomophila. In the same study, they also observed a
significant increase in histone acetylation in male offspring larvae
but not in females upon parental exposure to S. entomophila (64).
Significant differences in gene methylation between offspring
sexes was also observed (64). These observations suggest that
both parental and offspring sex can induce contrasting TGIP
phenotypes. Males and females differing in their susceptibility to
infection is very common if not universal (92, 93). Therefore,
TGIP measures without controlling the sex of the offspring
(and of the parents) can be very complex and even lead to
misinterpretation of the phenotype observed. This has been
largely neglected in TGIP so far and should receive a much
greater interest in the future.

The Developmental Stage
The life cycle of invertebrates is constituted of a sequence of
several developmental stages that strongly differ in terms of
metabolism, physiology, and immunity. Therefore, the choice
of the developmental stage of the parents for priming and
of the offspring for measuring the outcome of TGIP is far
from being trivial. The choice of a specific developmental stage
for the priming of the parents has often been driven by the
adequacy to the pathogens used and by the easiness of their
manipulation (Supplementary Table 1). For the choice of the
offspring developmental stage, most articles focused on a unique
specific stage, which can have consequences on the phenotype
observed and on the conclusion of the study. Generally, offspring
were studied at the same stage at which parents were exposed,
which is the most ecologically relevant, or in the egg to study
the effect of TGIP at the very first steps of offspring development
(36, 40, 56, 63).

In the mollusk Chlamys farreri, the immunity of the
offspring from mothers exposed to the bacterial pathogen Vibrio
anguillarum was studied at different ontogenic stages (4-cell,
blastula, gastrula, trochophore) from egg to larva (67). It showed
that antibacterial activities, the expression of genes encoding
immune effectors and an enzyme of the antioxidant system,
the superoxide dismutase (SOD), differed depending on the
stage at which they were measured (67). In the moth M.
sexta, monitoring of the melanisation index, lysozyme and
antimicrobial activities in offspring from PGN-primed parents
revealed that there was a high fluctuation (from 2-to 100-fold)
of these parameters between different larval instars, the pupal
and the adult stages (61). Focusing only on a limited number of
offspring developmental stages increases the risk of missing the
main TGIP effect. Another example comes from the Gastropoda
Biomphalaria glabrata in which no TGIP has been found after
parental exposure to the metazoan parasite Schistosoma mansoni
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in 10-day and 60-day old offspring (B. Gourbal, unpublished
data). TGIP should be a selected mechanism in this species
considering that it exhibits a low dispersion and can live up to
several months (19) and that evidence for maternal protection
by transfer of immune proteins from naïve females to their eggs
has already been reported (15, 94). One could then argue that
studies reporting absence of TGIP might just have missed the
developmental stage at which it is expressed. This highlights
the importance of following offspring’s immunity at different
life stages, from egg to adult, and selecting the good proxy for
identifying TGIP.

Another important factor to take into account is the time
elapsed since the parental priming was performed, as the effect
of priming in the mother might not be stable over time and may
influence the immune transfer to the offspring. Alternatively,
these changes might just be byproducts of the fluctuating
immunity of the mother passively transferring effectors to her
eggs. Such a phenomenon has been characterized in T. molitor, in
which the antibacterial activity inmother’s hemolymph decreased
each day since the priming occurred until it was back to ground
level at the tenth day (36). They observed that the transfer of
this antibacterial activity to the eggs was 1-day delayed and
that eggs older than 9 days exhibited a significantly decreased
antibacterial activity until none was detected after 11 days (36).
Therefore, TGIP must be considered as a dynamic process with
a temporal dimension that experiments focusing on a unique life
stage might miss.

ECOLOGY AND EVOLUTION OF TGIP

TGIP exhibits variable characteristics according to host and
parasite/pathogen species, which raises numerous questions
related to its evolutionary ecology. In particular, its adaptive
nature conditioning its evolution is debated. Moreover, the
epidemiological consequences of TGIP and its impact on the
evolution of parasite/pathogen virulence have only started to
be studied.

Is TGIP Adaptive?
An important issue in the study of the ecology and evolution of
TGIP is to know whether it is adaptive. The criteria required
to characterize adaptive parental effects, often called maternal
effects, can be used to describe the adaptive nature of TGIP (95).
A priori, TGIPwould be adaptive if it is a response to an enhanced
risk of infection in the parental environment by a virulent
pathogen that is likely to persist in the offspring environment.
However, exposure to the virulent pathogen should be relatively
rare to prevent the evolution of enhanced basal resistance to
infection (96, 97). Hence, TGIP is expected to be adaptive when
mothers sense environmental cues that predict higher risk of
attacks by a virulent pathogen. This would reduce offspring
fitness, inducing appropriate phenotypic changes in offspring
that increase their fitness in this new environmental condition
(98). This implies that phenotypic changes and associated
offspring performance in the offspring should be specific to the
new environmental condition (99). Therefore, TGIP expression
should bear costs with strong negative implications for offspring

fitness in mismatched environments. Finally, as adaptive TGIP is
expected to be shaped by natural selection, it should be genetically
based and show genetic variation in its expression. So far, the
environmental predictability of pathogen attacks between host
generations received little consideration. While there is evidence
that TGIP can benefit the offspring and bear costs in artificial
conditions, implication for host fitness in ecologically relevant
contexts is limited. Evidence for specific TGIP often suffers from
inappropriate experimental design, and the potential genetic
bases behind TGIP expression have never been investigated.
These different aspects are discussed below.

Detection of Reliable Cues Predicting the Risk of

Pathogen Attacks Between Generations
As a form of adaptive trans-generational plasticity, TGIP is
expected to evolve from changes in the risk of pathogen
attacks between generations that reduce the fitness of parents by
reducing that of the offspring. There is compelling evidence that
exposure to pathogens decreases the fitness of their invertebrate
hosts (100). An increased risk of infection in the offspring
generation compared to the parental one is therefore expected to
negatively affect offspring fitness.

Parents should be able to sense cues that predict a higher risk
of attacks by a pathogen persisting in the offspring environment.
There is evidence that Pathogen/Danger Associated Molecular
Patterns (PAMPS and DAMPs) of microbes are perceived by
the invertebrate immune system (101). Pathogen attacks might
be a reliable cue reflecting an enhanced probability of future
infection as it might indicate that the pathogen is becoming
more abundant and could persist in the environment (102).
However, this may depend on the pathogen. Parents must be
able to properly sense these cues and appropriately adjust the
phenotype of their offspring to match the new environmental
condition. As seen above, several studies have reported improved
survival of the offspring of some invertebrates when the parental
generation has been exposed to a multitude of immunogenic
stimulations before reproduction (5, 103). However, whether
these maternal effects on offspring resistance are indeed adaptive
or merely physiological inevitabilities is still unclear. Indeed,
most studies manipulate the parental immune status without
explicitly clarifying whether that manipulation represents a
reliable signal that parents can sense to predict the environmental
state of offspring. It is important that variability and predictability
of the pathogenic environment across host generations is relevant
of the ecology of the study organisms (99). Therefore, pathogens
that do not belong to the range of pathogens naturally occurring
in the host environment or that are not able to persist long
enough in the offspring environment are unlikely to stimulate
TGIP if it is adaptive (37, 39).

Costs of TGIP
Whilst TGIP appears beneficial when the parental condition
persists over the next generation, its inducible aspect—the fact
that the enhanced offspring immunity is induced by the parental
exposure to the pathogen—suggests it is also costly. Indeed, in
the absence of cost, selection would likely favor elevated basal
levels of immune defense in the offspring and there would be no
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priming response. Immunity is known to trade-off against other
costly life history traits (101). Hence, fitness costs of TGIP may
exist and outweigh its benefit when the parental condition are
unlikely to persist in the offspring environment (75). Moreover,
the fact that TGIP can occur despite bearing fitness costs would
be another strong evidence in favor of the adaptive nature
of TGIP.

There is evidence of potential fitness costs associated with
TGIP for mothers. For instance, bacterially immune-challenged
females of T. molitor transiently lay a variable number of eggs
with internal antibacterial activity that is traded-off against the
total number of eggs produced (36). Furthermore, the amount
of antibacterial activity in the eggs also negatively correlates with
that in mothers’ hemolymph (35). Hence, the inducible transfer
of antibacterial activity to the eggs appears to bear significant
costs for the mothers, otherwise they would be able to protect
all the eggs of all their clutches without impairing their own
immunity. Immune-challenged females should therefore adjust
and optimize their investment into TGIP, their fecundity and
their immunity; they should balance between their perception
of their own risk of dying from the infection and the expected
persistence of the parasite to maximize offspring fitness (36).

TGIP is expected to be costly for the offspring too as they
may trade-off enhanced immunity with other important life
history traits, such as growth in the beetles T. castaneum (41)
and T. molitor (36, 39), and reproduction in the moth M. sexta
(61). Costs of TGIP may also involve trade-offs between arms
of the offspring immune system. This is likely the case of the
daughter workers of bacterially immune-challenged queens of the
bumblebee, B. terrestris, exhibiting enhanced immunity against
a bacterial infection but reduced resistance to the trypanosome
parasite, Crithidia bombi (57). The costs associated with TGIP
in the offspring are likely to have strong negative implications
for offspring fitness if the parental conditions do not persist in
the offspring environment. As mentioned above, these negative
effects due to TGIP in the offspring are often assumed to result
from the offspring trading-off their immunity against other
important functions. However, it is difficult to state whether
these costs arise from such a trade-off and/or from a reduced
parental investment per offspring resulting from the cost of the
parental immune challenge. In the latter case, reduced parental
investment into their progeny should be observed early in the
offspring life. However, recent evidence in M. sexta (63) and T.
molitor (40) showed that immune challenged females produced
eggs with the highest hatching success. Furthermore, in T.
molitor, the resulting young larvae show enhanced survival to
starvation within the first month post hatching (40), although
they are known to exhibit prolonged developmental time (34,
40). Therefore, this suggests that the latter cost paid by the
offspring likely arises fromTGIP and not from a reduced parental
investment to the offspring. Now, whether these costs associated
with the expression of TGIP significantly affects the host fitness
in a mismatched environment has never been tested so far.

Assuming that TGIP is an important mean of defense against
repeated infections by certain pathogens and that the above costs
associated to the expression of TGIP could significantly affect
host fitness, a reduction of these costs is expected to evolve

in parallel to the evolution of TGIP. Under this hypothesis,
TGIP response would reveal less costly in response to the most
threatening pathogens. TGIP responses in maternally-primed
offspring of T. molitor with Gram-positive bacteria resulted in
higher protection and lower prolonged developmental time than
in maternally-primed offspring with Gram-negative bacteria,
suggesting that Gram-positive bacteria might have been a strong
selective force behind the evolution of TGIP in this insect
species (39).

Specific Phenotypic Adjustment in Offspring to Face

the Expected Parasitic Conditions
If TGIP constitutes a form of adaptive phenotypic plasticity, a
central prediction drawn from adaptive maternal effects (104)
is that offspring from mothers anticipating an enhanced risk
of attack by pathogen A will perform better when exposed to
the same pathogen than to another pathogen B. This suggests
that TGIP exhibits a certain level of specificity to pathogens.
This also suggests that solely testing the performance of the
primed offspring compared to controls is not sufficient to
address the question of the adaptive significance of TGIP. Thus,
appropriately testing whether TGIP has evolved as a mean
of adaptive trans-generational plasticity requires reciprocal full
factorial experiments. These experiments test the performance
of offspring, originating from mothers challenged with either
pathogen A and B, hence are all primed with either pathogen A
or B, in addition to controls. Figure 3 illustrates what outcome
from a reciprocal full factorial experiment are expected if TGIP is
specific, or not specific to pathogens that exhibit either similar or
different virulence. In the light of this theoretical model, we can
reconsider and adjust the conclusions drawn from two published
partial approaches that aimed at investigating the specificity of
TGIP (32, 49). On the one hand, partial experimental approaches
in which the performance of maternally-primed offspring with
a pathogen A is tested by exposing them to pathogens A and
B cannot be conclusive on the specificity of TGIP. In that
case, the results that would suggest a specificity can also be
explained by confounding factors, such as the potential inability
of pathogen B to induce priming (Figure 3B) or the potential
difference in virulence induced by the pathogens A and B
(Figures 3C,D). Therefore, the use of such a partial approach
cannot be conclusive on the pathogen-specific effects of TGIP
(49). On the other hand, opposite partial approaches, in which the
performance of maternally-primed offspring are exposed to only
one of the pathogens used for maternal priming, is also limited
to test whether TGIP is specific (Figure 3). It can, at best, be
conclusive on the potential non-specific TGIP effect induced by
the pathogens used for maternal priming only when they have
similar virulence (Figure 3A). In the other situations, variation
of virulence between pathogens and the potential inability of
at least one of the pathogens to induce TGIP can explain
these results too. This possibility cannot be excluded without
conducting the missing reciprocal combinations of maternal
priming and offspring challenge [Figure 3; (32)]. The use of a
fully reciprocal factorial experimental design ofmaternal priming
and offspring exposure to E. coli and B. thuringiensis successfully
evidenced a level of specificity in the expression of TGIP in

Frontiers in Immunology | www.frontiersin.org 9 August 2019 | Volume 10 | Article 1938

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Tetreau et al. Trans-generational Immune Priming in Invertebrates

FIGURE 3 | Expected fitness outcomes (arbitrary values) of maternally unprimed and primed offspring with a pathogen A or B upon exposure to pathogen A or B

when maternal exposure to pathogen A and B induces non-specific (left panels) or specific (right panels) TGIP effects in the offspring and when pathogen A and B

exhibit similar (upper panels) or different virulence (lower panels). Experiments testing the specificity of TGIP effects without reciprocal combinations of maternal and

offspring exposure to pathogens A and B may lead to a wrong conclusions as explained below. A first case is when an experiment uses maternally primed offspring by

one pathogen only (here pathogen A), and tests offspring fitness when exposing to the same pathogen and at least another one (here pathogens A and B). Such an

experiment, therefore, omits the 2 combinations of Priming/Exposure boxed with a dashed line (here: Primed B/Exposed B and Primed B/Exposed A). In that case,

only results from the situation illustrated in (A), when pathogens A and B induce non-specific priming and when these pathogens exhibit similar virulence, can be

conclusive. Indeed, without the results from the reciprocal combinations illustrated in the box with a dashed line, it is uncertain whether pathogen B induces priming in

(B), and it is not possible to tell whether the results in (C,D) may result from specific TGIP of difference in virulence between pathogen A and B. Another case is when

an experiment uses maternally primed offspring by several pathogens (here pathogens A and B), and tests their fitness when they are exposed to only one of the

pathogens used for maternal priming (here pathogen A). Such an experiment then misses results from the underlined “Priming/Exposure” combinations (here Primed

A/Exposed B and Primed B/Exposed B). This approach is insufficient too to examine specificity of TGIP as it only allows being conclusive on the unspecific TGIP

effects of pathogen B whereas specificity of TGIP by pathogen A remains unknown in situations illustrated in (A,C), and it is uncertain whether pathogen B induces

priming in (B,C).

the red flour beetle, T. castaneum (41). This latter study indeed
showed that primed offspring exposed to the same bacterial
pathogen as their parents exhibited lower mortality than when
they are exposed to the other bacterial pathogen. It also showed
that the expression of TGIP, in terms of offspring resistance to
infection, was more variable in E. coli-primed offspring than in
individuals primed with the natural pathogen B. thuringiensis
(41). Hence, in addition to the use of a fully reciprocal factorial
experimental design of maternal priming and offspring exposure
to pathogens, the use of procedures of host exposure to pathogens
relevant of those naturally occurring appears essential to provide
a comprehensive understanding of the adaptive nature of TGIP
and of the selective forces at the origin of its evolution.

Genetic Bases of TGIP
If adaptive, TGIP should have been shaped by the action of
natural selection and its expression should be genetically encoded
and therefore heritable. Ample additive genetic variance and
heritability were found for components of immunity and life

history traits in insects (105–107). Genetic variance for TGIP
might therefore be expected as well. Host populations likely
face substantial spatial and temporal variation of the pathogen
diversity, pathogen abundance, and resource availability that
altogether modulate the strength of selection on TGIP. Thus,
TGIP is expected to show variation in its expression as it also
imposes fitness costs, which generate trade-offs with life-history
traits (34–36, 39, 41). In line with this, evidence for substantial
variation in TGIP responses among natural populations of T.
castaneum to its natural pathogen, B. thuringiensis, was found
(45). Furthermore, significant inter-individual variation in their
investment into the immune protection of their eggs in relation to
their fecundity were identified in immune-challenged females of
T.molitor, suggesting different strategies of investment into TGIP
(36). It is yet unknown whether such a variation in investment
into TGIP and its covariation with other fitness-related traits
have genetic bases. Therefore, measuring its heritability and
estimating potential genetic correlations with other life-history
traits appears of primary importance. It would allow for inferring
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about how much natural selection could act on this aspect of
invertebrate immunity to reliably understand its evolution. So far,
this has never been investigated.

Evolution of TGIP
While TGIP may confer a large fitness advantage, it does
not seem to be universal as studies have failed to detect it
in some invertebrate groups (22, 23, 25). Others have even
found a negative effect of the maternal challenge on the
offspring resistance to infection (24). However, the limited
number of taxa investigated might bias this view (Figure 2).
Assuming that all organisms have the potential to evolve immune
priming, its associated fitness costs may prevent its selection,
depending on the biology and ecology of the species. It is
also remarkable that in invertebrate species for which TGIP
exists, a restricted range of parasites or pathogens induce its
expression (Supplementary Table 1). Furthermore, depending
on the parasites/pathogens involved, the TGIP response can be
either non-specific, leading to cross-immunity, or specific toward
the pathogen that challenged the parental host (41, 50). Hence,
the expression and specificity of TGIP seem to depend on the
host-parasite system involved.

Because TGIP is expected to provide protection against
repeated infections, its evolution should depend on the risk
of subsequent infections in the offspring generation after a
parental contact with a given parasite/pathogen. Therefore, it
is expected to be a selected process in species with a relatively
long life-span and limited dispersion, increasing the chances of
the offspring encountering a pathogen diversity similar to the
one experienced by their parents (19). While such a risk might
be conditioned by host-life history characteristics, it may also
depend on parasite/pathogen traits that determine the severity of
disease. On the one hand, avirulent parasites/pathogens should
not select for TGIP. On the other hand, highly virulent ones are
not expected to promote the evolution of TGIP if they induce
host death before they have the opportunity to reproduce (19).
However, this may depend on whether TGIP could be initiated
by non-infectious parental contact with the parasite/pathogen,
that is when the parents are exposed to a low dose of the disease
agent without becoming infected (29, 108). Hence, depending on
the priming mechanisms of susceptible parents (through either
infectious or non-infectious pathogen encounters), intermediate-
to-high virulence levels of parasite/pathogen are expected to
favor the evolution of TGIP (46).

Consequences of TGIP on Pathogen
Virulence Evolution
While parasite/pathogen virulence is likely an important factor
for the evolution of immune priming within and across
generations (19, 109, 110), the influence of immune priming on
the evolution of virulence has rarely been evoked. If immune
priming does not confer full immunity but rather prevents hosts
from dying quickly from the infection, it contributes in extending
the period during which parasites/pathogens may replicate and
be transmitted. Studies from adaptive immunity of vertebrates
suggest that imperfect vaccines may promote the evolution of
more virulent pathogens (111, 112). As such, a high rate of

primed individuals has the potential to maintain a high number
of virulent pathogens in a host population that can spread to
susceptible populations. Further investigation of the underlying
mechanisms of immune priming and its impact on host survival
to disease is needed to better understand their role in the
evolution of pathogen virulence (75).

THE MANY ROADS TO TGIP:
HYPOTHETICAL SCENARIOS BASED ON
EMPIRICAL DATA

Many molecular actors of the innate and acquired immunity
of invertebrates have been identified. Consequently, many
TGIP studies monitored several of these known mechanisms
by measuring their activity, such as lysozyme, antimicrobial
or phenoloxidase (PO) activities, or their gene expression
by RT-qPCR (reverse transcription quantitative PCR)
(Table 1; Supplementary Table 1). Only few studies used
global approaches to unravel the potential role of other
genes and proteins, by using next-generation sequencing
(NGS) transcriptomic approach by RNA-seq (46, 58, 69),
or by proteomic profiling using 1-dimension (28, 37) or 2D
polyacrylamide gel electrophoresis (SDS-PAGE) coupled with
mass spectrometry (MS) analysis (60). In future studies, such
global approaches should be more widely adopted to identify
additional candidates that could be specific to TGIP and
have not yet been identified in within-generation immune
priming. It would also be helpful to identify potential metabolic
reorganization following an increased immunity, notably due to
energy reallocation processes.

In light of the different potential mechanisms identified, we
propose four different hypothetical scenarios to explain how
TGIP can occur and how the underlying mechanisms can be
characterized (Figure 4). Although there might be as many
mechanisms as there are invertebrate/pathogen combinations,
the objective of such scenarios is to highlight common features
and to provide a baseline to facilitate further discussions about
TGIP mechanisms and processes. These scenarios are by essence
not mutually exclusive and could act simultaneously at the same
developmental stage of the offspring and/or act sequentially at
different stage of the offspring life (Figure 4).

Scenario 1—Transfer of Signal(s)
In the first scenario, parents may transmit a “signal” to their
progeny, which could be an eliciting substance transferred in the
developing eggs. Such a signal can notably be bacterial peptides
translocated from mother’s gut to the egg. This phenomenon has
been characterized and visualized by fluorescence microscopy
in M. sexta, G. mellonella, and T. castaneum mothers exposed
to bacteria and it was associated with an increased expression
of immune genes in the eggs (43, 60, 64). In A. mellifera, it
has been hypothesized that such translocation was mediated by
vitellogenin (113, 114). Vitellogenin would recognize bacteria by
specifically binding to pathogen-associated molecular patterns
(PAMPs), such as PGN and LPS, to trigger the transfer of cell-
wall fragments of bacteria into the eggs (113). It could also

Frontiers in Immunology | www.frontiersin.org 11 August 2019 | Volume 10 | Article 1938

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Tetreau et al. Trans-generational Immune Priming in Invertebrates

FIGURE 4 | Hypothetical mechanisms responsible for TGIP in invertebrates following the four described scenarios highlighted in blue, red, green, and purple for

scenarios 1, 2, 3, and 4, respectively.

specifically recognize and transfer bacterial fragments from the
gut up to the workers glands producing the royal jelly and
eventually to the eggs produced by the queen (114), which
could participate to the social immunization in this species (9).
In G. mellonella and T. castaneum, although such transfer was
not associated with vitellogenin at this time, the route followed
by the bacterial proteins had been identified (i.e., crossing the
midgut epithelium then being entrapped into nodules in the
hemocoel followed by an accumulation in the ovaries ended by
a deposition in the eggs) and could match with the tropism
and mechanism of translocation of vitellogenin into the eggs
(60, 115). Such mechanism would expose the developing embryo
within the egg to PAMPs from pathogens that his mother
encountered during her life. It would be an easy way to induce
an immune priming in the offspring in order to boost its innate
immunity and increase its capacity to respond to the pathogen
community to which it might be exposed after hatching. It is,
however, yet to be characterized whether this mechanism is
strictly passive or whether the mother can actively stimulate
vitellogenin production and/or activity in response to pathogen
exposure, and whether it can be facilitated by a potential paternal
effect. Nevertheless, one should be cautious with this hypothesis
considering that similar experiments performed using M. sexta
exposed to S. marescens failed to identify such bacterial transfer
(63). Intriguingly, bacterial translocation has been recently
identified in the same insect species to a bacteria from the same
genus, S. entomophila, but this discrepancy with the previous
study was not acknowledged nor discussed (64). Therefore,
additional evidences have to be accumulated from different
teams using complementary approaches to decipher the exact
mechanisms using similar host-pathogen combinations. Similar

experiments should also be performed with different insect-
pathogens couples, including viruses, fungi, microsporidia, and
protozoan parasites, to know whether translocation of pathogen
proteins is a generalist mechanism or a bacteria-specific TGIP
mechanism and determine its occurrence in the tree of life.

Transfer of maternal microRNAs that directly act on offspring
gene expression could also be a “signal” triggering TGIP (116).
The involvement of microRNAs has not been investigated in
TGIP yet, despite their known role in invertebrate immunity
and host-pathogens interaction (117, 118). Such signals could
induce the activation of immune-related genes in the developing
embryo inside the egg and/or by the extraembryonic serosa,
which is a frontier epithelium able to express many immune
genes and provide the insect egg with a full-range innate immune
response (119, 120).

Scenario 2—Transfer of mRNA(s)
In the second scenario, females may provide their eggs with
mRNAs coding for key antimicrobial immune effectors, which
are then produced by the developing embryo and/or by the serosa
surrounding the embryo (120). Transfer of maternal mRNAs
in developing eggs during oogenesis has been characterized in
many species, including insects (121). In insects with polytrophic
meroistic (e.g., Hymenoptera, Lepidoptera, and Diptera) and
telotrophic ovaries (e.g., Hemiptera and Coleoptera), these
maternal mRNAs are synthetized by nurse cells and are provided
to oocytes via the trophic cord (122–124). Although these
mRNAs are mostly known to be involved in the control of
development (125), they may also serve for early immune
protection of embryos. In the fish Cyprinus carpio L. for example,
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maternal mRNAs encoding immune-related genes have been
identified in unfertilized eggs (126).

Scenario 3—Transfer of Effector(s)
In the third scenario, females could directly transfer immune
effector proteins to their eggs, either passively through the
diffusion or sequestration into the egg of proteins present
in the mother’s hemolymph (scenario 3a), or actively via the
provision of eggs by specialized cells, such as nurse cells that
are known to produce proteins transferred to oocytes (121)
(scenario 3b). Transfer of immune effectors is well-known in
vertebrates where antibodies are transmitted through the yolk
in birds, fishes, and reptiles, or through the placenta or milk in
mammals (3). Although antibodies do not exist in invertebrates,
other immune effectors can be transferred to the offspring
such as lectins, LBP/BPI (LPS-binding proteins/bactericidal
permeability-increasing proteins) and antimicrobial peptides
(AMPs) (15, 94).

Antimicrobial Peptides
The involvement of AMPs in TGIP has been extensively
investigated, as they are central in invertebrate immunity. A wide
range of AMPs that act against a large number of pathogens
can be produced and the majority of AMPs have been found
in more than two invertebrate orders (127, 128). Several studies
reported the transfer and storage of AMPs from mothers
into the eggs (129–131). Mother-derived AMPs have notably
been shown to condition the colonization of the embryo by
symbiotic bacteria (132). The involvement of AMPs in TGIP
has only been investigated in Coleoptera, Lepidoptera, and
Hymenoptera after parental exposure to LPS, PGN, bacteria or
fungi (Supplementary Table 1). Increased AMP gene expression
is not triggered by all pathogen challenges and the set of AMPs
differentially regulated differs from one pathogen to another in
offspring from challenged mother compared to offspring from
unchallenged mother (28, 42, 43, 60, 62, 64, 68).

Despite such variability in the results obtained, several
key candidate AMPs have already successfully been identified.
Among them, gloverin is a serious candidate that was found over-
expressed in eggs from mothers primed with PGN and larvae
frommothers exposed with E. coli inM. sexta (62, 64), inGalleria
mellonella eggs frommothers exposed to S. entomophila (60), and
in T. ni larval offspring frommothers fed with a mixture of E. coli
and M. luteus (28). Gloverin is a lepidopteran-specific AMP that
has been implicated in antibacterial and antifungal response in
several lepidopteran species (128) and its involvement in TGIP
clearly deserves further in-depth investigation. In T. molitor,
a defensin-like AMP (tenecin-1) was systematically found in
egg extracts from mothers injected with different bacteria (A.
globiformis, B. thuringiensis, E. coli, and S. entomophila) but
was absent in eggs from unchallenged mothers (37). Next-
generation RNA sequencing (RNA-seq), which gives access to the
entire transcriptome of species, allowed for extending the list of
candidate AMPs that will require further investigation (46, 58).
Dedicated studies focusing on AMPs through pluridisciplinary
approaches aiming at characterizing their involvement up to the
functional level are now needed.

Vitellogenin, a Multi-tool Protein
Apart from its potential role as a bacterial peptide translocator
(see scenario 1), vitellogenin can play many additional roles.
Vitellogenin is a highly evolutionarily conserved protein whose
main role is to provide the embryo with sufficient energetic
resources for its proper development within the egg (133).
Vitellogenin can also play an important direct and indirect role
in the defense of invertebrates against stress and infections.
In response to an oxidative stress, honeybees (A. mellifera)
are synthesizing a high quantity of vitellogenin that is able
to recognize damaged cells and bind to living cells to protect
them from reactive oxygen species (134, 135). Vitellogenin
has also been implicated in the modulation of the immune
response of invertebrates, notably indirectly due to shared gene
expression regulation regions with AMPs, such as defensins (136,
137). Vitellogenin can also directly act as a multivalent pattern
recognition receptor (PRR) with an opsonic and antibacterial
activity (138, 139). Due to its potential involvement at different
steps of the anti-pathogen response and in the translocation of
pathogens’ PAMPs into the eggs, the role of vitellogenin in TGIP
requires extensive investigation, notably by different teams on
different biological systems. This would allow for verifying if
its involvement is specific to a restricted list of host/pathogen
combinations or if it is a general mechanism, at least in oviparous
species. However, studying the involvement of vitellogenin in
TGIP will be a complex task, notably due to its many roles in
the physiology, metabolism and/or immunity of invertebrates
and will require a specific investigation to properly address and
disentangle the many confounding effects.

Scenario 4—Epigenetic Modification(s)
In the fourth and last scenario, parents exposed to a
pathogen would experience an epigenetic reprogramming
(e.g., by acetylation/deacetylation of histone and/or by
methylation/demethylation of immune genes) and would
transfer this reshaped epigenetic state to their offspring.
Modification of gene methylation and histone acetylation are
major epigenetic factors that can boost or impair invertebrate
immune response toward bacteria, viruses, or fungi (140, 141).
Surprisingly, only a limited number of studies investigated the
role of epigenetics in TGIP. One focused on histone acetylation
in the response of the crustacean Artemia sp. to Vibrio campbelli
(49) and two others on gene methylation after bacterial exposure
of T. castaneum (43) and of T. molitor (38). While TGIP was
identified in both cases, no link between epigenetic modifications
and TGIP was found. More recent studies tend, however, to point
out some role of epigenetic in TGIP. In T. castaneum, priming
of fathers with B. thuringiensis combined with RNAi of a DNA
methyltransferase (Dnmt2), known to drive CpG methylation on
tRNA (142), led to a low (∼10%) although significant decrease
in offspring survival to the same pathogen (143). However, the
mechanism by which tRNA methylation could participate to
TGIP is still unclear and further investigation is now required.
In a recent comprehensive study, Gegner et al. (64) reported
evidence for a sex-specific modification in the DNA methylation
and histone acetylation inM. sexta offspring larvae from parents
exposed to pathogenic S. entomophila and non-pathogenic E.
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coli. The authors argue that such modifications are associated
with the differential expression of immune-related genes that
they measured in offspring, without however providing evidence
for a clear linkage between epigenetic modifications and altered
immune gene expression (64). Based on these contrasting results
on different host-pathogen combinations, it is impossible to
draw an overall picture of the implication of epigenetic in
TGIP yet. Considering the prominent role of epigenetics in
many trans-generational adaptation processes in animals and
its implication in the modulation of several within-generation
immune response pathways, its involvement in TGIP must be
more deeply and widely investigated (116, 144, 145). It could
be a notably good candidate to explain at least a part of the
paternal effect and of the sustenance of TGIP effect over multiple
successive generations (47, 48).

HOW TO EXPERIMENTALLY
DISENTANGLE THE DIFFERENT
SCENARIOS?

In this part, we describe how the experiments should be designed
and their outcome interpreted to decipher between the different
scenarios of TGIP. Although it is impossible to be exhaustive
and to provide guidelines universal for all host-pathogen
combinations, our aim is to present some key parameters to
be particularly monitored. Noteworthy, considering that more
than one mechanism belonging to at least two scenarios could
act simultaneously, we focus on those parameters that allow
proceeding by elimination to get to the scenarios most likely
involved in TGIP (Table 2).

Under these four different scenarios, transcripts coding for the
immune effector(s) found in the eggs and the effectors themselves
are expected to localize in distinct parts of the mother’s and egg’s
tissues (Table 2). In the case of a maternal transfer of immune
effectors (scenario 3), quantity of transcripts of the effector(s)
should not be elevated in the eggs laid by immune-challenged
females, while under scenarios 1 and 2, transcripts should be
detected at an abnormally high level in the eggs from primed
mothers compared to unprimed ones (Table 2). However, in the
case of a maternal transfer of mRNAs, quantity of transcripts
should not be elevated in the oocyte nucleus (i.e., the site of
transcription in oocytes), but it should be increased in maternal
tissues, such as the nurse cells and trophic cords, and/or in more
systemic mother’s organs.

Besides, absence of transferred transcripts in females would
favor the hypothesis of a transfer of a maternal signal (scenario
1), while their presence may not help to distinguish between
the scenarios 2 and 3 (Table 2). The precise localization of
these transcripts may however be informative. In insects, many
antimicrobial effectors are known to be expressed in the fat body
and in hemocytes following an immune challenge (146, 147), but
one should be aware that some can be expressed in other tissues.
For example, the AMP drosocin is expressed in the calyx and
oviducts of matedD.melanogaster females that have started to lay
eggs (148) and in the medfly, Ceratitis capitata, ceratotoxin A and
B are expressed constitutively within the female’s accessory glands

(149). In the case of a transfer of maternal mRNAs (scenario 2)
or of an active transfer of effectors (scenario 3b), high levels of
transcripts are expected to be observed in the ovaries, especially
in the nurse cells known to provide both maternal mRNAs and
proteins to developing oocytes, and in the trophic cords, which
connect the nurse cells to the oocytes.

The presence of large amounts of effector proteins in female
tissues would rather favor the third scenario while their absence
would clearly favor the scenarios 1 and 2 (Table 2). Under
the third scenario, the presence of these molecules in the
mother’s hemolymph would favor the hypothesis of a passive
transfer of proteins (scenario 3a) while a higher concentration
within ovarian tissues would rather indicate an active transfer
(scenario 3b).

The outcome of the fourth scenario, involving epigenetic
reshaping, is difficult to predict in term of transcript and protein
presence in mother and offspring as it would largely depend
on the gene(s)/protein(s) that are affected (Table 2). It would
require a specific investigation through dedicated approaches
(e.g., chromatine immunoprecipitation sequencing (ChIP-seq)
and bisulfite sequencing (BS-seq) for studying DNA-chromatine
interaction and methylation, respectively). Nevertheless, if the
immune protection is maintained across several successive
generations, this would strongly indicate that an epigenetic
factor is involved (Figure 4). However, it would not completely
exclude the other scenarios, as the increased immune status of
the offspring due to an increased amount of proteins could be
transferrable to the next generation(s), which would support the
involvement of the transfer of effectors too (scenario 3).

Host-associated microbiota can affect the fitness of its host in
a number of ways, including the modification of host-parasite
interactions, and thus, the outcome of disease. Intriguingly,
the role of microbiota in TGIP has never been investigated
despite its pivotal role in immune priming (14). There are
increasing evidences that microbiota can affect the host response
to pathogens by directly competing with them and/or by
modulating the host innate immunity (14, 150). In reciprocity,
results have accumulated to support the effect of the host
immune system on microbiota homeostasis. Therefore, different
individuals of the same species with the same genetic background
but with different microbiota could mount different immune
responses against a pathogen upon infection, which could, in
turn, differentially shape their microbiota. This might affect their
ability to transfer this immunity to their offspring; notably if the
microbiota is transgenerational acquired, a change in parents’
microbiota could affect offspring’s one. Moreover, any of the
mechanisms of parental immune transfer cited in the above four
scenarios could directly modulate the offspring innate immunity
and/or have indirect effect by modifying offspring microbiota.
For example, AMPs are known to shape offspring microbiota
in many species. An increase of their quantity in offspring will
increase its immune response capacity and meanwhile alter its
microbiota, which could also enhance ormitigate the direct TGIP
effect. This would render the outcome of TGIP hardly predictable
and quantifiable. Considering that microbiota was shown to be
mandatory for immune priming in some species (151, 152),
specifically investigating its role in TGIP is of utmost significance.
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TABLE 2 | Expected presence of transcripts and proteins in immune-challenged females and their eggs according to the four different scenarios.

Transfer of a signal

(scenario 1)

Transfer of mRNA

(scenario 2)

Transfer of effectors

(scenario 3)

Epigenetic shaping

(scenario 4)

a. Passive diffusion b. Active transfer

Gene expression in mothers Not necessarily Yes, in ovaries Yes, in fat body and/or

hemocytes

Yes, in ovaries Not necessarily

Presence of the protein in mothers Not necessarily Not necessarily Yes, in the hemolymph Yes, in ovaries Not necessarily

Transcripts in embryo Yes, in nuclei of embryo

cells and/or in serosa

Yes (maternal origin)

but not necessarily in

nuclei of embryo cells

No No Not necessarily

Presence of the protein in eggs Yes Yes Yes Yes Not necessarily

GUIDELINES FOR FURTHER STUDYING
TGIP IN INVERTEBRATES

(1) Trans-generational immune priming corresponds to the
plastic adjustment of offspring immunity, as a result of
parental immune experience. It represents a recent field of
research (20 years old) and it has been increasingly studied
during the last years. Investigating new invertebrate species
is required to provide key information on the occurrence of
TGIP in the tree of life.

(2) Before conducting any experiment on TGIP (or on any other
topic), one should consider whether the experimental design
and, more importantly, the statistical analysis pipeline are
adapted to address the question raised. Too many TGIP
articles suffer from a flawed experimental design and/or
a non-adapted statistical analysis. For investigating the
specificity of TGIP, the use of a fully reciprocal factorial
experimental design is mandatory.

(3) Considering that TGIP can be costly for fitness of both
parents and offspring, it is expected to occur principally
against the most threatening and recurrent pathogens from

their environment. Therefore, characterizing the ecology of

the host before studying TGIP is an important prerequisite
to select the most appropriate pathogen(s) for studying

TGIP and to avoid missing the phenotype due to an

inadequate host-pathogen combination. Investigating TGIP
in host-pathogen combination that is not expected to trigger
TGIP would also be required to test the assumptions about
its presence.

(4) The infection procedure (ingestion/injection and
inactivated/living pathogen) and the dose applied must
be chosen based on their adequacy to the biology and
ecology of both the host and the pathogen studied, which
must be characterized beforehand. When comparing two
pathogens, these pathogens must share some common
features in terms of infection route and pathogenicity to be
comparable through the same infection procedure.

(5) When possible, immune parameters and associated fitness
costs should be measured separately in females and males in
both parents and offspring to disentangle sex biased TGIP.
Ideally, the paternal influence should be investigated more
in-depth, notably its impact on mother’s immunity and its
consequence on offspring protection.

(6) Immune status and fitness costs of offspring from challenged
parents should be investigated at different developmental
stages to account for potential stage-specificity of TGIP
and avoid missing its expression. Moreover, different
mechanisms might be at play at the different developmental
stages and investigating only a limited number of stages
could bias the analysis of TGIP process. The age of the
mother (and potentially the father too) should also be
monitored considering that older females might not invest
as much in offspring protection as younger ones.

(7) Several successive generations should be monitored to see if
TGIP is a sustained process or if it is restricted to the first
generation, which could help in deciphering the underlying
mechanisms, notably epigenetic ones.

(8) The role of microbiota in TGIP must be specifically
investigated. Its ability to modulate the parents’—and
potentially offspring’s—innate immune response can
strongly affect the outcome of TGIP and bias our
understanding of the phenomenon at both the epidemiologic
and mechanistic level.

(9) Last but not least, all articles investigating TGIP
mechanisms by the means of molecular approaches
such as transcriptomic, proteomic or enzymatic activities
(TEI) should also systematically monitor the enhanced
offspring resistance (TER), notably by measuring the
offspring survival to the studied pathogen(s) and the parasite
load. This is mandatory to be able to properly compare
different studies and to decipher all the complexity of
trans-generational immune priming because, as Tom J.
Little and collaborators wrote in 2005, “without analogous
experiments, mechanism-driven work may not demonstrate
the full richness of invertebrate immunity” (153).

AUTHOR CONTRIBUTIONS

GT initiated the project. All authors participated to the
discussions and writing of the article.

FUNDING

This work was funded by the MATER-IMMUNITY Project
(ANR-14-CE02-0009) from the French National Research
Agency (ANR).

Frontiers in Immunology | www.frontiersin.org 15 August 2019 | Volume 10 | Article 1938

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Tetreau et al. Trans-generational Immune Priming in Invertebrates

ACKNOWLEDGMENTS

The authors want to thank Manon Chogne, David
Duval, Richard Galinier, Aurélie Gauthier, Silvain Pinaud,
and Robert J. Knell for fruitful discussions and critical
comments on the manuscript. They also want to thank the
reviewers for their constructive criticisms and Dr. Brian
O’Discoll for English proof reading that greatly improved
the manuscript. A previous version of this review was
included in the Ph.D. thesis of JD that he defended on
December 6th, 2017 in Dijon, France (154). His thesis

dissertation is freely available online at http://www.theses.
fr/2017UBFCK019.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fimmu.
2019.01938/full#supplementary-material

Supplementary Table 1 | List of the 57 articles investigating TGIP in

invertebrates. This table contains details about the host/pathogens studied, the

experimental procedure used and the outcome of the experiments.

REFERENCES

1. Grenfell BT, Dobson AP. Ecology of Infectious Diseases in Natural
Populations. Cambridge: Cambridge University Press (1995).

doi: 10.1017/CBO9780511629396

2. Farber DL, Netea MG, Radbruch A, Rajewsky K, Zinkernagel RM.

Immunological memory: lessons from the past and a look to the future. Nat
Rev Immunol. (2016) 16:124–8. doi: 10.1038/nri.2016.13

3. Hasselquist D, Nilsson JA. Maternal transfer of antibodies in vertebrates:

trans-generational effects on offspring immunity. Philos Trans R Soc Lond
Ser B. (2009) 364:51–60. doi: 10.1098/rstb.2008.0137

4. Gourbal B, Pinaud S, Beckers GJM, Van Der Meer JWM, Conrath U, Netea

MG. Innate immune memory: an evolutionary perspective. Immunol Rev.
(2018) 283:21–40. doi: 10.1111/imr.12647

5. Milutinovic B, Kurtz J. Immune memory in invertebrates. Semin Immunol.
(2016) 28:328–42. doi: 10.1016/j.smim.2016.05.004

6. Boraschi D, Italiani P. Innate immune memory: time for adopting a

correct terminology. Front Immunol. (2018) 9:799. doi: 10.3389/fimmu.2018.

00799

7. Little TJ, Kraaijeveld AR. Ecological and evolutionary implications of

immunological priming in invertebrates. Trends Ecol Evolu. (2004) 19:58–60.
doi: 10.1016/j.tree.2003.11.011

8. Moret Y. “Trans-generational immune priming”: specific enhancement of

the antimicrobial immune response in the mealworm beetle, Tenebrio
molitor. Proc Biol Sci. (2006) 273:1399–405. doi: 10.1098/rspb.2006.3465

9. Masri L, Cremer S. Individual and social immunisation in insects. Trends
Immunol. (2014) 35:471–82. doi: 10.1016/j.it.2014.08.005

10. Cooper D, Eleftherianos I. Memory and specificity in the insect immune

system: current perspectives and future challenges. Front Immunol. (2017)
8:539. doi: 10.3389/fimmu.2017.00539

11. Cory JS. Evolution of host resistance to insect pathogens. Curr Opin Insect
Sci. (2017) 21:54–9. doi: 10.1016/j.cois.2017.04.008

12. Melillo D, Marino R, Italiani P, Boraschi D. Innate immune memory in

invertebrate metazoans: a critical appraisal. Front Immunol. (2018) 9:1915.
doi: 10.3389/fimmu.2018.01915

13. Tetreau G. Interaction between insects, toxins and bacteria: have we been

wrong so far? Toxins. (2018) 10:281. doi: 10.3390/toxins10070281
14. Moret Y, Coustau C, Braquart-Varnier C, Gourbal B. Immune

priming and trans-generational protection from parasites. In:

Encyclopedia of Animal Behavior, 2nd Ed. Elsevier (2019). p. 764–74.

doi: 10.1016/B978-0-12-809633-8.90726-X

15. Wang L, Yue F, Song X, Song L. Maternal immune transfer in mollusc. Dev
Comp Immunol. (2015) 48:354–9. doi: 10.1016/j.dci.2014.05.010

16. Roth O, Beemelmanns A, Barribeau SM, Sadd BM. Recent advances

in vertebrate and invertebrate transgenerational immunity in

the light of ecology and evolution. Heredity. (2018) 121:225–38.

doi: 10.1038/s41437-018-0101-2

17. Chigasaki J. Sur l’immunisation de Galleria aux différents stades de sa vie.

Comptes Rendus Biol. (1925) 93:573–4.
18. Huang CC, Son YL. Maternal transmission of immunity to white spot

syndrome associated virus (WSSV) in shrimp (Penaeus monodon). Dev
Comp Immunol. (1999) 23:545–52. doi: 10.1016/S0145-305X(99)00038-5

19. Pigeault R, Garnier R, Rivero A, Gandon S. Evolution of transgenerational

immunity in invertebrates. Proc Biol Sci. (2016) 283:20161136.

doi: 10.1098/rspb.2016.1136

20. Maddison D, Schulz KS, Maddison W. The tree of life web project. Zootaxa.
(2007) 1668:19–40. doi: 10.11646/zootaxa.1668.1.4

21. Lorenz LM, Koella JC. Maternal environment shapes the life history and

susceptibility to malaria of Anopheles gambiaemosquitoes.Malaria J. (2011)
10:382. doi: 10.1186/1475-2875-10-382

22. Voordouw MJ, Lambrechts L, Koella JC. No maternal effects after

stimulation of the melanization response in the yellow fever mosquito Aedes
aegypti. Oikos. (2008) 117:1269–79. doi: 10.1111/j.0030-1299.2008.16741.x

23. Linder JE, Promislow DEL. Cross-generational fitness effects of infection in

Drosophila melanogaster. Fly. (2009) 3:143–50. doi: 10.4161/fly.8051
24. Vantaux A, Dabire KR, Cohuet A, Lefevre T. A heavy legacy: offspring

of malaria-infected mosquitoes show reduced disease resistance. Malaria J.
(2014) 13:442. doi: 10.1186/1475-2875-13-442

25. Pigeault R, Vezilier J, Nicot A, Gandon S, Rivero A. Transgenerational

effect of infection in Plasmodium-infected mosquitoes. Biol Lett. (2015)
11:20141025. doi: 10.1098/rsbl.2014.1025

26. Littlefair JE, Laughton AM, Knell RJ. Maternal pathogen exposure causes

diet- and pathogen-specific transgenerational costs.Oikos. (2016) 126:82–90.
doi: 10.1111/oik.03430

27. Shikano I, Hua KN, Cory JS. Baculovirus-challenge and poor nutrition inflict

within-generation fitness costs without triggering transgenerational immune

priming. J Invertebr Pathol. (2016) 136:35–42. doi: 10.1016/j.jip.2016.03.001
28. Freitak D, Heckel DG, Vogel H. Dietary-dependent trans-generational

immune priming in an insect herbivore. Proc Biol Sci. (2009) 276:2617–24.
doi: 10.1098/rspb.2009.0323

29. Tidbury HJ, Pedersen AB, Boots M. Within and transgenerational immune

priming in an insect to a DNA virus. Proc Biol Sci. (2011) 278:871–6.

doi: 10.1098/rspb.2010.1517

30. Boots M, Roberts KE. Maternal effects in disease resistance: poor maternal

environment increases offspring resistance to an insect virus. Proc Biol Sci.
(2012) 279:4009–14. doi: 10.1098/rspb.2012.1073

31. Torgerson CJ. Publication bias: the achilles’ heel of systematic reviews?

Br J Educ Stud. (2010) 54:89–102. doi: 10.1111/j.1467-8527.2006.0

0332.x

32. Fisher JJ, Hajek AE. Maternal exposure of a beetle to pathogens

protects offspring against fungal disease. PLoS ONE. (2015) 10:e0125197.
doi: 10.1371/journal.pone.0125197

33. Shi ZH, Lin YT, Hou YM. Mother-derived trans-generational immune

priming in the red palm weevil, Rhynchophorus ferrugineus Olivier

(Coleoptera, Dryophthoridae). Bull Entomol Res. (2014) 104:742–50.

doi: 10.1017/S0007485314000583

34. Zanchi C, Troussard JP, Martinaud G, Moreau J, Moret Y. Differential

expression and costs between maternally and paternally derived immune

priming for offspring in an insect. J Anim Ecol. (2011) 80:1174–83.

doi: 10.1111/j.1365-2656.2011.01872.x

35. Moreau J, Martinaud G, Troussard J-P, Zanchi C, Moret Y. Trans-

generational immune priming is constrained by the maternal

immune response in an insect. Oikos. (2012) 121:1828–32.

doi: 10.1111/j.1600-0706.2011.19933.x

Frontiers in Immunology | www.frontiersin.org 16 August 2019 | Volume 10 | Article 1938

http://www.theses.fr/2017UBFCK019
http://www.theses.fr/2017UBFCK019
https://www.frontiersin.org/articles/10.3389/fimmu.2019.01938/full#supplementary-material
https://doi.org/10.1017/CBO9780511629396
https://doi.org/10.1038/nri.2016.13
https://doi.org/10.1098/rstb.2008.0137
https://doi.org/10.1111/imr.12647
https://doi.org/10.1016/j.smim.2016.05.004
https://doi.org/10.3389/fimmu.2018.00799
https://doi.org/10.1016/j.tree.2003.11.011
https://doi.org/10.1098/rspb.2006.3465
https://doi.org/10.1016/j.it.2014.08.005
https://doi.org/10.3389/fimmu.2017.00539
https://doi.org/10.1016/j.cois.2017.04.008
https://doi.org/10.3389/fimmu.2018.01915
https://doi.org/10.3390/toxins10070281
https://doi.org/10.1016/B978-0-12-809633-8.90726-X
https://doi.org/10.1016/j.dci.2014.05.010
https://doi.org/10.1038/s41437-018-0101-2
https://doi.org/10.1016/S0145-305X(99)00038-5
https://doi.org/10.1098/rspb.2016.1136
https://doi.org/10.11646/zootaxa.1668.1.4
https://doi.org/10.1186/1475-2875-10-382
https://doi.org/10.1111/j.0030-1299.2008.16741.x
https://doi.org/10.4161/fly.8051
https://doi.org/10.1186/1475-2875-13-442
https://doi.org/10.1098/rsbl.2014.1025
https://doi.org/10.1111/oik.03430
https://doi.org/10.1016/j.jip.2016.03.001
https://doi.org/10.1098/rspb.2009.0323
https://doi.org/10.1098/rspb.2010.1517
https://doi.org/10.1098/rspb.2012.1073
https://doi.org/10.1111/j.1467-8527.2006.00332.x
https://doi.org/10.1371/journal.pone.0125197
https://doi.org/10.1017/S0007485314000583
https://doi.org/10.1111/j.1365-2656.2011.01872.x
https://doi.org/10.1111/j.1600-0706.2011.19933.x
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Tetreau et al. Trans-generational Immune Priming in Invertebrates

36. Zanchi C, Troussard JP, Moreau J, Moret Y. Relationship between maternal

transfer of immunity and mother fecundity in an insect. Proc Biol Sci. (2012)
279:3223–30. doi: 10.1098/rspb.2012.0493

37. Dubuffet A, Zanchi C, Boutet G, Moreau J, Teixeira M, Moret Y.

Trans-generational immune priming protects the eggs only against gram-

positive bacteria in the mealworm beetle. PLoS Pathog. (2015) 11:e1005178.
doi: 10.1371/journal.ppat.1005178

38. Castro-Vargas C, Linares-López C, López-Torres A, Wrobel K,

Torres-Guzmán JC, Hernández G, et al. Methylation on RNA: a

potential mechanism related to immune priming within but not across

generations. Front Microbiol. (2017) 8:473. doi: 10.3389/fmicb.2017.

00473

39. Dhinaut J, Chogne M, Moret Y. Immune priming specificity within

and across generations reveals the range of pathogens affecting

evolution of immunity in an insect. J Anim Ecol. (2018) 87:448–63.

doi: 10.1111/1365-2656.12661

40. Dhinaut J, Chogne M, Moret Y. Trans-generational immune priming in the

mealworm beetle protects eggs through pathogen-dependent mechanisms

imposing no immediate fitness cost for the offspring. Dev Comp Immunol.
(2018) 79:105–12. doi: 10.1016/j.dci.2017.10.017

41. Roth O, Joop G, Eggert H, Hilbert J, Daniel J, Schmid-Hempel P,

et al. Paternally derived immune priming for offspring in the red

flour beetle, Tribolium castaneum. J Anim Ecol. (2010) 79:403–13.

doi: 10.1111/j.1365-2656.2009.01617.x

42. Eggert H, Kurtz J, Diddens-De Buhr MF. Different effects of paternal

trans-generational immune priming on survival and immunity in step and

genetic offspring. Proc Biol Sci. (2014) 281:20142089. doi: 10.1098/rspb.2014.
2089

43. Knorr E, Schmidtberg H, Arslan D, Bingsohn L, Vilcinskas A. Translocation

of bacteria from the gut to the eggs triggers maternal transgenerational

immune priming in Tribolium castaneum. Biol Lett. (2015) 11:20150885.

doi: 10.1098/rsbl.2015.0885

44. Tate AT, Graham AL, Hõrak P. Trans-generational priming of resistance in

wild flour beetles reflects the primed phenotypes of laboratory populations

and is inhibited by co-infection with a common parasite. Funct Ecol. (2015)
29:1059–69. doi: 10.1111/1365-2435.12411

45. Khan I, Prakash A, Agashe D. Divergent immune priming responses across

flour beetle life stages and populations. Ecol Evolu. (2016) 6:7847–55.

doi: 10.1002/ece3.2532

46. Tate AT, Andolfatto P, Demuth JP, Graham AL. The within-host dynamics

of infection in trans-generationally primed flour beetles. Mol Ecol. (2017)
26:3794–807. doi: 10.1111/mec.14088

47. Schulz NKE, Sell MP, Ferro K, Kleinhölting N, Kurtz J. Transgenerational

developmental effects of immune priming in the red flour beetle

Tribolium castaneum. Front. Physiol. (2019) 10:98. doi: 10.3389/fphys.2019.0
0098

48. Norouzitallab P, Biswas P, Baruah K, Bossier P. Multigenerational

immune priming in an invertebrate parthenogenetic Artemia to a

pathogenic Vibrio campbellii. Fish Shellfish Immunol. (2015) 42:426–9.

doi: 10.1016/j.fsi.2014.11.029

49. Norouzitallab P, Baruah K, Biswas P, Vanrompay D, Bossier P. Probing

the phenomenon of trained immunity in invertebrates during a

transgenerational study, using brine shrimp Artemia as a model system. Sci
Rep. (2016) 6:21166. doi: 10.1038/srep21166

50. Little TJ, O’connor B, Colegrave N, Watt K, Read AF. Maternal transfer of

strain-specific immunity in an invertebrate. Curr Biol. (2003) 13:489–92.

doi: 10.1016/S0960-9822(03)00163-5

51. Mitchell SE, Read AF. Poor maternal environment enhances offspring

disease resistance in an invertebrate. Proc Biol Sci. (2005) 272:2601–7.

doi: 10.1098/rspb.2005.3253

52. Vorburger C, Gegenschatz SE, Ranieri G, Rodriguez P. Limited scope for

maternal effects in aphid defence against parasitoids. Ecol Entomol. (2008)
33:189–96. doi: 10.1111/j.1365-2311.2007.00949.x

53. Hernandez Lopez J, Schuehly W, Crailsheim K, Riessberger-Galle U.

Trans-generational immune priming in honeybees. Proc Biol Sci. (2014)
281:20140454. doi: 10.1098/rspb.2014.0454

54. Moret Y, Schmid-Hempel P. Immune defence in bumble-bee offspring.

Nature. (2001) 414:506. doi: 10.1038/35107138

55. Sadd BM, Kleinlogel Y, Schmid-Hempel R, Schmid-Hempel P. Trans-

generational immune priming in a social insect. Biol Lett. (2005) 1:386–8.
doi: 10.1098/rsbl.2005.0369

56. Sadd BM, Schmid-Hempel P. Facultative but persistent trans-generational

immunity via themother’s eggs in bumblebees.Curr Biol. (2007) 17:R1046–7.
doi: 10.1016/j.cub.2007.11.007

57. Sadd BM, Schmid-Hempel P. A distinct infection cost associated with trans-

generational priming of antibacterial immunity in bumble-bees. Biol Lett.
(2009) 5:798–801. doi: 10.1098/rsbl.2009.0458

58. Barribeau SM, Schmid-Hempel P, Sadd BM. Royal decree: gene

expression in trans-generationally immune primed bumblebee workers

mimics a primary immune response. PLoS ONE. (2016) 11:e0159635.

doi: 10.1371/journal.pone.0159635

59. Bordoni A, Dapporto L, Tatini I, Celli M, Bercigli M, Ressurrección Barrufet

S, et al. Trans-generational immunization in the acrobat ant Crematogaster
scutellaris. Biol Lett. (2018) 14:20170761. doi: 10.1098/rsbl.2017.0761

60. Freitak D, Schmidtberg H, Dickel F, Lochnit G, Vogel H, Vilcinskas A.

The maternal transfer of bacteria can mediate trans-generational immune

priming in insects. Virulence. (2014) 5:547–54. doi: 10.4161/viru.28367
61. Trauer U, Hilker M. Parental legacy in insects: variation of transgenerational

immune priming during offspring development. PLoS ONE. (2013) 8:e63392.
doi: 10.1371/journal.pone.0063392

62. Trauer-Kizilelma U, Hilker M. Insect parents improve the anti-parasitic

and anti-bacterial defence of their offspring by priming the expression

of immune-relevant genes. Insect Biochem Mol Biol. (2015) 64:91–9.

doi: 10.1016/j.ibmb.2015.08.003

63. Rosengaus RB, Hays N, Biro C, Kemos J, ZamanM,Murray J, et al. Pathogen-

induced maternal effects result in enhanced immune responsiveness across

generations. Ecol Evol. (2017) 7:2925–35. doi: 10.1002/ece3.2887
64. Gegner J, Baudach A, Mukherjee K, Halitschke R, Vogel H, Vilcinskas

A. Epigenetic mechanisms are involved in sex-specific trans-generational

immune priming in the lepidopteran model host Manduca sexta. Front
Physiol. (2019) 10:137. doi: 10.3389/fphys.2019.00137

65. Trauer-Kizilelma U, Hilker M. Impact of transgenerational immune priming

on the defence of insect eggs against parasitism. Dev Comp Immunol. (2015)
51:126–33. doi: 10.1016/j.dci.2015.03.004

66. Freitak D, Heckel DG, Vogel H. Bacterial feeding induces changes in

immune-related gene expression and has trans-generational impacts

in the cabbage looper (Trichoplusia ni). Front Zool. (2009) 6:7.

doi: 10.1186/1742-9994-6-7

67. Yue F, Zhou Z, Wang L, Ma Z, Wang J, Wang M, et al. Maternal transfer

of immunity in scallop Chlamys farreri and its trans-generational immune

protection to offspring against bacterial challenge. Dev Comp Immunol.
(2013) 41:569–77. doi: 10.1016/j.dci.2013.07.001

68. Green TJ, Helbig K, Speck P, Raftos DA. Primed for success: oyster parents

treated with poly(I:C) produce offspring with enhanced protection against

Ostreid herpesvirus type I infection. Mol Immunol. (2016) 78:113–20.

doi: 10.1016/j.molimm.2016.09.002

69. Lafont M, Goncalves P, Guo X, Montagnani C, Raftos D, Green T.

Transgenerational plasticity and antiviral immunity in the Pacific oyster

(Crassostrea gigas) against Ostreid herpesvirus 1 (OsHV-1). Dev Comp
Immunol. (2019) 91:17–25. doi: 10.1016/j.dci.2018.09.022

70. Rechavi O, Minevich G, Hobert O. Transgenerational inheritance of an

acquired small RNA-based antiviral response in C. elegans. Cell. (2011)
147:1248–56. doi: 10.1016/j.cell.2011.10.042

71. Sterken MG, Snoek LB, Bosman KJ, Daamen J, Riksen JA, Bakker

J, et al. A heritable antiviral RNAi response limits Orsay virus

infection in Caenorhabditis elegans N2. PLoS ONE. (2014) 9:e89760.

doi: 10.1371/journal.pone.0089760

72. Mcnamara KB, Van Lieshout E, Simmons LW. The effect of maternal and

paternal immune challenge on offspring immunity and reproduction in a

cricket. J Evolu Biol. (2014) 27:1020–8. doi: 10.1111/jeb.12376
73. Behrens S, Peuss R, Milutinovic B, Eggert H, Esser D, Rosenstiel P, et al.

Infection routes matter in population-specific responses of the red flour

beetle to the entomopathogen Bacillus thuringiensis. BMC Genomics. (2014)
15:445. doi: 10.1186/1471-2164-15-445

74. Martins NE, Faria VG, Teixeira L, Magalhaes S, Sucena E. Host

adaptation is contingent upon the infection route taken by pathogens.

Frontiers in Immunology | www.frontiersin.org 17 August 2019 | Volume 10 | Article 1938

https://doi.org/10.1098/rspb.2012.0493
https://doi.org/10.1371/journal.ppat.1005178
https://doi.org/10.3389/fmicb.2017.00473
https://doi.org/10.1111/1365-2656.12661
https://doi.org/10.1016/j.dci.2017.10.017
https://doi.org/10.1111/j.1365-2656.2009.01617.x
https://doi.org/10.1098/rspb.2014.2089
https://doi.org/10.1098/rsbl.2015.0885
https://doi.org/10.1111/1365-2435.12411
https://doi.org/10.1002/ece3.2532
https://doi.org/10.1111/mec.14088
https://doi.org/10.3389/fphys.2019.00098
https://doi.org/10.1016/j.fsi.2014.11.029
https://doi.org/10.1038/srep21166
https://doi.org/10.1016/S0960-9822(03)00163-5
https://doi.org/10.1098/rspb.2005.3253
https://doi.org/10.1111/j.1365-2311.2007.00949.x
https://doi.org/10.1098/rspb.2014.0454
https://doi.org/10.1038/35107138
https://doi.org/10.1098/rsbl.2005.0369
https://doi.org/10.1016/j.cub.2007.11.007
https://doi.org/10.1098/rsbl.2009.0458
https://doi.org/10.1371/journal.pone.0159635
https://doi.org/10.1098/rsbl.2017.0761
https://doi.org/10.4161/viru.28367
https://doi.org/10.1371/journal.pone.0063392
https://doi.org/10.1016/j.ibmb.2015.08.003
https://doi.org/10.1002/ece3.2887
https://doi.org/10.3389/fphys.2019.00137
https://doi.org/10.1016/j.dci.2015.03.004
https://doi.org/10.1186/1742-9994-6-7
https://doi.org/10.1016/j.dci.2013.07.001
https://doi.org/10.1016/j.molimm.2016.09.002
https://doi.org/10.1016/j.dci.2018.09.022
https://doi.org/10.1016/j.cell.2011.10.042
https://doi.org/10.1371/journal.pone.0089760
https://doi.org/10.1111/jeb.12376
https://doi.org/10.1186/1471-2164-15-445
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Tetreau et al. Trans-generational Immune Priming in Invertebrates

PLoS Pathog. (2013) 9:e1003601. doi: 10.1371/journal.ppat.10

03601

75. Tate AT. The interaction of immune priming with different modes of disease

transmission. Front Microbiol. (2016) 7:1102. doi: 10.3389/fmicb.2016.01102

76. Felix MA, Ashe A, Piffaretti J, Wu G, Nuez I, Belicard T, et al.

Natural and experimental infection of Caenorhabditis nematodes by

novel viruses related to nodaviruses. PLoS Biol. (2011) 9:e1000586.

doi: 10.1371/journal.pbio.1000586

77. Ashe A, Sarkies P, Le Pen J, Tanguy M, Miska EA. Antiviral

RNA interference against Orsay virus is neither systemic nor

transgenerational in Caenorhabditis elegans. J Virol. (2015) 89:12035–46.

doi: 10.1128/JVI.03664-14

78. Yue C, Schroder M, Gisder S, Genersch E. Vertical-transmission routes

for deformed wing virus of honeybees (Apis mellifera). J Gen Virol. (2007)
88:2329–36. doi: 10.1099/vir.0.83101-0

79. Longdon B, Jiggins FM. Vertically transmitted viral endosymbionts of

insects: do sigma viruses walk alone? Proc Biol Sci. (2012) 279:3889–98.

doi: 10.1098/rspb.2012.1208

80. Burden JP, Griffiths CM, Cory JS, Smith P, Sait M. Vertical

transmission of sublethal granulovirus infection in the Indian

meal moth, Plodia interpunctella. Mol Ecol. (2002) 11:547–555s.

doi: 10.1046/j.0962-1083.2001.01439.x

81. Pradeu T, Jaeger S, Vivier E. The speed of change: towards a

discontinuity theory of immunity? Nat Rev Immunol. (2013) 13:764–9.

doi: 10.1038/nri3521

82. Matzinger P. Tolerance, danger and the extended family.Annu Rev Immunol.
(1994) 12:991–1045. doi: 10.1146/annurev.immunol.12.1.991

83. Pradeu T, Cooper EL. The danger theory: 20 years later. Front Immunol.
(2012) 3:287. doi: 10.3389/fimmu.2012.00287

84. Moreno-Garcia M, Conde R, Bello-Bedoy R, Lanz-Mendoza H. The damage

threshold hypothesis and the immune strategies of insects. Infect Genet
Evolu. (2014) 24:25–33. doi: 10.1016/j.meegid.2014.02.010

85. Wu G, Xu L, Yi Y. Galleria mellonella larvae are capable of sensing

the extent of priming agent and mounting proportionatal cellular

and humoral immune responses. Immunol Lett. (2016) 174:45–52.

doi: 10.1016/j.imlet.2016.04.013

86. Peng J, Zipperlen P, Kubli E. Drosophila sex-peptide stimulates female innate

immune system aftermating via the Toll and Imd pathways.Curr Biol. (2005)
15:1690–4. doi: 10.1016/j.cub.2005.08.048

87. Domanitskaya EV, Liu H, Chen S, Kubli E. The hydroxyproline motif of male

sex peptide elicits the innate immune response in Drosophila females. FEBS
J. (2007) 274:5659–68. doi: 10.1111/j.1742-4658.2007.06088.x

88. Chen PS, Stumm-Zollinger E, Aigaki T, Balmer J, Blenz M, Böhlen P. A male

accessory gland peptide that regulates reproductive behavior of female D.
melanogaster. Cell. (1988) 54:291–6. doi: 10.1016/0092-8674(88)90192-4

89. Liu H, Kubli E. Sex-peptide is the molecular basis of the sperm effect in

Drosophila melanogaster. Proc Natl. Acad Sci USA. (2003) 100:9929–33.

doi: 10.1073/pnas.1631700100

90. Avila FW, Sirot LK, Laflamme BA, Rubinstein CD, Wolfner MF. Insect

seminal fluid proteins: identification and function. Annu Rev Entomol.
(2011) 56:21–40. doi: 10.1146/annurev-ento-120709-144823

91. Jokela J. Transgenerational immune priming as cryptic parental care. J Anim
Ecol. (2010) 79:305–7. doi: 10.1111/j.1365-2656.2009.01649.x

92. Zuk M. The Sicker Sex. PLoS Pathog. (2009) 5:e1000267.

doi: 10.1371/journal.ppat.1000267

93. Vom Steeg LG, Klein SL. SeXX matters in infectious disease pathogenesis.

PLOS Pathog. (2016) 12:e1005374. doi: 10.1371/journal.ppat.1005374
94. Baron OL, Van West P, Industri B, Ponchet M, Dubreuil G, Gourbal B, et al.

Parental transfer of the antimicrobial protein LBP/BPI protects Biomphalaria
glabrata eggs against oomycete infections. PLoS Pathog. (2013) 9:e1003792.
doi: 10.1371/journal.ppat.1003792

95. Mousseau TA, Fox CW. The adaptive significance of maternal effects. Trends
Ecol Evol. (1998) 13:403–7. doi: 10.1016/S0169-5347(98)01472-4

96. Mayer A, Mora T, Rivoire O, Walczak AM. Diversity of immune strategies

explained by adaptation to pathogen statistics. Proc Natl Acad Sci U.S.A.
(2016) 113:8630–5. doi: 10.1073/pnas.1600663113

97. Khan I, Prakash A, Agashe D. Experimental evolution of insect immune

memory versus pathogen resistance. Proc Biol Sci. (2017) 284:20171583.

doi: 10.1098/rspb.2017.1583

98. Fischer B, Taborsky B, Kokko H. How to balance the offspring quality–

quantity tradeoff when environmental cues are unreliable. Oikos. (2011)
120:258–70. doi: 10.1111/j.1600-0706.2010.18642.x

99. Burgess SC, Marshall DJ. Adaptive parental effects: the importance of

estimating environmental predictability and offspring fitness appropriately.

Oikos. (2014) 123:769–76. doi: 10.1111/oik.01235
100. Zuk M, Stoehr AM. Immune defense and host life history. Am Nat. (2002)

160 (Suppl. 4):S9–22. doi: 10.1086/342131

101. Siva-Jothy MT, Moret Y, Rolff J. Insect immunity: an evolutionary

ecology perspective. Adv Insect Physiol. (2005) 32:1–48.

doi: 10.1016/S0065-2806(05)32001-7

102. Lui K-J. Confidence intervals of the simple difference between

the proportions of a primary infection and a secondary

infection, given the primary infection. Biometr J. (2000) 42:59–69.

doi: 10.1002/(SICI)1521-4036(200001)42:1<59::AID-BIMJ59>3.0.CO;2-A

103. Vigneron A, Jehan C, Rigaud T, Moret Y. Immune defenses

of a beneficial pest: the mealworm beetle, Tenebrio molitor.
Front Physiol. (2019) 10:138. doi: 10.3389/fphys.2019.

00138

104. Marshall DJ, Uller T. When is a maternal effect adaptive? Oikos. (2007)
116:1957–63. doi: 10.1111/j.2007.0030-1299.16203.x

105. Wipking W, Kurtz J. Genetic variability in the diapause response of the

burnet moth Zygaena trifolii (Lepidoptera: Zygaenidae). J Insect Physiol.
(2000) 46:127–34. doi: 10.1016/S0022-1910(99)00108-0

106. Rolff J, Armitage SA, Coltman DW. Genetic constraints and sexual

dimorphism in immune defense. Evolution. (2005) 59:1844–50.

doi: 10.1111/j.0014-3820.2005.tb01831.x

107. Hammerschmidt K, Deines P, Wilson AJ, Rolff J. Quantitative genetics of

immunity and life history under different photoperiods. Heredity. (2012)
108:569–76. doi: 10.1038/hdy.2011.125

108. Tidbury HJ, Best A, Boots M. The epidemiological consequences of immune

priming. Proc Biol Sci. (2012) 279:4505–12. doi: 10.1098/rspb.2012.1841
109. Tate AT, Rudolf VHW. Impact of life stage specific immune priming

on invertebrate disease dynamics. Oikos. (2012) 121:1083–92.

doi: 10.1111/j.1600-0706.2011.19725.x

110. Best A, Hoyle A. A limited host immune range facilitates the creation

and maintenance of diversity in parasite virulence. Interface Focus. (2013)
3:20130024. doi: 10.1098/rsfs.2013.0024

111. Gandon S, Mackinnon MJ, Nee S, Read AF. Imperfect vaccines

and the evolution of pathogen virulence. Nature. (2001) 414:751–6.

doi: 10.1038/414751a

112. Read AF, Baigent SJ, Powers C, Kgosana LB, Blackwell L, Smith

LP, et al. Imperfect Vaccination can enhance the transmission

of highly virulent pathogens. PLoS Biol. (2015) 13:e1002198.

doi: 10.1371/journal.pbio.1002198

113. Salmela H, Amdam GV, Freitak D. Transfer of immunity from mother to

offspring is mediated via egg-yolk protein vitellogenin. PLoS Pathog. (2015)
11:e1005015. doi: 10.1371/journal.ppat.1005015

114. Harwood G, Amdam G, Freitak D. The role of vitellogenin in the

transfer of immune elicitors from gut to hypopharyngeal glands

in honey bees (Apis mellifera). J Insect Physiol. (2019) 112:90–100.

doi: 10.1016/j.jinsphys.2018.12.006

115. Raikhel AS, Dhadialla TS. Accumulation of yolk proteins

in insect oocytes. Annu Rev Entomol. (1992) 37:217–51.

doi: 10.1146/annurev.en.37.010192.001245

116. Vilcinskas A. The role of epigenetics in host-parasite coevolution: lessons

from the model host insects Galleria mellonella and Tribolium castaneum.

Zoology. (2016) 119:273–80. doi: 10.1016/j.zool.2016.05.004
117. Asgari S. MicroRNA functions in insects. Insect Biochem Mol Biol. (2013)

43:388–97. doi: 10.1016/j.ibmb.2012.10.005

118. Harris JF, Micheva-Viteva S, Li N, Hong-Geller E. Small RNA-mediated

regulation of host-pathogen interactions. Virulence. (2013) 4:785–95.

doi: 10.4161/viru.26119

Frontiers in Immunology | www.frontiersin.org 18 August 2019 | Volume 10 | Article 1938

https://doi.org/10.1371/journal.ppat.1003601
https://doi.org/10.3389/fmicb.2016.01102
https://doi.org/10.1371/journal.pbio.1000586
https://doi.org/10.1128/JVI.03664-14
https://doi.org/10.1099/vir.0.83101-0
https://doi.org/10.1098/rspb.2012.1208
https://doi.org/10.1046/j.0962-1083.2001.01439.x
https://doi.org/10.1038/nri3521
https://doi.org/10.1146/annurev.immunol.12.1.991
https://doi.org/10.3389/fimmu.2012.00287
https://doi.org/10.1016/j.meegid.2014.02.010
https://doi.org/10.1016/j.imlet.2016.04.013
https://doi.org/10.1016/j.cub.2005.08.048
https://doi.org/10.1111/j.1742-4658.2007.06088.x
https://doi.org/10.1016/0092-8674(88)90192-4
https://doi.org/10.1073/pnas.1631700100
https://doi.org/10.1146/annurev-ento-120709-144823
https://doi.org/10.1111/j.1365-2656.2009.01649.x
https://doi.org/10.1371/journal.ppat.1000267
https://doi.org/10.1371/journal.ppat.1005374
https://doi.org/10.1371/journal.ppat.1003792
https://doi.org/10.1016/S0169-5347(98)01472-4
https://doi.org/10.1073/pnas.1600663113
https://doi.org/10.1098/rspb.2017.1583
https://doi.org/10.1111/j.1600-0706.2010.18642.x
https://doi.org/10.1111/oik.01235
https://doi.org/10.1086/342131
https://doi.org/10.1016/S0065-2806(05)32001-7
https://doi.org/10.1002/(SICI)1521-4036(200001)42:1<59::AID-BIMJ59>3.0.CO;2-A
https://doi.org/10.3389/fphys.2019.00138
https://doi.org/10.1111/j.2007.0030-1299.16203.x
https://doi.org/10.1016/S0022-1910(99)00108-0
https://doi.org/10.1111/j.0014-3820.2005.tb01831.x
https://doi.org/10.1038/hdy.2011.125
https://doi.org/10.1098/rspb.2012.1841
https://doi.org/10.1111/j.1600-0706.2011.19725.x
https://doi.org/10.1098/rsfs.2013.0024
https://doi.org/10.1038/414751a
https://doi.org/10.1371/journal.pbio.1002198
https://doi.org/10.1371/journal.ppat.1005015
https://doi.org/10.1016/j.jinsphys.2018.12.006
https://doi.org/10.1146/annurev.en.37.010192.001245
https://doi.org/10.1016/j.zool.2016.05.004
https://doi.org/10.1016/j.ibmb.2012.10.005
https://doi.org/10.4161/viru.26119
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Tetreau et al. Trans-generational Immune Priming in Invertebrates

119. Jacobs CG, Van Der Zee M. Immune competence in insect eggs depends

on the extraembryonic serosa. Dev Comp Immunol. (2013) 41:263–9.

doi: 10.1016/j.dci.2013.05.017

120. Jacobs CGC, Spaink HP, Van Der Zee M. The extraembryonic serosa is a

frontier epithelium providing the insect egg with a full-range innate immune

response. Elife. (2014) 3:e04111. doi: 10.7554/eLife.04111
121. Berry SJ. Maternal direction of oogenesis and early

embryogenesis in insects Ann Rev Entomol. (1982) 27:205–27.

doi: 10.1146/annurev.en.27.010182.001225

122. Capco DG, Jeffery WR. Origin and spatial distribution of maternal

messenger RNA during oogenesis of an insect, Oncopeltus fasciatus. J Cell
Sci. (1979) 39:63–76.

123. Biczkowski M, Dittman F. Translation of maternal mRNA during early

oogenesis in a telotrophic-meroistic insect (Dysdercus intermedius). J Insect
Physiol. (1995) 41:1133–9. doi: 10.1016/0022-1910(95)00058-3

124. Johnstone O, Lasko P. Translational regulation and rna localization in

Drosophila oocytes and embryos. Annu Rev. Genet. (2001) 35:365–406.

doi: 10.1146/annurev.genet.35.102401.090756

125. Becalska AN, Gavis ER. Lighting up mRNA localization in Drosophila
oogenesis. Development. (2009) 136:2493–503. doi: 10.1242/dev.032391

126. Huttenhuis HB, Grou CP, Taverne-Thiele AJ, Taverne N, Rombout JH.

Carp (Cyprinus carpio L.) innate immune factors are present before

hatching. Fish Shellfish Immunol. (2006) 20:586–96. doi: 10.1016/j.fsi.2005.
07.008

127. Vizioli J, Salzet M. Antimicrobial peptides from animals:

focus on invertebrates. Trends Pharmacol Sci. (2002) 23:494–6.

doi: 10.1016/S0165-6147(02)02105-3

128. Yi H-Y, Chowdhury M, Huang Y-D, Yu X-Q. Insect antimicrobial peptides

and their applications. Appl Microbiol Biotechnol. (2014) 98:5807–22.

doi: 10.1007/s00253-014-5792-6

129. Marchini D, Marri L, Rosetto M, Manetti AGO, Dallai R. Presence

of antibacterial peptides on the laid egg chorion of the medfly

Ceratitis capitata. Biochem Biophys Res Commun. (1997) 240:657–63.

doi: 10.1006/bbrc.1997.7694

130. Bouts DM, Melo AC, Andrade AL, Silva-Neto MA, Paiva-Silva Gde O,

Sorgine MH, et al. Biochemical properties of the major proteins from

Rhodnius prolixus eggshell. Insect Biochem Mol Biol. (2007) 37:1207–21.

doi: 10.1016/j.ibmb.2007.07.010

131. Esteves E, Fogaca AC, Maldonado R, Silva FD, Manso PP, Pelajo-Machado

M, et al. Antimicrobial activity in the tick Rhipicephalus (Boophilus)
microplus eggs: cellular localization and temporal expression of microplusin

during oogenesis and embryogenesis. Dev Comp Immunol. (2009) 33:913–9.
doi: 10.1016/j.dci.2009.02.009

132. Fraune S, Augustin R, Anton-Erxleben F, Wittlieb J, Gelhaus C, Klimovich

VB, et al. In an early branching metazoan, bacterial colonization of the

embryo is controlled by maternal antimicrobial peptides. Proc Natl Acad Sci
USA. (2010) 107:18067–72. doi: 10.1073/pnas.1008573107

133. Tufail M, Takeda M. Molecular characteristics of insect vitellogenins. J Insect
Physiol. (2008) 54:1447–58. doi: 10.1016/j.jinsphys.2008.08.007

134. Seehuus SC, Norberg K, Gimsa U, Krekling T, Amdam GV. Reproductive

protein protects functionally sterile honey bee workers from oxidative stress.

Proc Natl. Acad Sci USA. (2006) 103:962–7. doi: 10.1073/pnas.0502681103
135. Havukainen H, Munch D, Baumann A, Zhong S, Halskau O, Krogsgaard

M, et al. Vitellogenin recognizes cell damage through membrane binding

and shields living cells from reactive oxygen species. J Biol Chem. (2013)
288:28369–81. doi: 10.1074/jbc.M113.465021

136. Raikhel AS, Kokoza VA, Zhu JS, Martin D, Wang SF, Li C, et al. Molecular

biology of mosquito vitellogenesis: from basic studies to genetic engineering

of antipathogen immunity. Insect Biochem Mol Biol. (2002) 32:1275–86.

doi: 10.1016/S0965-1748(02)00090-5

137. Fischer M, Regitz C, Kahl M, Werthebach M, Boll M, Wenzel U.

Phytoestrogens genistein and daidzein affect immunity in the nematode

Caenorhabditis elegans via alterations of vitellogenin expression. Mol Nutri
Food Res. (2012) 56:957–65. doi: 10.1002/mnfr.201200006

138. Li Z, Zhang S, Liu Q. Vitellogenin functions as a multivalent pattern

recognition receptor with an opsonic activity. PLoS ONE. (2008) 3:e1940.
doi: 10.1371/journal.pone.0001940

139. Singh NK, Pakkianathan BC, Kumar M, Prasad T, Kannan M, Konig S,

et al. Vitellogenin from the silkworm, Bombyx mori: an effective anti-

bacterial agent. PLoS ONE. (2013) 8:e73005. doi: 10.1371/journal.pone.00
73005

140. Mukherjee K, Fischer R, Vilcinskas A. Histone acetylation mediates

epigenetic regulation of transcriptional reprogramming in insects

during metamorphosis, wounding and infection. Front Zool. (2012)

9:25. doi: 10.1186/1742-9994-9-25

141. Galbraith DA, Yang X, Nino EL, Yi S, Grozinger C. Parallel epigenomic and

transcriptomic responses to viral infection in honey bees (Apis mellifera).
PLoS Pathog. (2015) 11:e1004713. doi: 10.1371/journal.ppat.1004713

142. Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang

X, et al. Methylation of tRNAAsp by the DNA Methyltransferase

Homolog Dnmt2. Science. (2006) 311:395–8. doi: 10.1126/science.112

0976

143. Schulz NKE, Diddens-De Buhr MF, Kurtz J. Paternal knockdown of Dnmt2

increases offspring susceptibility to bacterial infection. bioRxiv. [Preprint]
(2018). doi: 10.1101/422063

144. Youngson NA, Whitelaw E. Transgenerational epigenetic

effects. Annu Rev Genomics Hum Genet. (2008) 9:233–57.

doi: 10.1146/annurev.genom.9.081307.164445

145. Mukherjee K, Grizanova E, Chertkova E, Lehmann R, Dubovskiy

I, Vilcinskas A. Experimental evolution of resistance against Bacillus
thuringiensis in the insect model hostGalleria mellonella results in epigenetic
modifications. Virulence. (2017) 8:1618–30. doi: 10.1080/21505594.2017.13
25975

146. Hoffman JA. The immune response of Drosophila. Nature. (2003) 426:33–8.
doi: 10.1038/nature02021

147. Tsakas S, Marmaras VJ. Insect immunity and its signalling: an overview.

Inverteb Surv J. (2010) 7:228–38.
148. Charlet M, Lagueux M, Reichhart JM, Hoffman D, Braun A, Meister

M. Cloning of the gene encoding the antibacterial peptide drosocin

involved in Drosophila immunity: expression studies during the immune

response. Eur J Biochem. (1996) 241:699–706. doi: 10.1111/j.1432-1033.1996.
00699.x

149. Marchini D, Manetti AGO, Rosetto M, Bernini LF, Telford JL, Baldari

CT, et al. cDNA sequence and expression of the ceratotoxin gene

encoding an antibacterial sex-specific peptide from the medfly Ceratitis-
capitata (Diptera). J Biol Chem. (1995) 270:6199–204. doi: 10.1074/jbc.270.
11.6199

150. Chiu L, Bazin T, Truchetet M-E, Schaeverbeke T, Delhaes L, Pradeu T.

Protective microbiota: from localized to long-reaching co-immunity. Front
Immunol. (2017) 8:1678. doi: 10.3389/fimmu.2017.01678

151. Rodrigues J, Brayner FA, Alves LC, Dixit R, Barillas-Mury C. Hemocyte

differentiation mediates innate immune memory in Anopheles gambiae
mosquitoes. Science. (2010) 329:1353–5. doi: 10.1126/science.1190689

152. Futo M, Armitage SA, Kurtz J. Microbiota plays a role in oral

immune priming in Tribolium castaneum. Front Microbiol. (2015) 6:1383.
doi: 10.3389/fmicb.2015.01383

153. Little TJ, Hultmark D, Read AF. Invertebrate immunity and the

limits of mechanistic immunology. Nat Immunol. (2005) 6:651–4.

doi: 10.1038/ni1219

154. Dhinaut J. Écologie évolutive du priming immunitaire chez le ténébrion
meunier, Tenebrio molitor (PhD Thesis). Dijon, France: Université de

Bourgogne Franche-Comté (2017).

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Tetreau, Dhinaut, Gourbal and Moret. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Immunology | www.frontiersin.org 19 August 2019 | Volume 10 | Article 1938

https://doi.org/10.1016/j.dci.2013.05.017
https://doi.org/10.7554/eLife.04111
https://doi.org/10.1146/annurev.en.27.010182.001225
https://doi.org/10.1016/0022-1910(95)00058-3
https://doi.org/10.1146/annurev.genet.35.102401.090756
https://doi.org/10.1242/dev.032391
https://doi.org/10.1016/j.fsi.2005.07.008
https://doi.org/10.1016/S0165-6147(02)02105-3
https://doi.org/10.1007/s00253-014-5792-6
https://doi.org/10.1006/bbrc.1997.7694
https://doi.org/10.1016/j.ibmb.2007.07.010
https://doi.org/10.1016/j.dci.2009.02.009
https://doi.org/10.1073/pnas.1008573107
https://doi.org/10.1016/j.jinsphys.2008.08.007
https://doi.org/10.1073/pnas.0502681103
https://doi.org/10.1074/jbc.M113.465021
https://doi.org/10.1016/S0965-1748(02)00090-5
https://doi.org/10.1002/mnfr.201200006
https://doi.org/10.1371/journal.pone.0001940
https://doi.org/10.1371/journal.pone.0073005
https://doi.org/10.1186/1742-9994-9-25
https://doi.org/10.1371/journal.ppat.1004713
https://doi.org/10.1126/science.1120976
https://doi.org/10.1101/422063
https://doi.org/10.1146/annurev.genom.9.081307.164445
https://doi.org/10.1080/21505594.2017.1325975
https://doi.org/10.1038/nature02021
https://doi.org/10.1111/j.1432-1033.1996.00699.x
https://doi.org/10.1074/jbc.270.11.6199
https://doi.org/10.3389/fimmu.2017.01678
https://doi.org/10.1126/science.1190689
https://doi.org/10.3389/fmicb.2015.01383
https://doi.org/10.1038/ni1219
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

	Trans-generational Immune Priming in Invertebrates: Current Knowledge and Future Prospects
	Introduction
	Occurrence of TGIP in the Tree of Life

	Critical Analysis of Approaches Used to Study TGIP
	The Infection Procedure
	Injection vs. Ingestion
	Inactivated vs. Living Pathogen

	The Sex of Parents and Offspring
	The Sex of Parents
	The Sex of Offspring

	The Developmental Stage

	Ecology and Evolution of TGIP
	Is TGIP Adaptive?
	Detection of Reliable Cues Predicting the Risk of Pathogen Attacks Between Generations
	Costs of TGIP
	Specific Phenotypic Adjustment in Offspring to Face the Expected Parasitic Conditions
	Genetic Bases of TGIP

	Evolution of TGIP
	Consequences of TGIP on Pathogen Virulence Evolution

	The Many Roads to TGIP: Hypothetical Scenarios Based on Empirical Data
	Scenario 1—Transfer of Signal(s)
	Scenario 2—Transfer of mRNA(s)
	Scenario 3—Transfer of Effector(s)
	Antimicrobial Peptides
	Vitellogenin, a Multi-tool Protein

	Scenario 4—Epigenetic Modification(s)

	How to Experimentally Disentangle the Different Scenarios?
	Guidelines for Further Studying TGIP in Invertebrates
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


