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Both Multipotent Adult Progenitor Cells and Mesenchymal Stromal Cells are

bone-marrow derived, non-haematopoietic adherent cells, that are well-known for

having immunomodulatory and pro-angiogenic properties, whilst being relatively

non-immunogenic. However, they are phenotypically and functionally distinct cell types,

which has implications for their efficacy in different settings. In this review we compare

the phenotypic and functional properties of these two cell types, to help in determining

which would be the superior cell type for different applications.
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INTRODUCTION

Cellular therapy refers to the use of cells to replace or repair damaged tissue/cells. Over the
last decade there has been a tremendous development in cellular therapies for the treatment
of disease. Embryonic stem cells (ESC) can potentially differentiate into cells of all three germ
layers; however, research interest in ESC has been limited by ethical concerns and risk of teratoma
formation. Adult cellular therapies have been widely investigated, and haematopoietic stem cell
transplantation is already a well-established treatment for various malignant and non-malignant
hematological disorders.

Mesenchymal stromal Cells (MSC) and Multipotent Adult Progenitor Cells (MAPC) are both
non-haematopoietic cells found in bone marrow stroma, which play a role in maintenance of
the haematopoietic stem cell niche (1). Following bone fracture in mice, Park et al. demonstrated
mobilization of these cells, and their involvement in fracture repair (2). Great interest in these cells
as a potential cellular therapy arises from evidence that they have immunomodulatory properties,
can promote angiogenesis, and provide protection against apoptosis. Although MAPC and MSC
co-purify, there is evidence that they are phenotypically and functionally distinct cell types.

MSCs were initially described in 1968 by Friedenstein (3), as a subtype of adult fibroblast-like
cells with a high proliferative ability, capacity for self-renewal and ability to undergo tri-lineage
differentiation to become osteoblasts, chondrocytes and adipocytes. Over time, it became clear
that variation in isolation and culture procedures for bone marrow stromal cells contributed to
generation of heterogeneous cell populations. The International Society for Cell Therapy (ISCT)
subsequently published criteria for identifying MSC: (a) Bone marrow stromal cells that show
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plastic adherence under standard culture conditions (b) Positive
for CD105, CD90, and CD73; have low levels of MHC-I; are
negative for MHC-II, CD11b, CD14, CD34, CD45, and CD31
(c) Can differentiate in vitro into osteocytes, chondrocytes and
adipocytes (4). Thirteen human MSC products have gained
marketing authorization, of which nine are for allogeneic therapy
and four are for autologous therapy (5), with indications
including Crohn’s disease, bone and adipose tissue regeneration,
graft-vs.-host disease, and acute myocardial infarction.

MAPC were first described several years later, in 2001, as a
novel progenitor cell in the bone marrow (6), and whilst these
cells meet the ISCT criteria for MSC, they were perceived to
be a more biologically primitive population than classical MSC
and had greater differentiation potential. Whilst MSCs have
been extensively studied, with over 900 clinical trials completed
or ongoing, according to the US National Institute of Health
(https://www.clinicaltrials.gov), there are fewer data published
on MAPC. This review covers a summary of the key similarities
and differences in the phenotypic and functional properties
of these cells and the clinical data supporting their use in
different settings.

SOURCING THE CELLS

Whilst MSC were originally identified as a rare population in
bone marrow (BM) accounting for 0.01–0.001% of cells (7), they
have also been successfully isolated from other tissues including
adipose tissue (AT) (8), synovial membrane (9), skeletal muscle
tissue (10), dental pulp (11), lung tissue (12), Wharton’s jelly (13),
umbilical cord (UC) blood (14), amniotic fluid (AF) (15), and
placenta (16). Studies have compared the biological properties of
MSCs isolated from different sources, and whilst some report that
they have similar biological properties (13, 17, 18), others report
differences in immunomodulatory activity and surface antigen
expression (19–21). Furthermore, UC MSCs have been shown
to have a relatively higher proliferative capacity compared to
cells from other sources (22), which, has been linked to their
having a more primitive phenotype. There is concurrently no
consensus on which source of cells is best for clinical application.
MAPC were originally isolated from the bone marrow of mice,
rats and humans, but subsequently, they were also isolated from
murine muscle and brain tissues (6). However, the clinical studies
published on MAPC so far have all used cells obtained from
human bone marrow.

CELL CULTURE AND GROWTH RATES

MAPC and MSC have distinct culture requirements (23). Whilst
they are both cultured in fibronectin-coated flasks,MAPC culture
medium includes the presence of growth factors (human-platelet
derived growth factor, human epidermal growth factor) that
are not present in many MSC culture media. Moreover, culture
of MAPC takes place in conditions of relative hypoxia (5%
oxygen), which is important in preventing telomerase shortening
in MAPC. The consequence is that MAPC can be expanded
for over 60 doublings without senescence (24), whereas for

MSC, the reported population doublings range between 10
and 38 (25). Current manufacturing strategies for MAPC are
capable of producing over 100,000 clinical doses from a single
donor, sufficient for a clinical trial. Roobrouck et al. (26)
demonstrated that the phenotypic and functional properties of
the cells were influenced by culture conditions; when MAPC
were cultured under MSC conditions, they acquired some of the
phenotypical and functional properties of MSC and vice versa
(26). Nevertheless, it is important to emphasize that MAPC and
MSC are distinct cell types, rather than simply the product of
different culture conditions. Following isolation and expansion,
both MAPC and MSC can be cryopreserved and stored until
needed, although there is evidence that upon thawing, MSCs
show signs of injury even within the first 24 h, which may reduce
their immunomodulatory properties and increase predisposition
to immune clearance (27).

CELL PHENOTYPE AND ISSUES OF
BATCH-TO-BATCH VARIATION

Phenotypically, MAPC and MSC both fulfill the ISCT criteria
for identification for MSC (positive expression of CD44, CD13,
CD73, CD90, and CD105, negative expression of haematopoietic
(CD34, CD45, CD117), and endothelial cell markers (CD34,
CD309). They are also negative for MHC class II and co-
stimulatory molecules. However, MAPC do not express some of
the markers expressed by MSC, such as CD140a and CD140b, for
example, and this could be used to distinguish them (26). MAPC
also have lower levels of MHC class I and CD44 than MSC and
a higher expression of CD49d (28). MAPC and MSC also have
distinct features on transcriptomic analysis, with gene signatures
that correlate with their specific functional properties (26).

MAPC and MSC also have different morphology, with the
former being relatively smaller cells with a trigonal shape,
whereas MSC are larger cells with a “spindle”-like morphology
[(29); Figure 1]. However, the exact size of MSC does vary
according to their source, with placenta-derived MSC being
relatively smaller (mean peak diameter 16µm) than MSC from
other sources (30), which are typically >20µm in size. MSC size
is also influenced by their culture conditions. For example, MSC
cultured with human platelet lysate (HPL) or platelet rich plasma
(PRP) can be smaller than those cultured with fetal calf serum
FCS) (30, 31).

Pre-clinical studies of MAPC and MSC have involved a
variety of species, including mice, rats and pigs. The genetic
profile and cell secretome is slightly different between species,
and this has implications for their function. For example, in
vitro, human MSC (hMSC) proliferation is associated with
a very low frequency of oncogenic formation (32), whereas
murineMSC (mMSC) frequently gain chromosomal defects (33).
The frequency of OCT4 gene expression, which is associated
with increased expansion in culture, was found to be relatively
higher in rat MAPC (rMAPC) compared with human MAPC
(hMAPC) (26).

Clinical trials using purifiedMAPC have all sourced cells from
Athersys. Comparison of MAPC products from different batches
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FIGURE 1 | Phase-contrast morphology of human multipotent adult progenitor cells (MAPC) and human mesenchymal stromal cells (MSC). Images courtesy of

Regenesys BVBA.

has shown minimal batch-to-batch variation by way of surface
antigen expression (24), growth rates, effect on suppressing T
cell proliferation (34), angiogenic cytokine secretion (25–32%
variance for three cytokines between 15manufacturing runs) (35)
and methylation status of 1536 CpG islands (34).

With MSC, there is no single epitope marker that can be
reliably used to distinguish them, which results in heterogeneous
cell populations across different studies. This makes it difficult
to determine whether the effects that are seen are due to
an individual cell type from the adherent cell population.
Given the heterogeneity of cell types that fulfill MSC criteria,
it has been suggested that one method of enhancing the
efficacy of these cells would be to sort them on the basis
of their expression of specific markers that are associated
with favorable characteristics. For example, CD73 positivity
on MSC is associated with increased capacity for self-
renewal and differentiation (36). The presence of Syndecan-
2 (CD-362+) on MSC has been associated with enhanced
immunomodulatory properties through downregulation of
CD3+ cells by degradation of the T-cell receptor (37).

MECHANISMS OF ACTION

There is evidence that MAPC and MSC can differentiate into
cells of mesenchymal lineages, including bones, cartilage, fat,
muscles, tendon and bone marrow. Thus, a number of trials
have assessed these cells for the treatment of bone and cartilage
disease, with several pre-clinical studies showing that MSCs have
the potential to stimulate cartilage regeneration and delay joint
destruction in osteoarthritis (38). This was supported by findings
of a phase I clinical trial, in which patients with osteoarthritis also
demonstrated functional improvement (39).

There is also evidence that MSC can trans-differentiate
into cells from other lineages, including pancreatic islet cells
(capable of producing insulin and glucagon) (40), renal tubular
epithelium (41), keratinocytes (42), and hepatocytes although the
biological/clinical significance of this is not clear.

MAPC appear to have greater propensity toward endothelial
differentiation than MSC (26). In an in vitro Matrigel plug

assay, human MAPC, but not MSC, could induce functional
vessel formation (26). On transcriptomic analysis comparing
MAPC and MSC, MAPC had over-representation of genes
involved in differentiation of endothelial cells and promotion
of angiogenesis, whilst MSC had over representation of genes
involved in differentiation of chondrocytes and osteocytes, and in
the genes involved in the development and contraction of smooth
muscle and genes important for neo-vascularization (26).

However, differentiation is unlikely to explain the
predominant functional role of MAPC and MSC. Firstly,
experiments used labeled cells have revealed that both MAPC
and MSC are rapidly cleared from the body after infusion
(43–46), with <1% of MSC retained in the body at 1 week post-
infusion. Secondly, upon intravenous injection, the majority of
MAPC and MSC tend to get trapped in tissue capillary beds,
particularly in the lungs, despite having effects in other organs
(47). Thirdly, whilst cell differentiation into non-mesodermal
lineages does occur, the frequency of this phenomenon is
too low to completely explain the beneficial effects (48). For
example, in a pig model of myocardial infarction, Wang et al.
injected 50 million MAPC into the heart, and 2 weeks after
infusion, only 0.55% of the cells were detectable, and of the
engrafted cells, only 2% stained positive for cardiac markers (49).
Fourthly, the functional properties of the cells produced through
trans-differentiation of MSC and MAPC is questionable. For
example, rat MSC that were induced to differentiate into “neural
cells” were not able to generate normal action potentials (50),
and endothelial cells generated from MSC did not express the
same degree of endothelial cell markers as mature endothelial
cells (51).

Some studies suggested that the rare reports on cross-
germline differentiation of MSC could be ascribed to cell
fusion, which may represent an alternative method by which
MSC/MAPC can rescue injured cells.MSC can also communicate
directly with target cells through delivery of materials, such
as mitochondria, via nanotubes or connexins (52). Although
there is paucity of mechanistic data on mitochondrial transfer
as a putative mechanism of action of MAPC, in a porcine
study of intra-cardiac MAPC infusion, treatment was associated
with improvement in bio-energetic profiles (46). However,
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TABLE 1 | Summary of key proteins identified in the secretome of MAPC and MSC that have therapeutic potential.

Key components of the MAPC secretome Key components of the MSC secretome

Chemoattraction/cell

adhesion

CXCL1 (55), CXCL3 (55), CXCL5 (35), VEGF (35),

sICAM1 (55), SDF1 (56), IL-8 (35)

CCL5 (57), SDF-1 (58), HGF (59), LIF (60), G-CSF (61), VEGF (60), CCL-2 (58),

MCP-1 (60), ICAM1 (57), IL-8 (61)

Immunomodulation IDO (62), TSG-6 (63), PGE2 (63, 64), NO (63),

semaphorin-7A (55)

IDO (57), PGE2 (57), TGF-beta (65), TSG-6 (66), HGF (59), LIF (60), HLA-G (67),

IL-6 (61), IL-10 (68), PD-L1 (69)

Neuroprotection CNF (63), Galectin 1 (55), NO (63) BDNF (70), NGF (70), GDNF (71), galectin 1 (72), NO

Anti-fibrosis MMP1 (55), MMP2 (59), TIMP1 (59), TIMP2 (59),

cathepsin B (55), bFGF (56)

MMP1 (72), MMP2 (72), MMP7 (72) MMP9, TIMP1 (72), TIMP2 (72), HGF (59),

bFGF (73), Ang-1 (58)

Anti-apoptosis bFGF (56), VEGF (35), versican (55) VEGF (59, 60), IGF (60), HGF (59), TGFbeta, bFGF (73), GM-CSF (61), IL-6 (61)

Angiogenesis VEGF (35), CXCL5 (35), IL-8 (35) VEGF (59, 60), HGF (59), Ang-1 (58), bFGF (73), IGF1 (60), PDGF (73), IL-6 (61)

Anti-bacterial Pentraxin (55), vimentin (55), lactotransferrin (55) LL37 (74)

Proliferation IGFBP4 (55), IGFBP5, IGFBP7, bFGF (56), VEGF (35) FGF2 (73), VEGF (59, 60), IGFBP3 (60), IGFBP7 (60), IGDBP4 (60), PDGF (73),

HGF (59), BMP (72)

Ang-1, angiopoietin 1; bFGF, basic fibroblast growth factor; BDNF, brain-derived neurotrophic factor; BMP, bonemorphogenic protein; CCL2, C-Cmotif ligand 2; CNF, ciliary neurotrophic

factor; CXCL1, C-X-C motif chemokine ligand 1; CXCL3, C-X-C motif chemokine ligand 3; CXCL5, C-X-C motif chemokine ligand 5; CCL5, C-C motif ligand 5; G-CSF, granulocyte-

colony stimulating factor; GDNF, glial cell-derived neutrotrophic factor; HGF, hepatocyte growth factor; HLA-G, human leukocyte antigen G; IDO, indoleamine 2,3-dioxygenase; IGF,

insulin-like growth factor; ICAM1, intercellular adhesion molecule 1; IGFBP3/4/5/7, insulin-like growth factor binding protein 3/4/5/7; IL-6/8/10, interleukin 6/8/10; LIF, leukemia inhibitory

factor; LMCP-1, monocyte-chemotactic protein 1; MMP1/2/7/9, matrix metalloproteinase 1/2/7/9; TIMP 1/2, tissue inhibitor of metalloproteinase 1/2; NGF, nerve growth factor; NO,

nitric oxide; PDGF, platelet-derived growth factor; PD-L1, programmed death ligand 1; PGE2, prostaglandin E2; SDF1, stromal cell derived factor 1, sICAM1, soluble intercellular adhesion

molecule 1; TGF-beta, transforming growth factor beta; TSG-6, tumor necrosis factor inducible gene 6;VEGF, vascular endothelial growth factor.

whilst in some studies cell-cell contact has been shown to be
important for enhancing activity (53), in a number of studies
the beneficial effects of the cell could be, at least partially,
reproduced by using components from the cell secretome i.e., the
set of factors/molecules released by cells into the extra-cellular
space. These include exosomes (30–100 nm), generated from
the endocytic pathway and release through exocytosis, whilst
microvesicles (50–1,000 nm) are generated through budding
from the cell surface and are released from the plasmamembrane.

Evidence suggests that MSCs produce large amounts of
exosomes in comparison to other cells. These exosomes may be
internalized by other cells, permitting release of their contents
into the cell cytoplasm (54). Whilst a thorough analysis of
the MSC secretome is yet to be performed, it is clear from
numerous studies that they express over a 100 proteins, many
of which can regulate processes such as immune function,
fibrosis, angiogenesis, and apoptosis. Burrows et al. report the
only detailed proteomic analysis of the MAPC secretome, in
which report identification of 97 proteins. A summary of the key
components of each secretome is provided in Table 1.

Use of conditionedmedia or extra-cellular vesicles fromMSCs
had beneficial effects in animal models of myocardial infarction
(75), colitis (76), acute liver failure (65), and Parkinson’s disease
(65). However, clinical experience with exosomes is currently
limited. A preliminary clinical study suggested benefit of MSC
exosomes in the treatment of stage 4 graft vs. host disease
(77), and a clinical trial is underway to test their effect in
increasing beta cell mass in patients with type I diabetes
(NCT02138331). There have not yet been any clinical trials using
cell-free preparations of MAPC, but it would be desirable to
further explore cell-free therapy for various reasons. Firstly, it
overcomes some of the problems associated with delivery of
living cells, including cancer risk, potential for transmission
of infections, and immune compatibility. Cell-free preparations

would also be easier to store, easier to scale-up, and more
cost-effective to prepare. Further, it would be possible to
prepare a biological product with a high concentration of the
desirable molecules.

The secretome of both MAPC and MSC is responsive to
changes in their surrounding microenvironment. For example,
pre-treatment with IFN-gamma was found to enhance the
immunomodulatory activity of MSCs (78), and pre-treatment
with TNF-alpha increases their angiogenic effect (79). Therefore,
it is possible to pre-condition/prime cells in vitro to help
in achieving the targetted effects. Pre-treatment of MSC with
inflammatory molecules, including IL-1 beta, IL-23, IL-6, and
IFN-gamma was found to enhance their immunomodulatory
properties in a number of studies (73, 80, 81). Figure 2

summarizes the keymechanisms by whichMSC are hypothesized
to act.

POTENTIAL FOR IMMUNE REJECTION

In most clinical trials of MSC, and all clinical trials using MAPC,
the cells used were allogeneic and were administered without
HLA matching or use of immunosuppressive medication. It is
commonly believed that these cells are “immune privileged,”
leading to the belief that they could be used as a “one-size-
fits-all” or “off-the-shelf ” therapy. Indeed, cultured MSC and
MAPC lack expression of MHC class II and key co-stimulatory
surface molecules (CD40, CD80, and CD86), and have low levels
of MHC class I molecules, which would help in protecting
against a host immune response (82). Additionally, in mixed
lymphocyte reactions, both MAPC and MSC do not induce a
T-cell response (83).

However, recent evidence has challenged this view as MAPC
and MSC are cleared rapidly from the body following infusion.
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FIGURE 2 | Potential mechanisms by which mesenchymal stromal cells work for immunomodulation, restoration of cell bioenergetics and restoration of cell function;

(A) differentiation into replacement cell types; (B) cell fusion with target cells for rescue of damaged or dying cells; (C) secretion of paracrine factors (such as growth

factors, cytokines, RNA, and hormones) via micro-vesicles or exosomes. MSC autophagy may help to promote -release of cellular contents; (D) cell-cell contact

mechanisms. MSC can interact with immune cells via various surface receptors. Transfer of organelles (e.g., mitochondria), ribonucleic acid, and chemicals may occur

via nanotubes, or connections; (E) efferocytosis of apoptotic MSCs by monocytes, macrophages and dendritic cells. This process causes the phagocytosing cells to

adopt a tolerogenic/immunomodulatory phenotype. Mechanisms (A–E) are not equivalent, as cell differentiation and cell fusion occur relatively infrequently. MSC,

mesenchymal stromal cell; PD-1L1, programmed death ligand 1; PDGFR, platelet derived growth factor receptor; TLR, toll-like receptor.

There is evidence that upon exposure to IFN-gamma or upon
differentiation, MSC upregulate MHC class I and class II
expression (84). MAPC have even lower levels of MHC class I
than MSC, which makes them susceptible to lysis by NK cells
in their resting state (83). On exposure to IFN-gamma, MAPC
upregulate MHC class I but not MHC class II expression, and
therefore inflammation may promote MAPC persistence (83).

Evidence from in vivo studies also suggests that these cells
are not truly immunologically privileged. Eliopoulos et al.
administered erythropoietin-transfected MSCs from C57/BL6
mice to syngeneic or allogenic mice (85). The cells were seeded
in a collagen scaffold and administered subcutaneously. Whilst
the syngeneic mice had a sustained haematocrit response (in
response to the erythropoietin), the allogeneic mice had a
temporary spike in haematocrit before returning to baseline,
suggesting clearance of the MSCs. Furthermore, allogeneic mice,
but not syngeneic mice, had CD8+ and NK+ cell infiltration in
the scaffolds. In another study, injection of murine luciferase-
labeled MSCs to allogeneic hosts was associated with the
development of memory T-cells (CD4+, CD122+, CD44+,
and CD62Llow). Tolar et al. used luciferase labeled MAPC to
demonstrate that use of T-cell and B-cell deficient mice with NK
depletion were all associated with longer persistence of MAPC
in mice, suggesting that all three cell types are implicated in
rejecting MAPC (83).

In terms of clinical data, allogeneic MSC infusion was found
to be associated with development of allo-antibodies in 13% of
patients in a phase II clinical trial for GvHD (86). In a phase I
clinical trial of allogeneic MAPC in patients with GvHD, infusion
was associated with increased serum anti-class I titres compared
to baseline, but there was no evidence of MHC class II antibody
induction (87).

It has also been hypothesized that the clearance of MSC
may be due to triggering of innate immunity independently of
HLA-disparity, mediated by a lack of haemocompatibility (88).
An “instant blood mediated inflammatory reaction” (IBMIR)
has been described previously for pancreatic islet cells and
hepatocytes, and is considered to be responsible for loss of
up to 80% of these cells shortly after infusion (89, 90).
IBMIR is triggered by exposure to host red blood cells and
characterized by activation of complement/coagulation cascades,
binding of activated platelets to the cells, and clot infiltration by
neutrophil granulocytes andmonocytes, eventually leading to cell
destruction. Moll et al. demonstrated that patients infused with
MSC had increased formation of blood activation markers (88).
Tissue factor/CD142, which is expressed on MSC, was deemed
to be the key determinant of cell haemocompatibility. Tissue
factor expression was higher in cells from a higher passage, and
for cells administered in higher doses, and there was a donor-
to-donor variability. It was also found to vary depending on
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the cell source. George et al. compared the degree of tissue
factor expression for MAPC derived from the bone marrow,
bone marrow mononuclear cells, and MSC obtained from
different sources (bone marrow, adipose tissue, amniotic fluid,
and umbilical cord) (91). They found that tissue factor expression
was significantly higher in MSCs originating from the adipose
tissue and amniotic fluid, compared with MSC originating from
bone marrow and umbilical cord, bone marrow mononuclear
cells and MAPC. This would suggest that use of MAPC would
be significantly advantageous for intravenous infusion because of
the potential for reduced cell clearance/enhanced engraftment.

Thus, MSC are not truly “immunologically privileged,”
although rejection occurs slower than it does for other allogeneic
cells; thus Aggarwal and Pittenger suggest a better terminology
would be “immune evasive” (92). The exact timing and severity
of immune rejection is likely dictated by the result of a balance
between their immunogenic and immunosuppressive factors,
which in turn depends on their local microenvironment. For
example, in conditions where there is local immune suppression,
for example due to a tumor, the immunogenic properties of the
MSC may be masked (93).

Whilst an anti-donor response has been observed, it is
reassuring that there have been no adverse events related
to immune rejection reported in clinical trials. Furthermore,
it is unclear if rejection of allogeneic cells has any impact
on efficacy and this is an important area of further work.
Indeed, in mixed lymphocyte reactions in vitro, bone marrow
stromal cells were shown to suppress T-cell proliferation in
in a dose-dependent manner, regardless of whether the cells
were autologous or allogeneic (53). In a phase II clinical
trial of patients with GvHD, there was no difference in
efficacy between third-party and HLA-matched MSCs (94), but
there are relatively few trials with recorded data on antibody
responses. If there is formation of allo-antibodies and T-cell
memory in response to allogeneic cells, repeated administration
of therapy for a chronic condition may be associated with
reduced efficacy.

On the other hand, recent evidence would even suggest
that immune response to MSC is crucial to their function.
For example, release of complement-activation products
following exposure of MSC to host blood can modulate their
immunomodulatory and chemotactic activity (95, 96). Contact
with activated platelets, as part of the IBMIR response, can also
induce extracellular matrix remodeling by MSC, which can
potentially contribute to tissue repair (97). Further research is
needed to determine the relative importance of IBMIR in the
therapeutic efficacy of MSC/MAPC. If the therapeutic benefits
on immunomodulation are outweighed by the disadvantages
of increased cell clearance/reduced engraftment, it would be
helpful to develop strategies to reduce/abolish tissue factor
expression on the cells. In fact, given that tissue factor expression
is so variable between cells and the potential impact this has
on immune clearance, Moll et al. raise the question of whether
haemocompatibility should be considered a release criteria for
intravascular MSC therapies (98).

The term “autophagy” refers to a system of intracellular
degradation that delivers cytoplasmic constituents to the

lysosome. This process can be triggered by endoplasmic
reticulum stress, hypoxia, and immune cell activation for
example. MSC autophagy may serve to either enhance cell
survival or promote cell death, depending on the surrounding
micro-environment. The induction of autophagy in MSC
may promote release of paracrine factors important for their
immunomodulatory function (99). Further, recent work by
by Galleu et al. and de Witte et al. suggests that following
intravenous infusion, MSC accumulate in the lung, where they
undergo apoptosis, after which they are engulfed by monocytes,
which are subsequently transported elsewhere (100, 101). The
process of phagocytosis was demonstrated to induce phenotypic
and functional changes in monocytes which resulted in an
immunomodulatory response (via release of TGF-beta and IL-10)
(101, 102). In contrast, Dang et al. reported MSC autophagy was
associated with dampening of their immunomodulatory efficacy
(103). These conflicting findings highlight the need for additional
studies to investigate this further.

POTENTIAL FOR TUMORIGENESIS

There is some evidence that links MSCs to cancer. Long
term in-vitro culture of murine MSCs was associated with
spontaneous transformation of the cells, which were then
capable of promoting sarcoma formation when inoculated into
immunodeficient mice (33, 104–106). Whilst there were initial
reports of a similar phenomenon occurring in human MSCs in
prolonged culture, some of these findings were considered to be
related it to cross contamination with cancer cell-lines (106, 107).
The vast majority of studies report a lack of spontaneous
transformation of human MSCs despite extensive culture (108–
112). Further, whilst transformation in murine MSCs can be
easily induced, particularly through inactivation of p53 and/or
Rb genes (113, 114), in human cell lines a number of several, non-
physiological, oncogenic events need to be combined for efficient
induction of sarcoma (115). Of course, this does not exclude the
possibility of cancer formation following infusion in patients,
although the risk is low. Rodriguez et al. demonstrated that
after hMSC are induced to undergo oncogenic transformation,
the transformed cells lose their immunomodulatory and anti-
inflammatory properties (116). For example, transformed
cells do not secrete the immunomodulatory molecules
prostaglandin E2 (PGE2) and PGI2, whereas they do
release pro-inflammatory thromboxanes. It is reported that
hMAPC remain genetically stable after prolonged culture
(34); however, the effects of oncogenic transformation of
hMAPC are unknown. In clinical trials, there have been
no reports of cancer formation from delivery of allogeneic
MSC or MAPC.

Some studies have also researched the interaction between
MSC and existing tumors, particularly given that MSC have been
demonstrated to home toward tumor sites (117–119). It appears
that MSC may promote or inhibit tumor growth, depending
on the tumor micro-environment, which as of yet remains
undefined (120). The effect of MAPC on cancer growth has not
been studied.
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POTENTIAL FOR THROMBOSIS

Both MSC and, to a lesser degree, MAPC, express tissue
factor, with the level of tissue factor expression correlating with
pro-coagulant activity (91). The clinical relevance of this for
VTE risk is uncertain. Results of functional coagulation assays
have been shown to correlate with VTE incidence in multiple
patient populations. Thousands of patients have received MSC in
clinical trials and there are case reports of thromboembolic events
in these patients, but the overall incidence is low (121, 122).
Interestingly the case reports of thromboembolism following
MSC infusion are related to umbilical-cord derived and adipose
tissue derived cells rather than bone marrow derived cells. There
have been no published reports of thromboembolic events in
clinical trials of patients receiving MAPC infusions, although
the available data is much more limited. The true incidence
of thromboembolic events with cellular therapies is difficult to
establish, partially because several of the patient populations
receiving the MSC or MAPC received concomitant anti-
coagulation (e.g., low-molecular-weight-heparin, anti-platelet
agents and dextran sulfate) for conditions such as myocardial
infarction, acute respiratory distress syndrome and stroke. There
is also variation in tissue factor activity between cell batches, and
between patients.

CELL HOMING AND BIODISTRIBUTION

One of the challenges with bone marrow stromal cell therapy
has been targeting their delivery to their intended site of action.
Although it is likely that MAPC and MSC exert their effects
through paracrine mechanisms, localization to the target site
may help in enhancing their efficacy and reducing unwanted
peripheral side effects. MSCs are thought to migrate toward
inflammatory cues from sites of tissue injury, and in a study
of hypoxic ischaemic brain injury in rats, labeled MAPC were
detected in the hippocampus regardless of whether they were
administered directly into the hippocampus, or intravenously,
with similar motor and neurological improvement between the
groups (123).

MSC are relatively large cells in comparison to lymphocytes
(diameter 15–30µm vs. 4–12µm, respectively) (124, 125), which
means that they become easily entrapped in smaller blood vessels.
The majority of MSC get trapped within the pulmonary capillary
bed shortly after intravenous administration, after which they
accumulate in the spleen and liver over hours to days (126–130).
As MAPC are smaller than MSC, it is unsurprising that, using
labeled cells injected intravenously in rats, it was demonstrated
that twice as many MAPC were able to pass into the pulmonary
circulation compared to MSC (131).

One potential strategy for increasing homing to target organs
is intra-arterial rather than intra-venous injection, which has
been shown to result in superior bio-distribution outside the lung
of both MAPC and MSC (83). However, intra-arterial delivery
may result in the cells becoming mechanically trapped in the
microvasculature elsewhere (132). Of course, if apoptosis and
phagocytosis of MSC in the lung is crucial to their mechanism
of immunomodulation, as the work by Galleu et al. and de Witte

et al. suggested (100, 101) then reducing pulmonary entrapment
may in fact reduce efficacy.

An alternative method to encouraging homing is through
cell priming. For example, pre-treatment with TNF-alpha, IFN-
gamma, and IL-1 was associated with increased expression of
adhesion molecules ICAM and VCAM on MSC (133), and
priming with CXCL9 was associated with increased adherence of
MSC to endothelial cells (134).

ROLE IN IMMUNOMODULATION

There is extensive evidence supporting the role of MSC and
MAPC as modulators of immune responses (Figure 2), with
the most well-established effects being on T-cell responses. In
mixed lymphocyte reactions, bone marrow stromal cells caused
a dose dependent reduction in proliferation of both CD4+
and CD8+ T-cells. When cell-cell contact was prevented, the
effects persisted, but were weaker (53). Studies using purified
MAPC (53, 135, 136) or MSC confirm that these cells can
inhibit T-cell proliferation, with implicated factors including
prostaglandin E2 (PGE2), transforming growth factor beta (TGF-
beta), inducible nitric oxide synthase (iNOS) and hepHGF (53,
63, 135, 137). Both MAPC and MSC have been associated
with changes in the numbers of T-cell subsets, with promotion
of expression of T-reg cells (44, 138, 139). Studies also show
that MSC may interfere with T-cell function, possibly through
secretion of matrix metalloproteinases (MMP), such as MMP-
2 and MMP-9 that can cleave CD25 from T-cells (140). The
effect of MAPC on B cells has not been widely studied. MSCs
have been demonstrated to inhibit B-cell proliferation, alter
B cell surface antigen expression and reduce immunoglobulin
production (141–143).

MAPC and MSC also affect the innate immune system. MSC
have been shown to inhibit NK cell activity, as shown by reduced
secretion of IL-15 and IL-2 from the NK cells, with possible
mediators including PGE-2 and TGF-beta (144). Macrophages
can be crudely classified as being of an M1 (pro-inflammatory)
or M2 (anti-inflammatory) phenotype. Both MAPC and MSC
have been associated with polarization of macrophages from an
M1 (pro-inflammatory) phenotype to anM2 (anti-inflammatory)
phenotype (145). This was shown in MAPC an in vitro model
of axonal dieback (146), and in a murine model of cortical
impact injury, in which the authors attributed the increase inM2:
M1 ratio to be due to increased apoptosis of M1 macrophages
(138). In MSC, this effect is deemed to be due to their secretion
of IL-10 and arginase (147, 148). MSC can regulate dendritic
cells by interfering with their differentiation to monocytes and
inhibiting their activation (149). MAPC can impact immune cell
infiltration. MAPC infusions were associated with a reduction of
the neutrophil numbers in bronchiolar lavage samples in a sheep
model of Acute Respiratory Distress Syndrome (ARDS), and in
ischaemia perfusion injury of donor human lungs (150, 151).

Finally, MAPC and MSC can affect the balance of pro-
inflammatory and anti-inflammatory cytokines. The secretome
of MSC contains both pro-inflammatory (e.g., TNF-alpha,
IFN-gamma, and IL-1B) and anti-inflammatory cytokines (e.g.,
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TGF-beta 1, IL-13, and IL-18 binding protein), with the net effect
likely to be the result of a balance between the two (43, 151–
153). Both MAPC and MSC therapy has been associated with
higher levels of a protein called TNF-alpha gene stimulated
protein-6 (TSG-6), which can bind CD44 on macrophages and
inhibit NfKB activation- the key controller of pro-inflammatory
cytokine responses (63).

Clinical studies have investigated the utility of MAPC and
MSC in a range of inflammatory and auto-immune conditions.
In 2009, the first phase industry-sponsored III trial of MSCs
(Prochymal) was completed to investigate their use in treating
steroid-refractory GvHD (NCT00366145). The study failed to
meet its’ primary end-point (complete remission of GvHD 28
days after infusion). However, it was observed that response
rates were higher in children, in patients who were treated
early, and in patients with gut and liver GvHD. Subsequently
a clinical trial was conducted of MSCs in pediatric, severe,
GvHD (NCT02336230), although the trial results have not
yet been published. Maziarz et al. conducted a phase I dose-
escalation study of allogeneic MAPC in 36 patients undergoing
myeloablative allogeneic haematopoietic stem cell transplant
(87). At day 100, the overall incidences of grade II-IV graft vs.
host disease (GvHD) was 37%, but in the group receiving 10
million cells per kg, incidence was 11.1%.

MSC and MAPC have also been investigated in the context
of IBD. A phase III clinical trial (NCT01541579) found that
allogeneic MSC sourced from adipose tissue were superior to
placebo in the treatment of peri-anal fistulas associated with
Crohn’s disease (154). In a phase II study (NCT01240915)
of MAPC in ulcerative colitis refractory to other medical
treatments, no significant beneficial effect was seen.

Recent phase II trials suggest that a single MSC infusion in
critically ill patients with ARDS is safe, although no impact on
mortality was observed (155). Phase IIa trials are in progress
to investigate whether MAPC can help in resolution of Acute
Respiratory Distress Syndrome (ARDS). A press release from
Athersys has reported that preliminary data show a lower
mortality and a greater number of ventilator-free days in
patients receiving MAPC. Clinical trials of MSC in the context
of systemic lupus erythematosus (SLE) (NCT02633163) and
diabetes (NCT03484741, NCT02893306, and NCT03343782)
are ongoing.

In phase I studies of multiple sclerosis with amyotrophic
lateral sclerosis, intrathecal and intramuscular MSC therapy
was deemed safe, with possible therapeutic efficacy (156–158).
The likely mechanism of benefit is a combination of anti-
inflammatory properties of the MSC as well as release of
neurotrophic factors.

One of the obvious concerns about using therapies with
anti-inflammatory and immunomodulatory properties is the
possibility that they increase incidence of infection; however, in
clinical trials there has been no reported increased incidence
of infection with either MAPC or MSC. To the contrary, there
is evidence that MSC and MAPC have anti-microbial effects.
In pre-clinical studies, MSC were found to provide protection
against sepsis (159–161), whilst MAPC infusions in rats with
spinal cord injury were associated with a reduced incidence of

urinary tract infection (162). Possible mechanisms of MSC anti-
microbial action include release of anti-bacterial peptides (74,
163), and enhancement of the phagocytic activity of neutrophils
and macrophages (164). The mechanisms by which MAPC
may reduce the incidence of infection are unknown, and this
represents an exciting area for future research.

ROLE IN ANGIOGENESIS

Angiogenesis is the process by which new vasculature sprouts
from pre-existing blood vessels. MSC can induce proliferation
and migration of endothelial cells promoting tube formation.
MSC have been shown to promote angiogenesis in a murine
model of cardiac ischaemia reperfusion injury (165). They have
also been used to promote angiogenesis in animal models of
stroke, myocardial infarction, neurogenic bladder, peripheral
artery disease, and stress urinary incontinence (166–168). MSC
can secrete both angiogenic and anti-angiogenic factors, and the
net result is likely determined by signals from the surrounding
environment. For example, exposure to TGF-alpha was shown
to increase levels of pro-angiogenic growth factors VEGF,
hepatocyte growth factor (PDGF), IL-6 and IL-8 (169). In a
murine model of acute limb ischaemic, Ryu et al. found that mice
treated with MAPC had higher levels of p-selectin and recruited
more Ly6clo monocytes, which are pro-angiogenic (45). VEGF
is an angiogenic factor, which has been identified in the MAPC
secretome (55). In a study of MI in pigs, Wang et al. found that
conditioned media from the MAPC had higher levels of VEGF,
and levels increased further after hypoxia. The authors proposed
that this could explain their finding of increased cardiac vascular
density in the group treated with MAPC rather than saline (49).
Medicetty et al. had similar findings in their pig model of MI
(170). In models of critical limb ischaemia in mice, an increase
in VEGF, bFGF, and IGF-1 were thought to be responsible for
the improved blood flow in mice receiving MAPC injections
(171, 172). In vitro, serum free conditioned media from MAPC
induced endothelial tube formation, but tubes were no longer
formed when CXCL5, IL-8, and VEGF were depleted, suggesting
the critical role of these proteins (35).

In vitro studies suggest that the angiogenic properties of
MAPC are superior to MSC. For example, expression of pro-
angiogenic proteins GRO, IL-8, and VEGF were found in higher
levels inMAPC thanMSC, andMAPC had superior functionality
in inducing formation of endothelial tubes from human umbilical
vein endothelial cells (HUVEC) (26, 173).

In clinical studies, both MAPC and MSC have been
investigated in the context of cardiovascular disease. Unsorted
bone marrow mononuclear cells have been shown in meta-
analysis to be associated with a modest but significant
improvement in left ventricular ejection fraction in patients with
ischaemic heart disease (174). A recently publishedmeta-analysis
including data from 950 patients (across 14 randomized placebo-
controlled trials) post-myocardial infarction concluded that
MSC therapy was associated with a 3.84% improvement in left
ventricular ejection fraction (95% CI 2.32–5.35), and reduction
in scar mass by −1.13 (95% CI −1.80 to −0.46) (175). In a
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phase I clinical trial, Penn et al. found that MAPC treatment in
patients following ST-elevation MI was associated with improved
ejection fraction (13.5%) and left ventricular stroke volume
(25.4ml), although the study was not statistically powered to
detect differences in clinical outcomes (136). Differentiation
into cardiomyocytes is a potential mechanism of these effects,
but more likely possibilities are that the bone marrow stromal
cells promote neovascularization and/or secrete molecules that
promote tissue repair (176, 177).

Several clinical trials of bone marrow stromal cells in acute
limb ischaemia have been reported, although these have been
of limited size and are mainly not placebo-controlled (178).
The studies were predominantly of autologous unsorted bone
marrow mononuclear cells, rather than purified MAPC or MSC.
Overall, there is some data from these (phase I/II) trials that
suggests that bone marrow infusions modestly improves ankle-
brachial index and pain-free walking distance, but subgroup
analysis using data from placebo-controlled trials only shows no
significant effect on amputation rate. There is a possibility that
the limited efficacy may be related to dysfunctional angiogenesis
in the autologous bone marrow cells of patients with established
vascular disease (179). Whilst this has been demonstrated in vitro
for endothelial progenitor cells and bone marrow mononuclear
cells, Gremmels et al. showed no difference in angiogenic capacity
in vitro in MSCs from patients with critical limb ischaemia vs.
healthy participants (180). Further work would be needed in the
way of large randomized, placebo-controlled trials to determine
which type of cellular therapy (MAPC vs. MSC vs. unsorted
bone marrow mononuclear cells) would be most efficacious
and whether allogeneic therapy has any therapeutic advantage
over autologous.

ROLE IN FIBROSIS

Fibrosis is associated with organ failure and high mortality. It is
characterized by aberrant accumulation of myofibroblasts, which
secrete extracellular matrix proteins like collgen and fibronectin.
MSCs have been investigated for their role in reducing fibrosis in
the kidney, lung, heart, skin, liver, and bone marrow.

MSCs have been shown to reduce fibrosis in a model of
bleomycin induced lung fibrosis (143), and this effect could be
reproduced using conditioned media from MSC (181). Cahill
et al. showed that MSC promoted fibroblast migration to
areas of lung injury, but also inhibited fibroblast proliferation
and activation (182). Possible mechanisms include secretion
of hepatocyte-growth factor by MSCs, increased levels of
MMP expression, and inhibition of TGF-beta. In pre-clinical
models, MSC have also been demonstrated to improve dermal
fibrosis, with a reduction in alpha-sma-positive myofibroblasts
and downregulation of TGF-beta, type I collagen and heat-
shock protein 47 expression (183). Pre-clinical models also
provide evidence of MSCs having anti-fibrotic effects in the
liver, with associated reductions in TGF-beta and alpha-
sma expression (184). In early phase clinical trials, there is
demonstrable benefit of MSCs on liver biochemistry and MELD
score, although evidence of histological benefits is lacking

(185). Of course, MSCs have the potential to differentiate into
fibroblasts, and so there have been concerned raised about
their potential to worsen liver fibrosis; however, there is no
evidence of worsening of liver fibrosis on adoptive transfer in
clinical trials (185).

In a phase I clinical trial of patients with MI, MAPC were
associated with reduced myocardial scarring (136), however,
there is little else published clinical data of the effects ofMAPC on
fibrosis. In vitro data show that MAPC do not secrete hepatocyte-
growth factor, which does play a role in the anti-fibrotic effects
of MSC. However, the MAPC secretome contains a number
of factors that could potentially help in reversing fibrosis. For
example,MAPC secrete a number of inhibitors of TGF-beta, such
as Follistatin-related proteins 1 and 3, and vasorin (55).

CYTOPROTECTIVE/ANTI-APOPTOTIC
EFFECTS

Both MAPC and MSC have been shown to have anti-apoptotic
effects. MSCs can protect against apoptosis by decreasing pro-
apoptotic factors like Bax and cleaved caspase 3 expression, whilst
increasing anti-apoptotic factors such as Bcl-2 (186).

In vitro, MSC and their exosomes have been shown to have
high resistance to oxidative stress due to their constitutive
expression of a number of anti-oxidant enzymes such as catalase
(187). Consistent with this, MSC have been shown to protect
hippocampal neurons against oxidative stress caused by amyloid
oligomers in a rat model of Alzheimer’s disease, which was
considered to be due to release of catalase from extra-cellular
vesicles, as well as secretion of IL-10, IL-6, and VEGF (188).

Traumatic brain injury usually reduces spleen size, yet rats
with traumatic brain injury receiving, MAPC had preservation
of their spleen size, which was associated with increased
splenocyte proliferation and reduced splenocyte apoptosis (as
shown by reduction in caspase 7 and caspase 12 levels on PCR)
(153). Pigs receiving MAPC following induced MI had reduced
cardiomyocyte apoptosis (46, 49), which was associated with
reduced cytochrome C release from cells and downregulation
of mitochondrial oxidative enzymes, suggestive of protection of
oxidative stress. In addition there was differential expression of
genes relating to metabolism and apoptosis detected on gene
array (46, 49). When oligodendrocytes were exposed to sub-
lethal volumes of hydrogen peroxide, subsequent co-culture
with MAPC helped to prolong oligodendrocyte survival, again
suggesting that they can protect against oxidative stress (63).

Conditionedmedia fromMSC andMAPC contains numerous
neurotrophic factors (189, 190). However, MAPC and MSC
have distinct molecular mechanisms for neuroprotection. For
example, in pre-clinical studies, it has been shown that tissue
inhibitor of metalloproteinase 3 (TIMP3), released by MSCs,
plays a critical role in protection against traumatic brain injury
by enhancing neuronal survival and neurite outgrowth (191,
192). However, in a rat model of spinal cord injury, in which
MAPC were administered with or without TIMP3, the presence
of TIMP3 was actually associated with abrogation of MAPC’s
beneficial effects on tissue sparing and functional recovery (162).
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TABLE 2 | Summary of comparison of key characteristics between multipotent adult progenitor cells and mesenchymal stromal cells.

MAPC MSC

Main sources of cells used in clinical studies Bone marrow Bone marrow, adipose tissue,

umbilical cord and placenta

Size <16µM >16 µM

Morphology Smaller, triangle-shaped Larger, spindle-shaped

Surface markers CD44low, CD45–, CD49d+, MHC1low CD44+, CD45–, CD73+, CD90+

CD105+, MHC1+, CD140+

Culture conditions Hypoxia, with platelet-derived growth

factor and epidermal growth factor

Normoxia, usually without platelet

derived growth factor and epidermal

growth factor

Immunogenicity Low Low

Limit of population doublings (whilst maintaining

telomere length and cytogenetic stability)

∼60 ∼10–38

Number of donors required for clinical dosing in trials Single Multiple

Haemocompatibility Relatively high (associated with low tissue

factor expression)

Relatively low, particularly for

adipose-tissue derived and umbilical

cord derived cells (associated with

high tissue factor expression)

Potential for immunomodulation Yes Yes

Potential for angiogenesis Yes (likely more than MSC) Yes

Potential for anti-fibrotic effects Very limited testing Yes

Potential for anti-apoptotic effects Yes Yes

Safety Yes (phase I and II clinical trials) Yes (phase I, II, and III clinical trials)

MSC, mesenchymal stromal cells; MAPC, multipotent adult progenitor cells.

It was hypothesized that this may be because TIMP3 may
interfere with MAPC migration to the site of injury (162).

In phase I clinical studies, MSC infusion was associated with
a variable degree of functional improvement after spinal cord
injury, associated with increased serum levels of brain-derived
neurotrophic factor, glial-derived neurotrophic factor, ciliary
neutrophic factor and neurotrophin 3 and 4 (193–196).

In a phase II double-blinded randomized controlled clinical
trial of MAPC (Multistem) in stroke (MASTERS trial), patients
with anterior circulation infarct received either Multistem (n =

67) or placebo (n = 65) (152). Whilst there was no difference
in global stroke recovery at day 90, patients receiving the
infusions earlier (at <36 h post-stroke) had greater improvement
that those receiving the therapy at 36–48 h, and further trials
are planned.

CURRENT CHALLENGES/FUTURE
DIRECTIONS

Bone marrow stromal therapies are a very exciting field
for research at present, with evidence showing a range of
pleiotropic effects on immunomodulation, fibrosis, apoptosis,
and angiogenesis. A summary of the key similarities and
differences between MAPC and MSC are shown in Table 2.

Evidence so far from hundreds of clinical trials suggests
that MAPC and MSC both have a favorable safety profile.
Nevertheless, the concern remains that because the cells’ activity
is so dependent on surrounding stimuli, there is a possibility that
they will have unpredictable side effects in vivo.

MSCs have been much more widely studied than MAPC.
However, given the heterogeneity in cell types labeled as MSC,
comparing study results is difficult. There are very few studies
in which properties of MAPC and MSC have been directly
compared in the same hands, using the same lab materials, such
as culture media. Indeed, it may be possible that some of the trials
using early-culture MSC, were in fact MAPC.

Whilst it is become clearer that MSC and MAPC are not
truly immunologically privileged, their immune evasive nature
gives these therapies particular advantage in acute conditions
in which it may not be possible to predict the timing of the
insult, and delays in delivery of cellular therapy could retract
from its potential benefit. However, for use in cases such as bone
transplantation, immune compatibility is more critical. A clear
comparison of the efficacy of autologous vs. alloogeneic therapy
in various clinical conditions is necessary. It would also be
imperative to determine whether the negative impacts of IBMIR
reaction can be overcome through use of low-passage cells, and
what influence this has on the immunomodulatory activity of the
remaining cells.

Whilst there is extensive in vitro and pre-clinical data
supporting the efficacy of MSC and MAPC, the progress
of therapy through clinical trials has been slow. There are
relatively few clinical studies of MAPC, whilst hundreds of
clinical trials are being performed for MSC with many of them
have promising findings, the majority of these are phase I
and II trials.

So far, data would suggest that the immunomodulatory and
cytoprotective capacity of MAPC is equivalent to that of MSC,
and that MAPC may have superior angiogenic and broader
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differentiation properties. In practical terms, MAPC offer the
distinct advantage over classical MSC that they can be produced
on a large scale, in a reproducible manner.

The use of cell-free preparations would be preferable to the
administration of whole cells, and data with MSC suggests that
this could be done without significant loss of efficacy. However,
such data are not yet available for MAPC and in both cases,
there is a need for good manufacturing practice guidelines for
the large-scale production of MSC and MAPC derived products,
such as exosomes.

The optimal dosing of both cellular therapies is unknown, and
in clinical studies a large variation in dosing has been used. In
a phase II clinical trial of patients with stroke, up to 1.2 billion
cells were administered per patient (152), with no dose-related

adverse effects. However, it would be important, for both cost-
effectiveness of therapy and safety, to establish the minimum
effective dose, which cannot be extrapolated from animal data.
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