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Abdominal Aortic Aneurysm (AAA) is a major cause of cardiovascular mortality. Adverse

changes in vascular phenotype act in concert with chronic inflammation to promote AAA

progression. Perivascular adipose tissue (PVAT) helps maintain vascular homeostasis but

when inflamed and dysfunctional, can also promote vascular pathology. Previous studies

suggested that PVAT may be an important site of vascular inflammation in AAA; however,

a detailed assessment of leukocyte populations in human AAA, their anatomic location in

the vessel wall and correlation to AAA size remain undefined. Accordingly, we performed

in depth immunophenotyping of cells infiltrating the pathologically altered perivascular

tissue (PVT) and vessel wall in AAA samples at the site of maximal dilatation (n = 51

patients). Flow cytometry revealed that T cells, rather than macrophages, are the major

leukocyte subset in AAA and that their greatest accumulations occur in PVT. Both CD4+

and CD8+ T cell populations are highly activated in both compartments, with CD4+ T

cells displaying the highest activation status within the AAA wall. Finally, we observed

a positive relationship between T cell infiltration in PVT and AAA wall. Interestingly, only

PVT T cell infiltration was strongly related to tertiles of AAA size. In summary, this study

highlights an important role for PVT as a reservoir of T lymphocytes and potentially as a

key site in modulating the underlying inflammation in AAA.
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INTRODUCTION

Abdominal aortic aneurysm (AAA) is defined as a pathological
dilatation of the aorta, to more than 1.5 times the normal
diameter. AAAs are one of the most important causes
of cardiovascular morbidity and mortality and occurs
in up to 9% of men after 65 years of age (1). AAA
shares many of the same risk factors as atherosclerosis
including advanced age, smoking, hypertension, and
hypercholesterolemia (2). Recently, it has also been
shown that elevated BMI also increased the likelihood
of AAA diagnosis (3). The mechanisms of AAA, defined
primarily in animal model studies, are complex, involving
smooth muscle cell apoptosis, oxidative stress (4), and
inflammation (5). Clinically, patients with AAA have
elevated circulating pro-inflammatory cytokines (6–8) and
immunohistochemical studies of AAA reveal the presence
of inflammatory cells such as macrophages, T cells, B cells,
dendritic cells, natural killer cells, neutrophils, and mast
cells (9–14).

Amongst inflammatory cells, macrophages are an important
subpopulation with their role in the pathogenesis of AAA well-
described in both mice and humans (15–21). Furthermore, T
and B cell numbers are increased in cryosections of aneurysmal
tissues (13, 22) with lymphocyte density negatively correlating
with collagen and elastin content indicating a contribution of
adaptive immune cells to AAA instability (14). Both Th1 (23–
25) and Th2 (26) CD4+ T cells as well as CD8+ T cells have been
implicated in promoting AAA formation (23, 27, 28). Despite the
evidence of the presence of these cells in aneurysmatic vascular
wall (23, 26–30), less is known regarding their respective number,
activation status and spatial distribution within the vessel wall.
While circulating pro-inflammatory CD4+ T cells are increased
in patients with moderate sized AAA (24), it is uncertain if
there is a relationship between aortic wall T cell content and
AAA size.

While most studies focus on alterations in the vascular wall
of AAA, recent interest in the role of perivascular adipose tissue
(PVAT) inflammation and its clinical significance (31–33) raise
an important question on the role of perivascular tissue (PVT)
in AAA. PVT regulates vascular function; however, imbalances
between the production and release of protective factors and pro-
inflammatory molecules in PVTmay result in vascular pathology
(34, 35). In various cardiovascular and metabolic diseases such as
atherosclerosis, hypertension, diabetes, or obesity, dysfunctional
PVT plays a critical role, characterized by oxidative stress and
inflammation (32, 36, 37). Furthermore, gene expression analysis
suggested increased infiltration of immune cells into PVT
surrounding AAA (38). Therefore, it is essential to characterize
immune cell subpopulations infiltrating PVT surrounding AAAs
and address their potential functional implications for aneurysm
progression and size.

Here, we utilized a pool of clinical AAA samples to perform
a quantitative assessment of leukocyte subsets, of which T cells
are most abundant. We also focused on their presence in PVT,
aiming to understand their links to AAA wall infiltration as well
as the relationship to AAA size.

METHODS

Human Samples
Segments of AAA were obtained during AAA repair surgery
at the site of maximal dilatation from 51 patients. Clinical
data including major risk factors for atherosclerosis and
AAA were recorded at the time of surgery (Table 1).
Hypercholesterolemia was defined as a plasma TC > 4.8mM
or the use of cholesterol lowering medication. Patients were
considered hypertensive if BP was >140/90 mmHg or if
patients were currently taking BP lowering medication.
Diabetes was diagnosed based on a fasting glucose >5.5mM
or current treatment with insulin or oral hypoglycaemic
agent (39).

AAA size was determined in pre-operative CT and verified
intraoperatively. Immediately after harvesting, samples were
placed in ice-cold (4◦C) phosphate buffered saline (PBS,
Gibco, Invitrogen, Carlsbad, CA, USA) and transported to the
laboratory. Written informed consent was obtained from all
patients. Collection of tissue was approved by the local Research
Ethics Committee of the Jagiellonian University, Kraków, Poland
(Approval No. KBET/78/B/2012) and the West of Scotland
Research Ethics Service Committee for the Biorepository at the
Queen Elizabeth Hospital, Glasgow, United Kingdom (Approval
No. 10/S/0704/60). Importantly, due to amount of tissue available
and cell numbers in CD45+ gate, not all measurements were

TABLE 1 | Patient clinical parameters including risk factors and current treatment

regimens recorded at the time of surgery.

N 51

Age (years, mean ± SD) 67.9 ± 8

Sex (M:F) 42:9

Present thrombus (n, %) 44 (86%)

Aneurysms diameter (mm, mean ± SD) 62 ± 14

RISK FACTORS

Smoking (n, %) 36 (70%)

Hypertension (n, %) 40 (78%)

Systolic BP (mmHg, mean ± SD) 129.3 ± 15

Diastolic BP (mmHg, mean ± SD) 79.1 ± 7.9

Hypercholesterolemia (n, %) 47 (92%)

Total Cholesterol (mmol/L, mean ± SD) 4.9 ± 1.27

Overweight/Obesity (n, %) 31 (61%)

BMI (kg/m2, mean ± SD) 26.25 ± 3.7

Diabetes (T2) (n, %) 7 (14%)

MAIN MEDICATIONS

Diuretics (n, %) 20 (39%)

ACE inhibitors/ARB (n, %) 32 (63%)

ASA (n, %) 38 (74%)

Other antithrombotic (n, %) 7 (14%)

β blockers (n, %) 26 (51%)

Calcium antagonist (n, %) 8 (16%)

HMG CoA Inhibitors (n, %) 43 (89%)

ASA, acetylsalicylic acid; BMI, body mass index; ACE, Angiotensin Converting Enzyme;

HMG CoA Inhibitor, hydroxy-3-methyl-glutaryl-CoA reductase inhibitor.
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possible in all subjects and n numbers are provided in individual
figure legends.

Flow Cytometry Analysis of Cells in Tissues
In the laboratory, fragment of aneurysm was divided into
two parts: wall (containing mostly intima-media) and PVT
(containing PVAT and contiguous remodeled adventitia).
Samples, were subsequently mechanically disrupted and digested
with a cocktail of enzymes containing 125 U/ml collagenase type
XI, 60 U/ml hyaluronidase type IVS and 450 U/ml collagenase
type I (all from Sigma-Aldrich, Irvine, UK) in PBS with calcium-
magnesium containing 20mM Hepes at 37◦C for 20min with
gentle agitation to isolate residual cells infiltrating tissues. The
resulting cell suspension was then passed through a 70µm
strainer (BD Pharmingen, San Diego, CA, USA). Cells were
incubated with fluorescently labeled antibodies for 20min at
4◦C (for details see Supplemental Table 1). Fluorescence Minus
One (FMO) was used as negative control. After washing,
cells were re-suspended in PBS with 1% fetal bovine serum
(FBS) (Gibco, ThermoFisher Scientific, UK) and data acquired
on a FACSCanto II cytometer (BD Bioscience, UK) and
analyzed using FACSDivaTM and FlowJo software (Tree Star Inc,
Olten, Switzerland).

Immunofluorescence Staining
Immunofluorescence was performed on frozen 7µm OCT-
embedded aneurysmal tissue sections. For T cell visualization,
rabbit polyclonal anti-human CD3 (ab5690; Abcam, Cambridge,
UK) was employed and for macrophages, mouse monoclonal
anti-human CD68 (ab955; Abcam, Cambridge, UK) was used.
Appropriate secondary antibodies were employed (Donkey anti-
rabbit IgG-Alexa Fluor 594 and Donkey anti-mouse IgG—
Alexa Fluor 647, ThermoFisher Scientific). Sections treated
with secondary antibodies alone did not show specific staining.
Staining was visualized on a Zeiss Cell Observer SD confocal
microscope (Zeiss, Oberkochen, Germany).

Statistical Analysis
Patient clinical parameters are expressed as Mean ± SD as
detailed in Table 1. Other data are expressed as Mean ± SEM
except on dot plot graphs where data is expressed as Median
(Q1;Q3). To test normality of distribution, Kolmogorov-Smirnov
test was employed. Comparison between related samples were
made using Wilcoxon matched pairs test, one-way ANOVA or
t-test and between independent samples using Mann-Whitney
test. Correlation between cells was assessed by Spearman’s rank
correlation analysis.

RESULTS

Local Inflammation in Aneurysm Is Prone
to Perivascular Tissue
We performed flow cytometry on cell suspensions to characterize
leukocyte content and its subsets. The gating strategy used
in these studies is presented in Figure 1A. We observed
that following tissue digestion, absolute cell counts revealed
a greater cellularity to the PVT layer in comparison with

AAA wall (Supplemental Figure 1). Interestingly, analysis of
the percentage distribution of leukocyte subpopulations in
AAA shows that the major subpopulation are T cells for
both aneurysmal PVT (29 ± 3%) and wall (31 ± 3%;
Figure 1B) while other leukocyte subsets were less abundant,
with a surprisingly low presence of macrophages in both AAA
wall and PVT (Figure 1B). Immunofluorescence staining of
AAA revealed an increased presence of T cells within PVT
compared with AAA wall (Figure 1C). Interestingly, T cells
and macrophages could also on occasion be found co-localizing
within the PVT (Figure 1C). Quantifiable results obtained by
flow cytometry revealed that the majority of leukocytes localized
within aneurysmal PVT. Median (Q1;Q3) values for wall vs. PVT
were, respectively, 578 (293;1353) vs. 1,428 (434;3137) cells/mg
tissue (Figures 2A,B).

T Cell Infiltration in AAA Perivascular
Tissue
As T cells were the most abundant leukocyte subpopulation,
we investigated them in more detail by showing that the T
cell content in aneurysmal PVT was significantly higher in
comparison to aneurysmal wall. Median (Q1;Q3) values were
109 (38;351) vs. 346 (69;862) cells/mg for wall and PVT,
respectively (Figures 2A,C). In spite of these differences, we
found a positive correlation between total leukocyte content in
PVT and AAA wall R = 0.38, p = 0.015 (Figure 2F). A similar
correlation was observed for T cell content R = 0.42, p = 0.007
(Figure 2G).

With regards to T cell subtypes, CD4+ T cells were
significantly increased in PVT: 187 (41;580) cells/mg compared
with wall 81 (20;226) cells/mg (Figure 2D). While a trend toward
increased CD8+ T cells was observed in aneurysmal PVT, this did
not reach significance (Figure 2E).

Although over 80% of our patient samples derived from
males, we were curious if we could observe any gender
differences in total leukocyte or T cell counts within patient
samples. Interestingly, female patients displayed significantly
more leukocytes and T cells within the PVT in comparison to
male patients (Figures 3A,B).

Activated and Immunosenescent T Cells in
AAA
Next, we investigated the activation status of aneurysmal T
cells by utilizing the activation markers: CD69, CD25, HLA-
DR as well as CCR5 and the absence of CD28 (CD28null;
representing immunosenescent phenotype). We revealed that
CD4+ T cells are preferentially activated within the aneurysmal
wall (Supplemental Table 2A). More than 50% of T cells
expressed the early activation marker CD69 in AAA, either in
PVT or in wall; with a higher percentage of CD4+CD69+ cells
in aneurysmal wall. This was in line with higher percentages of
CD4+T cells expressing the late activation marker HLA-DR in
AAA wall than in aneurysmal PVT (Supplemental Table 2A).
Interestingly, while CD8 cells within both AAA wall and PVT
were highly activated, they did not differ between wall and
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FIGURE 1 | Aortic abdominal aneurysm (AAA) leukocyte infiltration: comparison and relationship between aneurysmal wall and PVT. (A) Gating strategy depicting

identification of total leukocytes (CD45+) and leukocyte sub-populations: granulocytes, dendritic cells, B cells, T cells, NK cells and macrophages in AAA (aortic

abdominal aneurysm). Gates were applied based on fluorescence minus one (FMO) analysis. (B) Distribution of the main leukocytes: T cells (CD3+), B cells (CD19+),

NK cells (CD16+CD56+), macrophages (CD11b+CD64+), dendritic cells (CD83+), granulocytes (CD66b+) in wall and PVT of AAA tissue (n = 8–11), T cell

percentages compared to other leukocyte subpopulations, t-test for related samples, p values presented on graphs only for statistically significant comparisons.

(C) Bottom panel: example of immunofluorescence staining of T cells (CD3+) shown in red and macrophages (CD68+) shown in green in PVT and wall of an AAA.

Nuclear staining (DAPI) is shown in blue. Example of T cell and macrophage co-localization shown by yellow/orange staining; white arrow. Representative of n = 5;

Top panel: negative control consisting of secondary antibody staining only with DAPI. Scale bar = 50µM.
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FIGURE 2 | Aortic abdominal aneurysm (AAA) leukocyte infiltrate: comparison and relationship between aneurysmal wall and PVT. (A) Example of flow cytometric

identification of leukocytes (CD45+), total T cells (CD3+) and CD4+, CD8+ T cell subpopulations in aneurysmal wall and PVT. (B) Leukocyte number per mg of

aneurysmal wall vs. PVT, n = 40, **p < 0.01 (Wilcoxon matched paired). (C) T cells number per mg of aneurysmal wall vs. PVT, n = 39, *p < 0.05 (Wilcoxon matched

paired). (F) Spearman rho correlation between number of leukocytes in aneurysmal wall and PVT; R = 0.384, n = 40, p = 0.015. (G) Spearman rho correlation

between number of T cells in aneurysmal wall and PVT; R = 0.418, n = 39, p = 0.007. (D) CD4+ T cell number per mg of wall and PVT of AAA tissue, n = 39,

p < 0.05 (Wilcoxon matched paired). (E) CD8+ T cell number per mg of wall and PVT in AAA, n = 39, NS (Wilcoxon matched paired).

FIGURE 3 | Effect of patient gender on immune cell numbers in AAA wall and PVT. Male vs. female total leukocyte and T cell content in AAA PVT and wall.

(A) Leukocyte number per mg of aneurysmal wall and PVT in male group n = 31 vs. female group n = 9 (B). T cell number per mg of aneurysmal wall and PVT in male

group n = 30 vs. female group n = 9. Mann-Whitney test for comparison male vs. female for wall and PVT, Wilcoxon test for comparison wall vs. PVT within male and

female group. p values presented on graphs only for statistically significant comparisons.
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PVT (Supplemental Table 2B). Similar to markers of activation,
there was an increased presence of CD4+CCR5+ cells in
aneurysmal wall compared with PVT, which was not observed in
the CD8+ T cell population, although notably CCR5 was present
on over 40% of all CD8 cells present either in AAA wall or
PVT (Supplemental Table 2B).

In contrast to the above, the percentages of immunosenescent,
dysregulated CD8+CD28null T cells were higher in
AAA wall than in PVT whereas CD4+CD28null cells
did not differ between aneurysmal PVT and wall
(Supplemental Tables 2A,B).

T Cell Infiltration and AAA Size
Finally, to ascertain if T cell infiltration is associated with
AAA stage/severity, we stratified T cell content in both wall
and PVT according to AAA diameter (Figure 4). While no
significant differences in T cell content were observed in AAA
wall, significant differences in T cell content were seen in PVT
with the highest tertile containing the greatest number of T cells
while the lowest tertile had PVT T cell numbers comparable
with wall.

FIGURE 4 | Relationship between T cell number and AAA size. AAA diameter

was determined by preoperative CT. Graphs display relationship between AAA

size (tertile 1 ≤ 53mm; tertile 2 ≤ 60mm; tertile 3 > 60mm) and CD3+ cell

infiltration in wall (A) and PVT (B) (mean/SEM/25–75 CI); (n = 20/10/9 for

tertiles); statistical comparisons were performed by ANOVA with

Neuman-Keuls post-hoc analysis.

DISCUSSION

In this investigation, we provide novel quantitative data on
leukocyte populations in late-stage AAA, which identified T
cells as the dominant immune cell population in these vessels.
Moreover, we identified that PVT is a key site of T cell
accumulation in AAA with T cell numbers increasing with AAA
size, with these conclusions based on analysis of a large cohort
of AAA samples. This suggests that the pro-inflammatory role of
PVT in the development of vascular pathology (40–43) can now
be extended to late-stage AAAs.

Our study provides an important quantitative assessment
and clinical context to previous immunohistochemical and
gene expression reports indicating a potentially important
role for the abnormal necrotic, inflamed, proteolytic tissue
adjacent to the aneurysmal wall in regulating ongoing vascular
damage. Indeed, inflammatory cells such as neutrophils, T cells
and others often surround necrotic adipocytes (38). The role
of T cells in this process remains unclear. Using detailed,
quantitative flow cytometry studies, we have demonstrated that
the AAA T cell population expresses characteristic activation
markers. While there are significantly more leukocytes and
T cells in the PVT, cells in the pathologically damaged
AAA wall are more activated (especially CD4+ cells) or
represent dysregulated, immunosenescent CD28null phenotype
(particularly CD8+ cells). This is interesting, as we have
recently shown that CD8+CD28nullCD57+ cells are important
in the immediate response to vascular injury (44). These
cells are known to produce increased amounts of pro-
inflammatory TNF-α and IFN-γ further contributing to vascular
inflammation. Therefore, this population may be important
in AAA pathology with percentages of peripheral blood
CD8+CD28null cells being higher in AAA patients than controls
but without a clear relationship to the maximal aneurysm
diameter (24).

In spite of these differences, we observed a positive correlation
between the numbers of both total CD45+ leukocytes and in
particular T cells between PVT and AAA wall. This may be
particularly relevant in the context of the debate regarding the
source and trafficking of leukocytes to AAAs. Considering this,
abluminal white thrombus which is located directly on the
internal surface of the AAA wall, shows negligible numbers of
leukocytes (45). The data we present here show an abundance
of leukocytes in PVT which may suggest that trafficking of
immune cells into the AAA wall may be secondary to their entry
into the PVT, possibly via entry through PVAT associated post-
capillary venules (38). Further support for PVAT recruitment of
T cells came from the discovery that human adipocytes in PVAT
surrounding atherosclerotic arteries produce chemoattractants
and are able to induce chemotaxis of leukocytes including T cells
(46). T cells are also found densely aggregated within the PVT
in an angiotensin induced mouse model of hypertension (47)
suggesting an “outside-in” infiltration into the vessel. However,
in AAA samples, which contain adventitial neoangiogenesis,
it may also be the case that T cells are recruited via the

adventitial microvasculature, depending on the local cellular

and cytokine environment. We used both flow cytometry
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and IHC to compare content and localization, respectively,
for both macrophages and T cells in PVT and wall. T cells
comprised a significantly greater proportion of leukocytes in
both compartments with T cell numbers being highest of
all in PVT. IHC analysis also revealed dense T cell staining
within the PVT. This is somewhat expected considering this
is the location where lymphocyte aggregates develop in AAA
patients (48).

Previously, it was suggested that CD4+ T cells may play
a crucial role in AAA formation in both animal models of
disease and human pathology (12, 23, 30). Our study supports
this view, by demonstrating that CD4+ T cells are the major
T cell subtype in AAA. Despite leukocytes, including T cells,
being constitutively present in healthy aorta (49), infiltration
of Th1 CD4+ T cells from the adventitia into the media
can distinguish thoracic aneurysmal aorta segments from non-
aneurysmal dilated aorta (25). Our data now suggest that
infiltrating cells are preferentially recruited to the PVT, where
they are densely dispersed throughout the tissue layer, often
in close proximity to less abundant PVT macrophages. While
the results of such interactions are unclear in our samples,
activated T cells have been shown to promote the release of
macrophage derived pro-inflammatory factors in mouse models
of AAA (30). Activated CD4+ Th1 cells are the dominant T
cell in atherosclerotic murine aorta and have previously been
shown to predominate in human AAA samples (23). Our data
now indicates that PVT is a major reservoir of these cells.
We also expand on these earlier findings by demonstrating
that the majority of CD4+ and CD8+ T cells present within
the aneurysm positively express CD69 as well as showing
expression of other activation markers including HLA-DR+

and CCR5.
Elevated expression of CCR5 in PVT containing CD4+

and CD8+ cells as well as a differential expression of these
cells between AAA wall and PVT (seen for CD4+ T cells)
provides a hint for the role of RANTES chemokine in T cell
recruitment to PVT and AAA wall. This data, coupled with
the fact that RANTES is upregulated within the adventitia of
human AAA (8) may suggest a role for this chemokine in
the regulation of T cell trafficking in AAA, which has been
demonstrated in relation to many other risk factors of AAA
such as hypertension (50). Furthermore, angiotensin II induced
expression of RANTES within the vasculature and CCR5 on
T cells is thought to mediate T cell accumulation within the
PVAT and adventitia in a mouse model of hypertension (47)
indicating the importance of this chemotactic axis in both mice
and humans.

While the focus of our investigation was not T regulatory cells
(Tregs), the relatively low frequency of CD25 expressed by both
CD4+ and CD8+ T cells suggest Tregs were not abundant within
either AAA wall or PVT. A protective role for Tregs has been
demonstrated in animal models of AAA (51, 52) and loss of Tregs
correlate with AAA severity (53). It can be envisaged that a shift
in T cell subset balance occurs during the chronic inflammation
associated with AAA resulting in a loss of T regulatory function
with concomitant enhancement of pro-inflammatory CD4+ Th1
and Th17 cells (54).

We established a relationship between T cell number andAAA
size for PVT but not for AAA wall indicating that PVT recruits
(and/or retains) more T cells as AAA progresses in severity.
The fact that T cells are more activated within the wall may
suggest greater retention of highly activated cells within the wall
compared with PVT or additional inflammatory cues are present
that promotes activation of T cells locally. While the precise
triggers and role for T cell mediated immune responses in human
AAA remain unclear, the presence of T and B cell aggregates
within AAA (or more complex artery tertiary lymphoid organs;
ATLOs) are suggestive of an autoreactive immune response to
unidentified self/modified self-antigens (18, 55). Local clonal
expansion of T cells within AAA remains a matter of debate.
While the function of ATLOs in human AAA remains unclear,
they are closely linked to adaptive immune activation and may
feasibly occur as a progression of earlier aberrant autoreactive
immune responses resulting in a highly compartmentalized local
immune response (56).

It is important to emphasize that we have studied advanced
AAA disease. With increasing use of endovascular aortic repair
only more advanced cases are undergoing an open operative
repair. This may be a source of selection bias we should take into
account when interpreting these results.

In summary, we demonstrate that the majority of immune
cells in late-stage human AAA are present within the PVTs
with a predominating presence of T cells. Activation of T cells
is apparent within PVT with activation status increasing still
further in AAA wall populations. We also provide evidence that
T cell content in PVT is enhanced with increasing maximal
AAA dilatation, highlighting a potential important role for PVT
inflammation in AAA pathology.
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