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Metastasis is the predominant cause of cancer-related mortality, despite being a highly

inefficient process overall. The vasculature is the gatekeeper for tumor cell seeding

within the secondary tissue microenvironment—the rate limiting step of the metastatic

cascade. Therefore, factors that regulate vascular physiology dramatically influence

cancer outcomes. There are a myriad of physiologic circumstances that not only

influence the intrinsic capacity of tumor cells to cross the endothelial barrier, but also

that regulate vascular inflammation and barrier integrity to enable extravasation into

the metastatic niche. These processes are highly dependent on inflammatory cues

largely initiated by the innate immune compartment, that are meant to help re-establish

tissue homeostasis, but instead become hijacked by cancer cells. Here, we discuss the

scientific advances in understanding the interactions between innate immune cells and

the endothelium, describe their influence on cancer metastasis, and evaluate potential

therapeutic interventions for the alleviation of metastatic disease. By triangulating the

relationship between immune cells, endothelial cells, and tumor cells, we will gain greater

insight into how to impede the metastatic process by focusing on its most vulnerable

phases, thereby reducing metastatic spread and cancer-related mortality.
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INTRODUCTION

Metastasis is a process through which primary tumor cells spread to secondary organs, and is
the leading cause of cancer-related mortality. The metastatic process is composed of a number
of sequential steps, each with varying levels of efficiency that together dictate whether successful
metastases will form (1). Initially, cancer cells from a primary tumor acquire the capacity to invade
into adjacent tissue and intravasate into the blood circulatory or lymphatic system. Within the
circulation, cancer cells must survive in suspension and interact with the endothelium in order to
extravasate into the secondary tissue parenchyma. In parallel, the endothelium becomes primed to
allow cancer cells to transmigrate, and the pre-metastatic niche evolves into a fertile soil equipped
to nurture metastatic cells. Upon arrival, cancer cells quickly adapt to the foreign niche, to enable
their colonization and outgrowth within the new microenvironment. Each of these stages requires
cancer cells to exhibit remarkable plasticity, allowing them to adapt to continuous changes and
unfamiliar stimuli that are encountered within their surroundings.
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The overall process of metastasis is highly inefficient, and
early kinetic studies using experimental metastasis models have
shown that the efficiency of each individual step of the metastatic
cascade differs dramatically (2, 3). Early steps, such as local
invasion and survival within the circulation, are very efficient;
however, later stages that take place within the secondary
niche are relatively inefficient. In cancer patients, although the
frequency of circulating tumor cells is an independent predictor
of overall survival (4), some patients with circulating tumor
cells within their blood may never develop metastatic disease.
This suggests that metastatic potential is partially influenced by
the ability of circulating tumor cells to access the metastatic
microenvironment (5–9). Therefore, understanding how the
vasculature acts as the gatekeeper for metastatic disease is critical
to limit disease progression.

The role of tumor cell-mediated mechanisms of extravasation
during metastasis has been covered by several excellent reviews
(10–12). Here, we discuss immune-mediated mechanisms of
vascular physiology that influence extravasation efficiency,
with a focus on innate immune mechanisms of vascular
inflammation and metastasis. We first discuss how the structure
of the endothelium mediates vascular inflammation (including
permeability of the endothelium, and transmigration of
leukocytes), and how chronic inflammatory conditions that
have direct ties to cancer (e.g., obesity, smoking tobacco) can
exacerbate these effects. We then discuss the role of vascular
inflammation during cancer metastasis, and how cancer cells
can hijack innate immune processes to enhance their metastatic

FIGURE 1 | Structure and function of the endothelium during vascular inflammation. (A) Structure of blood capillaries, with surrounding perivascular adipose tissue

(PVAT). The lumen is formed by 1-2 endothelial cells that are sealed by homotypic junctional adhesions, including tight junctions and adherens junctions. The

endothelial cells are bound to a specialized basement membrane, and enveloped with pericytes once mature. On their luminal side, endothelial cells express

heterotypic adhesions that assist with cell attachment within the periphery, and on their abluminal side, they express distinct heterotypic adhesions (e.g., N-cadherin

and integrins) that facilitate pericyte coverage and attachment to the extracellular matrix (ECM). (B) Adhesions involved in different steps of leukocyte transmigration. In

response to inflammation, cytokines are released to cause expansion and recruitment of leukocytes from the periphery, such as neutrophils from the bone marrow.

Upon arrival at the inflamed tissue, leukocytes roll and adhere to the endothelium through luminal adhesion proteins including upregulation of E-selectin, P-selectin,

ICAM1, and VCAM1. To induce their arrest, integrins strengthen these interactions through interactions with LFA1, MAC1, and VLA4, which are expressed by

leukocytes. Once arrested, transmigration can occur through endothelial junctions, by downregulating homotypic adhesions such as ESAM, claudins, occludin, JAMs,

and VE-cadherin.

behavior. Finally, we discuss how mechanisms of vascular
inflammation can be targeted as a preventative approach for
metastatic disease.

STRUCTURE AND FUNCTION OF THE
ENDOTHELIAL BARRIER DURING
VASCULAR INFLAMMATION

Blood vessels function as boundaries between blood and tissue,
by regulating permeability, blood fluidity, and the flow of cells
and other substances between the vascular system and tissues
throughout the body. Generally, mature blood vessels consist of a
monolayer of endothelial cells connected to one another through
distinct junctional boundaries, which are further wrapped by
pericytes or vascular smoothmuscle cells that maintain structural
support and integrity, and in most tissues, are enveloped by
adipose tissue (Figure 1A). However, the intricacies of vascular
endothelia architecture vary between different organs and
vascular beds, resulting in differences inmechanisms of leukocyte

trafficking during inflammation. For example, in the skin, muscle
and mesentery leukocytes typically exit the blood in postcapillary
venules, while in the lung and liver leukocytes exit the blood in
the microvasculature, and in lymphoid organs leukocytes exit the

blood in high endothelial venules (HEV); all of these endothelia
have different structures, functions, and blood flow dynamics
(13). Furthermore, there are differences in leukocyte trafficking
between different leukocyte subsets. For example, innate immune
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cells are structurally and functionally different from adaptive
immune cells and thus the cellular and molecular mechanisms of
recruitment and extravasation are distinct; this review will focus
on the extravasation of innate immune cells—the first responders
to inflammatory stimuli.

Under inflammatory contexts, the endothelium becomes
activated to facilitate leukocyte recruitment into the affected
tissue through a process called vascular inflammation (14, 15).
During vascular inflammation, luminal endothelial adhesion
proteins are upregulated to enhance leukocyte rolling, arrest and
adherence to the endothelium, even when exposed to high shear
stress (16), and in parallel, endothelial junctional adhesions are
downregulated to enable leukocyte transmigration (17). It has
been proposed that cancer cells mimic leukocyte transmigration
to facilitate their extravasation into tissues, therefore, insights
that are gained from leukocyte dynamics with the endothelium
may be relevant to cancer metastasis.

Several canonical adhesion proteins regulate transmigration
of cells across the endothelium (Figure 1B). Heterotypic
endothelial adhesions regulate interactions between endothelial
cells and their surrounding environment. On the luminal
side, this includes interactions with circulating immune cells,
which need to arrest and adhere to the endothelium prior to
transmigration. These heterotypic interactions are mediated by
a distinct set of luminal transmembrane adhesive proteins, such
as selectins (e.g., E-selectin, P-selectin; leukocyte rolling) and
Immunoglobulin (Ig)-like cell adhesion molecules (e.g., ICAM1,
VCAM1; leukocyte arrest, firm adhesion, and crawling) (17). On
the abluminal side, endothelial adhesions mediate interactions
with pericytes and the extracellular matrix, such as neural (N)-
cadherin, which regulates pericyte coverage and vessel maturity.
By contrast, homotypic endothelial adhesions primarily function
to regulate barrier integrity of the endothelium and vascular
permeability, and are thus composed of proteins involved in tight
junctions (e.g., junctional adhesion molecules (JAMs), claudins,
and occludin) and adherens junctions (e.g., vascular endothelial
(VE)-cadherin, which associates with the intracellular β-catenin
protein) between endothelial cells (18). These adhesions play
an important role specifically during the process of cellular
transmigration. Collectively, both heterotypic and homotypic
adhesion proteins act as gatekeepers of tissue homeostasis, and
therefore, the plasticity of endothelial adhesion expression is
essential to this phenotype.

Leukocyte Rolling, Adherence, and
Transmigration Across the Activated
Endothelium
Patrolling leukocytes move through blood vessels in a passive
manner based on simple flow dynamics. However, under
inflammatory conditions, leukocytes are attracted to specific
tissues through cytokines that are produced in response to
pathogen exposure and/or tissue damage (19). Once leukocytes
arrive, infiltration into tissues is first initiated by rolling
along on the activated endothelium, which is frequently
mediated by selectin-based interactions between immune and
endothelial cells. Endothelial cells express selectin proteins,

such as P- and E-selectin, along with ligands for L-selectin (L-
selectin is expressed on naïve leukocytes prior to activation),
while leukocytes express glycosylated selectin ligands, such
as P-selectin Glycoprotein Ligand-1 (PSGL-1; constitutively
expressed by neutrophils) and E-selectin ligand-1 (ESL-1) (20,
21). Selectin-mediated rolling activates leukocytes by facilitating
interactions with inflammatory chemokines from the activated
endothelium such as interleukin-8 (IL8) (22) and platelet-
activating factor (PAF) (23), which bind to chemokine receptors
on leukocytes to initiate a signaling cascade resulting in the
activation of integrins (20, 24, 25). Integrin-mediated signaling
via lymphocyte function-associated antigen 1 (LFA1; expressed
by all leukocytes), macrophage antigen 1 (MAC1; expressed
by monocytes/macrophages), and very late antigen 4 (VLA4;
expressed by lymphocytes and monocytes) increases the affinity
of immune cells for the endothelium, allowing for more firm and
stable adherence, in preparation for subsequent transmigration
across the endothelial barrier (26). In addition, leukocytes may
crawl toward suitable emigration sites prior to extravasation,
depending on the inflammatory phenotype of the endothelium,
as well as the activation state and type of leukocyte (27). For
example, intravital videomicroscopy of murine postcapillary
venules has shown that following adhesion to the endothelium,
neutrophils crawl intraluminally to sites of extravasation prior to
transmigration (27). Thus, luminal endothelial adhesion proteins
are the first line of regulation of peripheral cell infiltration
into tissues.

Of note, platelets (cell fragments derived frommegakaryocytes
from bone marrow) also play a role in the extravasation of
leukocytes. They typically function to form blood clots, but more
recently have been shown to play a role in vascular inflammation
(28). In addition to being able to interact with both immune and
endothelial cells, a novel role for platelets in efficiently directing
neutrophils and inflammatorymonocytes to sites of extravasation
has been identified, whereby platelets interact with endothelial
cells and arrest neutrophils upon initiation of an inflammatory
stimulus (29). This interaction then mobilizes inflammatory
monocytes to these specific locations, facilitating the successful
extravasation of both neutrophils and inflammatory monocytes
into the tissue parenchyma.

Once leukocytes establish tight adhesions at endothelial
junctions, they begin the process of extravasation known
as diapedesis (30). Diapedesis most often occurs through a
paracellular pathway (i.e., in between cells of the endothelial
barrier). This is mainly regulated by changes in vascular
permeability via tight junctions, including downregulation
of endothelial cell-selective adhesion molecule (ESAM) (31),
and tight JAMs, JAMA, JAMB, and JAMC (30, 32, 33).
Less frequently, leukocytes may also transmigrate through the
transcellular pathway (i.e., through the endothelial cell body),
which is dependent on the formation of transmigratory cup-
like projections that are enriched for ICAM1 and VCAM1 (34).
Given that vascular inflammation usually requires a more rapid
response rate, regulation of adhesion molecule expression is
usually done at the post-translational level. For example, this can
be achieved via proteolytic cleavage induced by innate immune
cells within the microenvironment, such as neutrophil-derived
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neutrophil elastase (NE) (35). Other methods of regulation
include the post-translational modification of integrins, along
with changes in the storage and release of selectins to the
cell membrane, specifically P-selectin. P-selectin, is stored in
Weibel-Palade bodies (WPB) in endothelial cells and becomes
recruited to the cell membrane upon inflammatory signals (36).
Cell adhesion molecules, such as ICAM1 and VCAM1, can be
regulated through changes in expression. For example IL1β-,
tumor necrosis factor-α (TNFα)-, or lipopolysaccharide (LPS)-
stimulated endothelial cells can induce expression of VCAM1
and enhance expression of ICAM1 (37). It is important to note
that extravasation not only mediates leukocyte recruitment to
sites of inflammation, but also regulates leukocyte phenotype.
This enables leukocytes to be better equipped to pursue further
migration and specific immune functions, for example, increased
survival and pathogen-killing activities (38).

Once leukocytes permeate the endothelial cell barrier they
encounter the endothelial basement membrane network made
up of protein laminins (e.g., laminin-8 and laminin-10), collagen
type IV, nidogens, and heparan sulfate proteoglycan perlecan
(39). In the majority of venules, leukocytes will also encounter
the pericyte sheath and perivascular tissue. Neutrophil migration
through the basement membrane and pericyte sheath has been
shown to occur at sites with low extracellular matrix protein
accumulation, specifically laminin-10, collagen IV and nidogen-
2, and between neighboring pericytes in murine cremasteric
venules (40). Similarly, monocytes have been shown to use
comparable methods to cross the basement membrane in CCL2-
stimulated murine cremaster muscles (41).

Taken together, each of these factors that regulate
transmigration of cells across the endothelium may have
relevance to cancer, if similar mechanisms are used by
tumor cells.

Factors That Regulate Vascular
Inflammation and Barrier Integrity
There are numerous factors that regulate endothelial adhesions,
and as a consequence influence vascular inflammation and
permeability. Many of these factors play a crucial role
in physiologic oxidative functions of innate immunity, to
facilitate subsequent amplification of inflammatory safeguards
when pathogens or tissue damage are detected. For example,
activated neutrophils produce reactive oxygen species (ROS)
during vascular inflammation which can have effects on
the surrounding tissue microenvironment, notably endothelial
junctional integrity (15). Activated porcine neutrophils cultured
with endothelial monolayers have been shown to enhance
endothelial permeability by altering phosphorylation of VE-
cadherin and β-catenin, resulting in conformational changes
to the adherens junctions that disrupt endothelial barrier
function (42). Of note, the VE-cadherin-catenin complex in
adherens junctions can be regulated by ROS via induction of
phosphorylation which promotes junctional disassembly (43),
and is required for neutrophil transendothelial migration (44),
highlighting an important link between neutrophils, ROS, and
vascular permeability. Other innate immune cells such as

macrophages can be a major source of vascular endothelial
growth factor A (VEGFA) within the microenvironment, which
can also induce oxidative stress and vascular permeability by
phosphorylating VE-cadherin (45) or causing its endocytosis
(46). In mouse models of sterile injury, leukotrienes have
also been shown to act on neutrophils to induce their
release of NE to cleave JAM-C (35). Interestingly, intravital
microscopy has shown that neutrophil communication with
the endothelium in this manner can also enable reverse
transmigration of neutrophils from local tissues back into
the peripheral circulation (35, 47), however, it is unclear
if this process serves to resolve local inflammation, or to
amplify systemic immunological responses. Taken together, while
these inflammatory responses function as an acute protective
mechanism for the host, chronic vascular inflammation can
be detrimental.

Indeed, there are numerous pathological conditions that
can aberrantly weaken the endothelial barrier, which have
strong ties to cancer. This can leave the host prone to
immune exhaustion, disruption of tissue homeostasis, edema,
or nutrient imbalance, and ultimately may modify the ability of
cancer cells to extravasate into secondary tissues. For example,
obesity is a chronic inflammatory condition that is linked to
numerous co-morbidities that affect the vascular system, such
as hypertension, coronary artery disease, and stroke, and is
associated with enhanced cancer incidence (48) and mortality
(49). In fact, obesity is thought to be responsible for up to
20% of cancer-related deaths in adults (49), making it a leading
risk factor for cancer mortality. Indeed, there exists an intimate
relationship between adipose tissue and the vascular system, both
anatomically and functionally, as the majority of blood vessels
are enclosed by perivascular adipose tissue (PVAT), which plays a
role in guiding vascular function and homeostasis by releasing
a myriad of bioactive adipokines and cytokines (50). Under
normal physiologic conditions, PVAT secretes anti-inflammatory
factors and hormones, such as adiponectin, which have protective
effects on the cardiovascular system (51). However, during weight
gain, adipocytes within PVAT exhibit impaired differentiation
and increased expression of pro-inflammatory cytokines, such as
interleukin-6 (IL6), IL8, and monocyte chemoattractant protein-
1 (MCP1) (52), leptin production (53, 54), and oxidative stress
(55) which lead to vascular dysfunction.

In addition to the direct effects of PVAT on adjacent
endothelium, obesity-associated adipose tissue can also have
systemic effects that influence vascular function. For example, in
lung (one of the most frequent sites of cancer metastasis), mouse
models have shown that obesity impairs vascular homeostasis
when adiponectin levels drop, characterized by an increase in
the expression of luminal adhesions including ICAM1, VCAM1,
and E-selectin, and a decrease in endothelial adhesions such as
VE-cadherin (56). These changes increase neutrophil influx into
the lung parenchyma and enhance susceptibility to lung injury
by LPS (a side effect of the leaky gut epithelium), which can be
attenuated by hydrodynamic adiponectin gene delivery (56). In
humans, obesity is similarly associated with oxidative stress and
endothelial activation, as assessed by increased plasma levels of
oxidized low-density lipoprotein, C-reactive protein, and soluble
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forms of ICAM1 and E-selectin (57, 58). In porcine models of
diet-induced obesity, high-fat diet is associated with elevated
superoxide species, nitrotyrosine and NADPH-oxidase subunits
in the coronary endothelium, in concordance with enhanced
myocardial microvascular permeability prior to the development
of insulin resistance (59). These data suggest that oxidative
stress and vascular dysfunction may precede the chronic
inflammatory effects of obesity that present with the onset
of metabolic syndrome. Given the association between obesity
and cancer mortality, these findings raise the possibility that
obesity-associated vascular inflammation may facilitate tumor
cell transendothelial migration, akin to its effects on leukocytes.

Surpassing the effects of obesity on cancer mortality risk,
cigarette smoking remains the leading risk factor for lung
cancer, and remarkably, is responsible for ∼22% of all cancer-
related deaths (60). In addition to cancer, smoking tobacco is
associated with numerous cardiovascular conditions including
atherosclerosis, heart disease, and acute lung injury (61, 62),
which is not surprising given the highly vascularized nature
of lung tissue. Similar to obesity, smoking causes profound
lung inflammation (e.g., increased IL10 and TNFα production,
and accumulation of neutrophils and alternatively-activated
macrophages), and susceptibility to LPS-induced acute lung
injury (63), which together underlie vascular inflammation. In
addition to direct effects on the lung capillaries, numerous studies
have demonstrated that exposure to cigarette smoke is also
associated with a reduction of vascular function in many tissues
in the body, linked to aberrant nitric oxide (NO) production
(64), an increase in inflammatory markers (e.g., TNFα) (65),
and local recruitment of leukocytes to the endothelium (66). In
fact, there is even evidence that certain chemical components of
cigarettes can weaken endothelial junctions of the blood-brain
barrier (67). This may in part explain the high propensity of
lung cancer patients to exhibit metastatic disease to the brain
compared to other primary malignancies, although this has
not been formally tested. Given the causal connection between
smoking tobacco and lung cancer incidence and mortality, the
effects of smoking on vascular function may have multifaceted
effects on cancer progression.

Taken together, chronic inflammatory conditions can mediate
changes in endothelial cell homeostasis and alter vascular
permeability, much in the same way that an acute inflammatory
stimulus does. These conditions (and others) share a common
theme of affecting vascular permeability through aberrant
production of inflammatory mediators, and notably through
enhanced oxidative stress. How these disease states and their
corresponding effects on the vascular system affect metastatic
efficiency, particularly during transmigration of tumor cells
across the endothelial barrier, is a key question that remains
largely unexplored.

VASCULAR INFLAMMATION DURING
CANCER METASTASIS: INFLUENCE OF
THE INNATE IMMUNE SYSTEM

It is well-accepted that inflammation can strongly impact
tumor progression (68, 69). Similar to the consequences of

vascular inflammation on permeability of the endothelium
and leukocyte transmigration, it has been proposed that
metastatic tumor cells can mimic leukocyte behavior and exploit
the inflammatory effects of cancer to assist their spread to
secondary organs (70) (Figure 2). This is achieved through
upregulation of heterotypic adhesions on the endothelium to
facilitate tumor cell rolling and transendothelial migration,
and in parallel, weakening of vascular integrity to facilitate
tumor cell crossing. Immune cells that are activated toward
a pro-tumorigenic phenotype participate in both of these
processes, by secreting pro-inflammatory factors that activate
the endothelium. These immune cells are recruited to the
perivascular microenvironment through tumor-derived factors,
or in response to other underlying inflammatory conditions.
Therefore, a comprehensive understanding of the mechanisms
that mediate these processes may be useful to develop
therapeutics to prevent metastatic progression.

Vascular Trapping, Luminal Adhesions and
Tumor Cell Rolling
Numerous studies have investigated tumor cell extravasation
using in vivo imaging techniques (71–73). As leukocytes are
relatively small, they can comfortably roll along blood vessels
during leukocyte trafficking. However, tumor cells can be much
larger in diameter and may not be able to move through
blood vessels as easily. Studies have investigated the relative
contribution of physical trapping due to size constraints versus
the distinct adhesion of tumor cells during shear-resistant
arrest. Intravital videomicroscopy in mice has demonstrated
that fluorescently labeled Chinese Hamster Ovary (CHO-K1)
cells initially arrest in liver sinusoids following injection into
the mesenteric vein due to mechanical trapping (72). Similarly,
mechanical trapping and tumor cell arrest has been observed
in melanoma and sarcoma models when vessel diameter was
less than tumor cell diameter (71, 73). However, studies have
also shown that tumor cells can arrest in capillaries in the
absence of physical trapping by forming vascular adhesions. For
example, colon cancer cells injected into rats were observed to
arrest in microvessels even when vessel diameter was greater
than tumor cell diameter (74). Similarly, both human HT-29
and murine CC531 colon cancer cells injected intraarterially into
rats were shown to adhere to sinusoidal capillaries that were
larger in diameter than the tumor cells themselves (75). Tumor
cells may therefore become trapped in capillaries due to size-
restriction, or form adhesions to the endothelium in the absence
of mechanical trapping.

Once tumor cells are trapped in or adhere to blood capillaries,
they must cross endothelial barriers. To achieve this, tumor
cells utilize many of the same pathways that mediate leukocyte
transmigration under inflammatory conditions, such as selectins
and cell adhesion molecules (76, 77). Selectin-mediated rolling
of tumor cells has been described, but appears to be less
common than selectin-mediated leukocyte rolling prior to firm
adhesion and extravasation. Nonetheless, rolling of human bone-
metastatic prostate tumor cells has been reported, and relies on
E-selectin expression on bone marrow endothelial cells and the
complimentary expression of cognate ligands on the tumor cells
(78). E-selectin-dependent tumor cell rolling on the endothelium
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FIGURE 2 | Vascular inflammation during tumor cell extravasation and metastasis. (A) Inflammatory macrophages and monocytes induce the expression of ICAM1

and (B) E-selectin via APBA3-HIF1 signaling in endothelial cells. This enhances tumor cell attachment. (C) Tumor cells mimic the endothelium by upregulating VCAM1,

which tethers them to β1 integrin-expressing macrophages and enhances metastatic seeding. (D) Similarly, tumor cells can upregulate ICAM1, and tethers to

β2-integrin expressing neutrophils. This interaction is mediated by IL8 produced by tumor cells, which promotes neutrophil recruitment. (E) Neutrophil-tumor cell

clusters enhance attachment to the endothelium via ICAM1 under flow conditions. (F) Some positive effects of vascular inflammation include enhanced recruitment of

tumor-infiltrating lymphocytes (TILs), through upregulation of VCAM1 and ICAM1. This pathway can be negatively regulated, for example via FasL and ETBR, such that

blocking these factors can improve TIL delivery to tumors. (G) CCR2+ monocytes are attracted to the metastatic niche in response to CCL2 expressed by tumor

cells, where they produce VEGFA to increase vascular permeability. CCL2 can also act directly on the endothelium by dephosphorylating VE-cadherin, disrupting

junctional integrity, and increasing tumor cell transmigration. (H) Angiopoietin 2 (Ang2) expression by endothelial cells reduces pericyte coverage and promotes the

recruitment of CCR2+ monocytes, which promote permeability. (I) Neutrophils produce proteolytic and inflammatory factors (e.g., ROS, IL1β, MMP8, MMP9) to

disrupt endothelial junctions and increase vascular permeability in cancer models.

following TNF activation has also been described for breast and
colon cancer cells (79). However, breast and prostate cancer cells
have been shown to express Thomsen-Friedenreich antigen to
mediate their arrest on the endothelium via interactions with
galectin-3 (80). Furthermore, prostate cancer cell expression
of selectin ligands does not correlate with selectin-mediated
adhesion to the endothelium (81). This suggests that tumor cells
may express selectin ligands, butmay not necessarily use them for
initial tethering and rolling on the endothelium. Thus, whether
selectin-mediated adhesions are requisite for tumor cell binding
to the endothelium and extravasation remains unclear.

Tumor cells may also utilize mechanisms initiated by
innate immune cells within the microenvironment, which can
activate vascular inflammation. For example, macrophages and
monocytes have been shown to influence endothelial activation
by regulating the expression of luminal adhesions such as
ICAM1 (82, 83). In syngeneic melanoma models, glycolytic
macrophages upregulate the expression of E-selectin on the
endothelium through HIF-1 and its activator APBA3, such

that APBA3 depletion in monocytes reverses this effect in
association with reduced metastasis to lung (84). In breast
cancer models, tumor cells mimic the inflammatory state of
the endothelium via endogenous expression of VCAM1, which
tethers them to macrophages expressing α4β1 integrin that
promote metastasis to the lung (85). Surprisingly, VCAM1
depletion in tumor cells had no influence on the ability of
cancer cells to cross the endothelium, rather, this vasculogenic
mimicry phenotype enhanced the ability of cancer cells to
colonize and remain viable within the secondary niche. This
is consistent with reports that the perivascular space acts as
a specialized reservoir for cancer stem cell viability (86), and
also regulates dormancy in the metastatic setting (87). It is thus
conceivable that the viability and/or growth of cancer cells could
be influenced by adhesion factors expressed by the adjacent
endothelium within this niche, in addition to the capacity
for transmigration.

As with vascular permeability, neutrophil-supplied factors can
also influence the expression of luminal adhesions that facilitate
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tumor cell rolling and attachment to the endothelium as they
travel through the circulation. For example, in vitro microfluidic
models of the human microvasculature have shown that LPS-
stimulated neutrophils and melanoma cells form aggregates
under flow conditions, and arrest on the endothelium in part
due to neutrophil-endothelial cell interactions via ICAM1. This
heterotypic clustering mechanism could be reversed by blocking
ICAM1 on vessels or tumor cells, however, endothelial-specific
ICAM1 blockade was much more potent, suggesting that ICAM1
enables tumor cell attachment through both direct and indirect
mechanisms (88). Similarly, in mouse models of melanoma,
melanoma-specific expression of ICAM1 facilitated tumor cell-
neutrophil interactions via β2 integrin on neutrophils, which
facilitated attachment to the endothelium in the secondary lung
microenvironment (89). This was dependent on IL8-secretion
by melanoma cells, a potent neutrophil chemokine, indicating
that tumor cells manipulate their environment to support
their own progression. Taken together, heterotypic endothelial
adhesions appear not only to enable tumor cell adherence to
the endothelium during metastasis, but also enable tumor cell
tethering to innate immune cells within the microenvironment
which further support transmigration.

Although luminal adhesions can facilitate tumor cell
extravasation during metastasis, they can also improve anti-
tumor immunity by facilitating immune cell access to the tumor
niche. For example, in a mouse model of melanoma, NKp46+
innate lymphoid cells (ILCs) upregulate vascular adhesions
such as ICAM1 and VCAM1, which facilitate the infiltration of
additional immune cells with anti-tumor functions (90). In mice
lacking NKp46+ ILCs, this phenotype was reversed. In mouse
models of ovarian cancer, overexpression of the endothelin B
receptor (ETBR) negatively regulates ICAM1 expression on
the endothelium and limits the ability of T cells to access the
tumor, such that inhibition of ETBR improves T cell infiltration
in an ICAM1-dependent manner (91). Others have shown that
expression of Fas ligand (FasL) on the endothelium restricts
leukocyte extravasation across the vascular barrier, including
CD8+ T cells (92) and mononuclear cells (93), such that
targeting FasL reverses this effect. These studies suggest that
broadly targeting mechanisms of transmigration in the context
of cancer would unlikely yield positive benefits; although this
may reduce tumor cell extravasation, it may also restrict the
infiltration of anti-tumor immune cells.

Vascular Integrity and Permeability
Enhanced vascular permeability through downregulation of
endothelial adhesions has been shown to influence the ease
of tumor cell transmigration. While this can be regulated by
a number of different factors, innate immune cells that are
upregulated in response to tumor progression appear to play
an important role. During tumor progression, macrophages,
neutrophils, and various other myeloid cell types accumulate
in both the primary tumor microenvironment and secondary
niche. These cells contribute to a pro-inflammatory milieu that
mimics normal responses to pathogen exposure, however, in the
context of cancer, they can inadvertently facilitate dissemination
(69). For example, in mouse models of breast cancer metastasis,

CCR2+ inflammatory monocytes are attracted to the metastatic
microenvironment by CCL2-producing tumor cells, where
they promote vascular permeability and extravasation in
a VEGFA-dependent manner (94). Tumor-derived CCL2
has also been shown to act directly on the endothelium
to promote its activation, resulting in enhanced monocyte
recruitment, dephosphorylation of VE-Cadherin, reduced
tight junction integrity, and a consequential increase in
tumor cell transmigration (95). Consistently, others have
shown in mouse models of breast and lung cancer that
inhibition of angiopoietin-2 (Ang2) (which is produced by the
activated endothelium) in the post-surgical adjuvant setting
improves pericyte coverage of the endothelium and reduces
CCR2+ macrophage accumulation within secondary sites,
leading to reduced metastatic progression (83). Therefore,
the accumulation of inflammatory monocytes/macrophages
that coincides with metastatic progression may dually serve
to weaken endothelial barriers and enable additional tumor
cells to access the metastatic niche. This may be in part due to
the armamentarium of proteases that macrophages produce,
which can cleave adhesions between endothelial cells. This has
even been shown in mouse models of breast cancer metastasis
through the blood-brain barrier, which is weakened by Cathepsin
S production even though it should otherwise be a tight barricade
to exclude peripheral cells and inflammatory factors from being
able to access the brain parenchyma (96).

Neutrophils are another potent source of cytokines and
proteases (most notably MMPs, NE, and cathepsin G) that can
trigger vascular inflammation. This is an essential function so
that neutrophils can rapidly access tissues as the first line of
defense in the innate immune system (17). In mouse models
of breast cancer metastasis, neutrophils promote metastasis
by impairing the tumor-clearance capacity of NK cells in the
circulation, and by releasing elevated levels of IL1β, MMP8,
and MMP9 into the microenvironment, which increase vessel
permeability (97). Additionally, in mouse models of melanoma
and Lewis lung carcinoma, lung metastasis is enhanced in LPS-
instilled lungs through the local recruitment of neutrophils,
and their subsequent degranulation to release NE and cathepsin
G (98). This causes protease-mediated degradation of the
adhesion protein thrombospondin-1 and results in enhanced
lung metastasis. ROS production by neutrophils has also been
shown to promote tumor metastasis, through induction of
neutrophil extracellular traps (NETs) (99–102); NETs may
promote metastasis by trapping tumor cells (99) and/or by
remodeling the extracellular matrix to awaken dormant tumor
cells (102). ROS production by neutrophils has also been
shown to promote tumor metastasis through the suppression
of T cell immunosurveillance (103, 104). However, the role
of neutrophil-ROS in vascular permeability during tumor
metastasis specifically is less understood, despite its known
role during inflammation. Therefore, cytokines, proteases and
ROS that are produced by neutrophils to facilitate peripheral
recruitment of immune cells during normal inflammatory
responses may similarly facilitate peripheral recruitment of
tumor cells. Thus, the ability of tumor cells to stimulate
the accumulation and activation of neutrophils within the

Frontiers in Immunology | www.frontiersin.org 7 August 2019 | Volume 10 | Article 1984

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


McDowell and Quail Vascular Inflammation During Cancer Metastasis

microenvironment (97, 98, 105–109) represents a critical way
that tumors highjack and manipulate their niche to support their
own progression.

Given the role of platelets during leukocyte extravasation,
it is not surprising that they have similarly been shown
to influence tumor cell extravasation. In murine models of
experimental lung metastasis, platelet-tumor cell interactions
promote tumor cell extravasation through the secretion of
TGF-β from platelets and the subsequent activation of Smad
and NFκB signaling within colon and breast carcinoma cells
(110). This facilitates progression to an invasive mesenchymal-
like phenotype and metastatic progression. Platelets have also
been shown to recruit granulocytes to colon tumor cells within
the lung in murine models of experimental lung metastasis,
allowing for the formation of “early metastatic niches” in the
lung microenvironment (111). Furthermore, using both in vitro
Transwell assays and murine spontaneous lung metastasis assays,
platelets activated by melanoma or lung tumor cells facilitated
tumor cell transendothelial migration and extravasation via
the secretion of adenine nucleotides (112). This promoted
the opening of the endothelial barrier by acting on the
endothelial P2Y2 receptor, supporting metastasis. Thus, platelets
can modulate tumor cells, innate immune cells and/or the
endothelium to facilitate the metastatic process.

TARGETING INNATE IMMUNITY TO
IMPROVE VASCULAR INTEGRITY AS
CANCER THERAPY

There are several therapeutic approaches that may be useful
to minimize chronic vascular inflammation and thus impede
the ability of tumor cells to access the metastatic niche. One
obvious approach is to target the vasculature directly, for
example through anti-angiogenic strategies like bevacizumab
(a VEGFA neutralizing antibody). However, while preclinical
studies using anti-VEGFA antibodies showed great success
leading to their clinical development (113), bevacizumab only
improved progression-free survival, but not overall survival, in
clinical trials for metastatic breast cancer (114–117). Although
limiting nutrient delivery to tumors may seem logical to restrict
viability and growth, crude attempts to broadly ablate the
tumor vasculature may mitigate the beneficial effects of the
blood vessels, such as leukocyte infiltration, oxygenation, and
drug delivery. Vascular normalization strategies that aim to
improve vascular maturation and integrity have been proposed
as an alternative to anti-VEGFA treatments (118). For instance,
preclinical studies have shown that VEGFR2 antibody blockade
using DC101 can normalize the structure of the tumor-
associated endothelium by improving the quality of the basement
membrane and enabling improved pericyte coverage (119, 120).
Whether these normalization strategies will be effective in the
context of metastatic cancer, and how this will influence tumor
cell interactions with the endothelium, have yet to be determined.

Given the potentially beneficial effects of luminal adhesions in
bringing specific types of immune cells into tumors to enhance
anti-tumor immunity, disrupting endothelial cells broadly may

not be an optimal therapeutic approach. Several methods to
enhance anti-tumor lymphocyte-specific recruitment have been
proposed (121). For example, in ovarian cancer patients, ETBR
expression correlates with low tumor infiltrating lymphocytes,
and experimental models have shown that pharmacological
blockade of ETBR with BQ-788 enhances T cell infiltration
into tumors by modifying the endothelial barrier via a NO-
and ICAM1-dependent mechanism (91). Importantly, rendering
tumors “immune hot” through thismethod enhanced response to
immunotherapy via cancer vaccination, whereas control tumors
remained unresponsive (91). Interestingly, studies have also
shown that VEGFA induces the expression of luminal adhesion
proteins on endothelial cells, including ICAM1, VCAM1, and
E-selectin, and that this can be blocked using an NFκB
inhibitor, pyrrolidine dithiocarbamate (PDTC) (122), a chemical
compound that dually serves as an oxygen radical scavenger. If
these adhesions play a functional role in anti-tumor lymphocyte
recruitment, this may partially contribute to the limited effects
of anti-VEGFA therapies. Together these studies and others
support the notion that endothelial barrier phenotypes and
immune-surveillance are two intimately linked components of an
immunoregulatory program in cancer, and that reprogramming
the endothelium to enable leukocyte entry into tumors may have
beneficial anti-tumor effects (123). This becomes particularly
relevant in the context of cancer immunotherapy, as “immune-
hot” tumors (i.e. those with high abundance of tumor-
infiltrating lymphocytes) are more likely to respond to immune
checkpoint blockade. Of note, the endothelium itself is capable
of expressing checkpoint molecules that can negatively regulate
T cell responses, including PDL1, PDL2, and TIM3 (124–
126); whether endothelial-specific expression of these factors
functionally influences response to immune checkpoint blockade
remains uncertain.

Alternatively, there may be therapeutic opportunities to
target innate immune cells in the microenvironment that
both regulate vascular phenotypes, and dually act on tumor
cells directly to promote progression. For example, several
studies have shown that neutrophil depletion through antibody
blockade can reverse metastasis of breast cancer (106, 108),
including in the experimental setting where metastasis is
assessed after 48 h following tail vein injection (potentially
representative of extravasation) (97, 127). Alternatively,
pharmacologic inhibition of CXCR2 has also been explored
as a therapeutic approach to limit neutrophil infiltration
and improve T cell infiltration in association with reduced
metastatic progression in pancreatic models (128), which
may help mitigate chronic oxidative and proteolytic effects
on the endothelium. Indeed, pharmacologic agents targeting
CXCR2 such as AZD5069 are now being explored in the
clinical setting for metastatic cancer. In addition, Tie2-
expressing monocytes/macrophages can trigger angiogenesis
and vascular activation by inducing the expression of ICAM1
on the endothelium through interactions with its ligand,
Ang2 (83, 129, 130), and several compounds that inhibit the
Ang2-Tie2 axis are now being explored in the clinical setting
for metastatic cancer including in the context of improving
response to immune checkpoint inhibitors (131). Taken
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together, these trials demonstrate the clinical relevance of
targeting vascular inflammation in cancer patients to improve
metastatic outcomes.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Innate immunity and vascular inflammation are two intimately
connected biological processes that rely on one another
to mediate physiologic responses to infection/inflammation.
However, these intricate networks become undone in the context
of cancer, and can be amplified by chronic inflammatory
states. Given the complex nature of cell-cell interactions
within the tumor microenvironment, consideration of all
cellular players during different stages of the metastatic
cascade is critical in order to optimize disease outcomes.
Broadly inhibiting specific cell types is unlikely to yield
favorable benefits; rather, reprogramming the microenvironment
to work favorably and productively is key to improving
survival. The endothelium in particular regulates multifaceted
aspects of the microenvironmental landscape in all tissues
throughout the body, as it is the gatekeeper of immune cell
transmigration, nutrient and oxygen delivery, and a critical
source of systemic soluble factors. Cancer hijacks these critical

roles, and takes advantage of vascular plasticity to support
disease progression. Therefore, by improving our understanding
of normal physiologic functions of blood vessels and their
interactions with regulatory cells within their environment,
we will be able to improve our ability to target specific
aspects of extravasation and metastasis by reprogramming the
microenvironment to our advantage.
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