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Factor XII (FXII) is the zymogen of serine protease, factor XIIa (FXIIa). FXIIa enzymatic

activities have been extensively studied and FXIIa inhibition is emerging as a promising

target to treat or prevent thrombosis without creating a hemostatic defect. FXII and

plasma prekallikrein reciprocally activate each other and result in liberation of bradykinin.

Due to its unique structure among coagulation factors, FXII exerts mitogenic activity

in endothelial and smooth muscle cells, indicating that zymogen FXII has activities

independent of its protease function. A growing body of evidence has revealed that both

FXII and FXIIa upregulate neutrophil functions, contribute to macrophage polarization and

induce T-cell differentiation. In vivo, these signaling activities contribute to host defense

against pathogens, mediate the development of neuroinflammation, influence wound

repair and may facilitate cancer maintenance and progression. Here, we review the roles

of FXII in innate immunity as they relate to non-sterile and sterile immune responses.

Keywords: factor XII, uPAR, contact activation, innate immunity, sepsis, neutrophil extracellular traps, cancer

progression, wound healing

INTRODUCTION

Factor XII (FXII) is the zymogen of serine protease, factor XIIa (FXIIa). FXII is converted to
its active enzyme (FXIIa) by plasma kallikrein (PKa) or by its unique ability to auto-activate
following binding to artificial or biologic surfaces (1). In vivo, FXIIa initiates coagulation
via the fibrin-forming “intrinsic” pathway and promotes inflammation via the bradykinin
(BK)-producing kallikrein kinin system comprising, high molecular weight kininogen (HK) and
plasma prekallikrein (PK). Together, FXII, PK, and HK are termed plasma contact activation
system. Furthermore, FXIIa may modulate components of the complement and fibrinolytic
systems however to date, these activities have only been demonstrated in vitro. There has been
renewed interest in FXII due to the recognition that several substances [e.g., polyphosphate,
misfolded protein, vascular collagen, DNA in neutrophil extracellular traps (NETs)] support FXII
auto-activation in vivo (2–7) and prior studies showing that FXII deficient (F12−/−) animals
are protected from thrombosis without impaired hemostasis (8–11). Similarly, pharmacologic
targeting of FXII or FXIIa provided protection from thrombosis without increased incidence of
bleeding (7, 12).

Although the enzymatic activities of FXII have been thoroughly studied and the FXIIa protease
domain structure is known (13), few zymogen FXII functions have been recognized. Prior reports
have shown that FXII deficiency is linked to decreased infiltration of inflammatory cells into
skin windows (14). In human plasma, FXII and FXIIa promote neutrophil aggregation and
degranulation (15) and FXII with related proteins assembles on the surface of neutrophils (16).
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FXII has two epidermal growth factor domains that contribute
mitogenic activity in endothelial and smooth muscle cells (17,
18), similar to activated Factor X (FXa), protein C and S (19–21).
These data indicate that zymogen FXII differentially regulates cell
activities independent of its protease function.

Despite its role in pathologic thrombosis, FXII deficiency
is rare in humans indicating that it may contribute to
homeostatic functions. Here, we review the role of FXII in non-
sterile and sterile inflammation. We focus on its differential
contribution to host immune responses to infectious pathogens
and contrast these to newly appreciated FXII functions in
chronic, sterile inflammation.

ROLE OF FACTOR XII IN INFECTIOUS
SETTINGS

FXIIa Interactions With Bacteria
Experimental and clinical studies have shown a link between FXII
and the contact system to infections (22–25). Several mechanisms
have been proposed by which contact system components
modulate infectious burden and the inflammatory response.
First, FXII directly binds to the surface of bacteria, fungi,
viruses as well as on neutrophils and neutrophil extracellular
traps (NETs) where it autoactivates (26). In a Salmonella-
induced pneumonia model in rats, targeting FXIIa using
the peptide inhibitor H-D-Pro-Phe-Arg-chloromethylketone
ameliorated lung injury and largely prevented bacteria-induced
bleeding (27). Another mechanism by which microorganisms
can induce FXII zymogen activation, involves contact activation
by the inorganic polymer polyphosphate (polyP). Bacterial-
derived polyphosphate, similar to polymers exposed by activated
platelets, drives contact system activation (2). Microbes contain
polyP that serves as their energy storage pool, with a size
varying in length from hundreds to thousands of phosphate units
(28). PolyP forms calcium ion-rich nanoparticles that trigger
FXII autoactivation independently of polymer length on cell
surfaces in vivo (29, 30). Consistent with this finding, polyP
from Salmonella and E. coli species shows extreme potency at
triggering the contact pathway (2, 30). PolyP not only contributes
to FXIIa-mediated fibrin formation, but it also interferes
with binding of fibrin to tissue-type plasminogen activator or
plasminogen (31), thus affecting fibrinolysis. Waack et al. (32)
showed that metalloprotease CpaA secreted from Acinetobacter
baumanii species inactivates FXII. The cleavage by CpaA was
mapped on two positions, 279–280 and 308–309, within the
proline-rich region of FXII and cleavage at the 308–309 site was
a requirement for inactivation of FXII. At both sites, cleavage
takes place between a proline and an O-linked glycosylated
threonine residue and deglycosylation of FXII rescues fromCpaA
cleavage. Strikingly, mutant FXII (Thr309Lys) from patients
with hereditary angioedema type III (HAEIII), where O-linked
glycosylation at position 309 is lost and inactivation by C1
esterase inhibitor during activation by plasmin is reduced (33,
34), is protected from CpaA inactivation (32). By inactivating
FXII, CpaA attenuates important coagulation and inflammatory
mechanisms, thus allowing A. baumannii dissemination (32). To

date, the structural details of the interaction(s) between FXII
and pathogens remain elusive. An exciting possibility would be
that FXII functions as a soluble pattern recognition molecule
or damage-associated molecular pattern (DAMP), binding to
defined sites on microorganisms. Until such time that the
surface-binding domains of FXII are fully characterized, this
scenario remains speculative.

FXIIa-Initiated Bradykinin Formation
As discussed above, bacteria can activate the contact system
either through direct binding or indirectly through the release of
mediators (35). Staphylococcus aureus bacteria release proteinases
which directly cleave HK whereas other proteinases such as
from Porphyromonas gingivalis, indirectly lead to HK cleavage
through proteolytic activation of FXII (36). HK cleavage results
in liberation of BK, a potent proinflammatory and vasodilatative
peptide (37). BK regulates vascular smooth muscle relaxation,
increases vascular permeability and can directly influence
leukocyte functions (38, 39). Host infection with hantavirus
results in increased enzymatic activities of FXIIa and PKa and
subsequent release of BK, leading to enhanced endothelial cell
permeability and vascular leak (40). Another virus HSV1 directly
binds to FXII and in the presence of PKa, promotes its activation.
Inhibiting FXIIa or use of antibodies to FXII, PK, and Factor
XI prevented HSV1-initiated clotting (41). Persistent bacteria-
mediated contact system activation may result in abnormally
high plasma BK levels and consumptive coagulopathy and can
induce hypotension and edema, contributing to multi-organ
failure. Indeed, in a model of lethal E. coli bacteremia in baboons,
FXII activation was related with the hypotension seen in these
animals (42). In this primate model, contact activation and FXIIa
generation manifested primarily by a significant decrease in HK
and a significant increase in PKa, indicative of increased BK
formation. Animals treated with C6B7, a monoclonal antibody
to FXII, experienced an initial drop in systemic blood pressure
that subsequently resolved and extended their overall survival
(42). However, all groups including C6B7-treated animals,
equally developed disseminated intravascular coagulation (DIC)
manifesting with thrombocytopenia, hypofibrinogenemia and
decreased factor V levels (42). Interfering with BK activity
resulted in attenuation of acute respiratory distress syndrome
(ARDS) features in a rat hypothalamic nuclei lesion model
(43) and significantly improved outcomes of patients with
systemic inflammatory response syndrome caused by Gram-
negative bacteria (44). These data indicate that interfering with
FXIIa-induced BK formation, alone can have beneficial effects in
host defense.

The protective effects of functional FXII deficiency were
shown to be pathogen-specific (45). Stroo et al. showed
that genetic ablation of FXII conferred a survival advantage
from Klebsiella pneumoniae sepsis but not from Streptococcus
pneumoniae sepsis (45). The authors postulate that the contact
system becomes operative in late disease stages, where damage
due to overwhelming inflammation accounts for FXII activation
and BK release (45). It is important to note however that
in this study, Klebsiella-infected FXII deficient mice also had
consistently decreased bacterial loads. This finding raises the
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intriguing possibility that FXII may preferentially interact with
specific pathogens or their soluble mediators to facilitate bacterial
maintenance and invasion. Further studies are warranted to
mechanistically determine if under certain infectious settings,
FXII serves as an in vivo bacterial “fitness factor.”

FXII Responses Independent of Plasma
Kallikrein
Although BK is the main inflammatory mediator of the
contact system, FXIIa also initiates the classical complement
cascade (46) and exerts direct proinflammatory properties
in vitro. In the presence of lipopolysaccharide (LPS), FXII
exposure of peripheral blood monocytes resulted in enhanced
interleukin 1 (IL-1) activity and LPS was also essential for FXII-
and FXIIa-triggered expression of IL-6 and IL-23 by splenic
dendritic cells (47). Moreover, zymogen FXII and FXIIa were
shown to promote neutrophil degranulation (15) and FXII
content in bronchoalveolar lavage fluid from ARDS patients,
was significantly higher in non-survivors than in survivors
(48). In this setting, FXII but not FXIIa, upregulated the
expression of inflammatory cytokines interleukin 8 (IL-8), IL-1β,
interleukin 6 (IL-6), CXC chemokine ligand 5 (CXCL5), leukemia
inhibitory factor (LIF), and tumor necrosis factor alpha (TNF-α),
independently of plasma kallikrein (48).

In sum, the aforementioned studies highlight that FXII has
a complex role in sepsis eliciting distinct pro-coagulant and
pro-inflammatory responses that differentially contribute to
infectious outcomes (Figure 1).

ROLE OF FXII IN STERILE INFLAMMATION

Discoveries over the past few years have increased our
understanding of the diverse FXII functions. Here, we summarize
the signaling events for FXII and FXIIa in innate immune cells
with a focus on sterile inflammatory conditions and discuss the
downstream physiologic and pathologic consequences.

Immune Cell Biology of FXII and FXIIa
Our lab recently reported on the role of FXII in neutrophil
proinflammatory responses (49). We showed that autocrine FXII
binds to urokinase plasminogen activator receptor (uPAR) with
high affinity and their interaction induces Akt2 phosphorylation.
In vivo, FXII (which interacts with domain II of uPAR)
and HK (which binds to domains II and III), compete for
binding and their interaction with uPAR is mutually exclusive
(50–52). Moreover, in resting neutrophils uPAR is stored
intracellularly secretory vesicles and specific granules (53).
Neutrophil activation results in upregulation of uPAR expression
and its subsequent translocation to the neutrophil plasma
membrane (53). This highly regulated appearance of FXII
binding sites on primed neutrophils, partly explains why the
FXII-uPAR interaction is not operating continuously. Another
rate-limiting step for FXII and uPAR binding is FXII’s cell-
binding ability. In vivo, FXII binding to cells is augmented
when the local free zinc ion concentration rises significantly
from baseline plasma levels of ∼20 nM (54, 55) to a micromolar
(µM) range. The source of extracellular zinc was previously

FIGURE 1 | Role of FXII in non-sterile inflammation. In infectious conditions, Factor XII (FXII) activation occurs through various mechanisms including pathogen

surfaces, bacterial products, polyP, neutrophils, and NETs. Activated FXII (FXIIa) leads to BK generation and activates components of the complement system. Both

FXII and FXIIa increase the expression of pro-inflammatory cytokines and influence leukocyte functions. In certain settings, the sum of these activities contributes to

prevention of dissemination. Alternatively, the presence of FXII and subsequent FXIIa and BK generation, lead to adverse outcomes and increased mortality

independently of Factor XI activation. PolyP, polyphosphate; BK, Bradykinin; NETs, Neutrophil Extracellular Traps.
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shown to derive from activated cells such as platelets (50, 56).
Neutrophils also contain a rich network of zinc transporters and
may potentiate the mobilization of zinc toward the extracellular
compartment during inflammation. To this end, surface plasmon
resonance confirmed that in the absence of zinc, FXII does not
interact with uPAR (49). In sum, FXII-uPAR complex formation
is a highly regulated process in vivo governed both by uPAR
surface expression and the local concentration of zinc ions (49).

Having no intracellular domain, uPAR has to engage other
membrane receptors that mediate signals to cells. uPAR has
an intimate relationship with integrins regulating their affinity
and avidity, but the reverse is also true, integrins are able to
modulate the activity of uPAR. In neutrophils and macrophages,
this crosstalk permits an indirect connection of uPAR with
the integrin interactome (57). In this context, we found that
the FXII-uPAR interaction increases the surface expression
of neutrophil αMβ2 integrin, leads to intracellular Ca2+

mobilization, and promotes histone citrullination (49). These
signaling events, which are independent of FXII enzymatic
activity, upregulate neutrophil functions. Specifically, FXII-uPAR

promote neutrophil adhesion to extracellular matrices including
fibrinogen, increase directional cell migration (chemotaxis) and
NET formation (49) (Figure 2). The identification that FXII itself
promotes NET formation is novel and therapeutically relevant
since the conventional thinking was that their relationship lies
purely on activation of circulating FXII on preformed NETs
(5). On-going studies in our lab seek to determine if FXII-
uPAR-mediated functions in neutrophils are exclusively initiated
through αMβ2 or if additional lateral partners are involved in
intracellular signal transduction.

Eventually, neutrophil priming enables circulating FXII to
bind onto neutrophils and autoactivate (5, 49). In addition
to FXII, HK and PK also assemble on the surface of
primed neutrophils (16) via binding to proteoglycans (58),
which modulate the liberation of BK (59). This neutrophil-
bound contact system generates FXIIa which selectively induces
neutrophil aggregation and degranulation (15). FXIIa-mediated
activation of PK and/or release of neutrophil-derived tissue
kallikrein, may be responsible for the circumscribed formation
of BK. The local release of BK in turn may facilitate the escape of

FIGURE 2 | Regulatory functions of FXII and FXIIa in sterile inflammation. Zymogen FXII functions as an autocrine messenger through uPAR to promote Akt2S474

phosphorylation. Propagation of FXII-mediated neutrophil activities includes adhesion, chemotaxis that leads to neutrophil trafficking at sites of inflammation and NET

formation. Subsequent contact activation on the surface of preformed NETs leads to FXIIa generation and fibrin formation. In monocytes and macrophages, FXII and

FXIIa upregulate the expression of pro-inflammatory mediators and promote cell polarization toward an M2 phenotype. In dendritic cells, FXII signals through uPAR to

induce the differentiation of naive T-cells to TH17 cells. These immune cell responses contribute to impaired wound healing, propagation of venous thrombosis, tumor

maintenance, and invasion as well as tissue damage during CNS autoimmunity. NETs, neutrophil extracellular traps; Mono, Monocytes; Macro, Macrophages; DC,

Dendritic cells; TH17, T-helper cells.
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neutrophils toward the extracellular space by causing endothelial
cell retraction, and permits transudation of plasma content
by controlling vascular permeability at sites of inflammation
(Figure 2).

In addition to neutrophil pro-inflammatory responses, FXII
modulates the functions of an array of innate immune cells
(47, 60, 61). Previous studies have shown that macrophages react
to FXII and FXIIa, by increasing the production of IL-6, IL-
12, and tumor necrosis factor (TNF)-α. Moreover, peripheral
blood mononuclear cells treated with FXII acquire an M2-tissue
reparative phenotype as seen by increased secretion of IL-4, IL-8,
IL-10, and transforming growth factor (TGF)-β. Finally, FXII was
shown to promote the differentiation of T helper (Th) naive cells
to TH17 cells (62) (Figure 2).

Collectively, these data highlight two key concepts: (i)
zymogen FXII is able to directly influence innate immune
functions, and (ii) FXII and FXIIa exert distinct and separate
cellular effects.

INFLUENCE OF FXII AND FXIIA ON
STERILE INFLAMMATORY TISSUE
RESPONSES

Here, we focus on how FXII- and FXIIa-mediated responses in
innate and adaptive immune cells are integrated in the activation,
regulation and effector mechanisms that lead to diverse
pathologies and extend beyond their role in contact activation.

FXII-Neutrophil Crosstalk in Wound
Healing and Tissue Disrepair
Wound healing is an intricate process that consists of multiple
phases, each of which is indispensable for proper tissue repair.
Prompt initiation and resolution of each wound healing phase
namely, hemostasis, inflammation, proliferation, and tissue
remodeling, is critical for promoting repair and avoiding
scar formation. While neutrophils play a central role in the
inflammatory phase, recent evidence suggests that their prompt
removal is equally important for orderly wound progression
through subsequent phases of healing (63). Animal models show
that excess neutrophil entry into wound sites interferes with
keratinocyte proliferation and migration (64). In addition to
these effects, lengthy neutrophil presence in wounds leads to
unrestricted proteolytic activity by neutrophil granular enzymes
that eventually leads to a pathologic chain of events leading to
matrix degradation and proteolytic inactivation of growth factors
and their receptors (65). Indeed, proteomic studies showed that
levels of neutrophil granular enzymes, among them neutrophil
elastase, are increased in the exudate of non-healing human
wounds and is thought to reflect a chronic, inflammatory, tissue-
destructive microenvironment (66). In contrast, levels of alpha1-
antitrypsin, the physiologic inhibitor of neutrophil elastase, were
increased in well-healing wounds (65). Neutrophil elastase is a
critical component of NETs and contributes to their function
(67). Recent studies show that circulating neutrophils from
diabetic individuals are primed constitutively to produce NETs
(68), and NETosis delayed diabetic wound healing in mice

and humans (69). Therefore, continued recruitment, or buildup
of active neutrophils, inevitably prolongs inflammation and
contributes to the development of chronic wounds.

In two models of sterile inflammation, we show that
neutrophil recruitment is decreased in FXII deficient (F12−/−)
mice and this is a bone marrow-endowed function (49).
Decreased neutrophil migration at sites of inflammation was
associated with reduced NETs into the woundmicroenvironment
and improved wound healing (49). Altogether, these data support
that limiting the activity of neutrophils may be beneficial for
the treatment of recalcitrant wounds and provide the rationale
for our on-going studies, harnessing the FXII-uPAR axis in
neutrophils as a therapeutic strategy to promote wound healing.
Given that loss of uPA but not uPAR delays wound healing (70),
our findings confirm prior studies that the influence on wound
healing is ligand dependent, not uPAR dependent.

The FXII-uPAR Axis in Cancer Maintenance
and Progression
We previously published our findings on the contribution of FXII
and polyP in prostate cancer-associated thrombosis (6). As FXII
and FXIIa each exhibit growth factor properties, the question
arises as to their potential involvement in regulating cancer cell
behavior. uPAR is emerging as a cell surface-associated receptor
that contributes to the development, progression, maintenance
and metastasis of several cancers including epithelial ovarian
cancer (EOC) (71–73). In EOC cells, uPAR has been reported to
be overexpressed in more than 90% of ovarian cancer patients
whereas, it is absent or minimally expressed in normal ovarian
surface epithelium (74). uPAR overexpression in human ovarian
cancer is associated with decreased overall survival (71–73).
Moreover, global gene expression analysis revealed increased
levels of F12 mRNA in EOC tumors but not in normal
ovarian epithelium or fallopian tubes (75), and stimulation
of ovarian cancer cells with FXII induced cell invasion (76).
Interestingly, neutrophils have also recently been recognized to
be important players in the ovarian tumor microenvironment,
inducing epithelial-to-mesenchymal transition and promoting
tumor invasion (53, 77, 78) (Figure 2). In this framework,
ascertaining the role of host vs. tumor FXII-uPAR in EOC
progression is likely to be a promising line of investigation.

FXII and Thromboinflammation
In a traditional view, the pathogenesis of DVT can be captured
by Virchow’s triad, which postulates that three main factors
contribute to VTE development: reduced blood flow (stasis),
vascular endothelial damage, and a hypercoagulable state. This
conventional paradigm dramatically shifted with the observation
in recent years that neutrophils significantly contribute to
thrombosis, termed thromboinflammation (5, 79, 80). The
cooperation of platelets with neutrophils was identified using
a murine model of DVT in which flow restriction induces
thrombosis in the inferior vena cava (IVC) (5). In this model,
platelets and neutrophils are promptly recruited to the vessel
wall within hours of reduced blood flow and engage in
heterotypic cell-cell interactions (5). These interactions facilitate
DVT growth and propagation by: (1) supporting additional

Frontiers in Immunology | www.frontiersin.org 5 August 2019 | Volume 10 | Article 2011

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Renné and Stavrou Factor XII in Non-sterile and Sterile Inflammation

neutrophil recruitment; and (2) stimulating neutrophils to release
NETs which are indispensable for subsequent DVT propagation
through FXII autoactivation, coagulation factor assembly and
fibrin formation (5) (Figure 2). Exposure of endogenous polyP
on activated platelets or intravenous administration of polyP
resulted in FXII activation and lethal pulmonary embolism in
wild type mice. In contrast, genetic FXII deficiency or a FXIIa
inhibitor (2, 81), prevented the development of PE. Recombinant
Ixodes ricinus contact phase inhibitor (Ir-CPI), a Kunitz-type
protein expressed by the tick Ixodes ricinus, specifically interacts
with human FXIIa, FXIa, and PKa and results in prolongation
of the aPTT in vitro (81). Intravenous administration of IrCPI
in rats and mice caused rescued animals from venous thrombus
formation in a dose-dependent fashion (81).

While multiple models have demonstrated the critical role
of both FXII and neutrophils in thrombosis, some exceptions
seem to exist. FXII and neutrophils were recently shown to be
dispensable for vascular occlusion in the large veins of the head
following combined “knockdown” of natural anticoagulants,
protein C and antithrombin (82). However, unlike the IVC
stenosis model which mimics human DVT by reducing venous
return, the study by Heestermans et al. involved large alterations
in the natural plasma protease inhibitor balance. This setting
appears to be more reflective of a state of disseminated
intravascular coagulation (DIC) with consumptive drop in
platelet count, spontaneous intravascular thrombosis and tissue
fibrin deposition, rather than DVT forming as a result of venous
stasis in the absence of a severe hypercoagulable state. Although
additional studies are required to demonstrate the clinical utility
of FXIIa inhibitors in the management of DVT, it will be
interesting to also examine whether there is potential for FXII
inhibitors that interfere with zymogen FXII activation of cells, as
a strategy to mitigate DVT development.

Influence of FXII in Autoimmunity
It is widely accepted that multiple sclerosis develops due to
peripheral autoreactive T-cells which are able to pass through the
blood–brain barrier, induce diffuse inflammatory lesions in the
brain, thus leading to demyelination. Prior studies have shown
that effector T-helper cells (TH1 and TH17) play a key role
in the development of inflammation and tissue damage during
CNS autoimmunity (83–85). Interaction of T cells with dendritic
cells (DCs), antigen-presenting cells (APCs), is crucial for proper

T-cell differentiation (86, 87). Excess presence of effector T-
cells in brain lesions and increased levels of T-cell-derived
cytokines in peripheral blood mononuclear cells (PBMCs) of
patients also highlight the causal role of autoreactive T-cells
in human MS (88, 89). Gobel et al. investigated the role of
FXII in autoimmunity using an experimental model of MS
(62). They show that F12−/− mice are less prone to developing
CNS inflammation and FXII worsened features of experimental
autoimmune encephalomyelitis (EAE). Pharmacologic blockade
of FXIIa was protective against EAE, independently of Factor
XI and kallikrein-kinin generation (62). Mechanistically, FXII
stimulated DC-induced TH17-cell generation in a uPAR-
dependent manner. These results increased our understanding
on the role of FXII in adaptive immunity and its potential as a
therapeutic target in autoimmune disease states (Figure 2).

CONCLUSION

In summary, new perspectives have emerged that call for a
reappraisal of the role of FXII in vivo. Far beyond its fundamental
property to autoactivate, FXII engages in complex receptor
interactions that cooperatively influence immune cell behavior
and contribute to physiologic and pathophysiologic responses.
The details of the signaling pathways downstream of FXII are
still incomplete. The challenge now is to elucidate the subtle
molecular details of this versatile orchestrator and its impact on
in vivo processes that determine health and disease.
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