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The IL-1 family consists of 11 cytokines, 7 ligands with agonist activity (IL-1α, IL-1β,

IL-18, IL-33, IL-36α, IL-36β, IL-36γ) and four members with antagonistic activities [IL-1

receptor antagonist (IL-1Ra), IL-36Ra, IL-37, IL-38]. Recent articles have described that

most members of IL-1 family cytokines are involved in the process of innate and adaptive

immunity as well as fibrosis in systemic sclerosis (SSc). IL-1 family gene polymorphisms,

abnormal expression of IL-1 and its potential role in the fibrosis process have been

explored in SSc. IL-33 and IL-18 have also been discussed in the recent years. IL-33

may contribute to the fibrosis of SSc, while IL-18 remains to be researched to confirm

its role in fibrosis process. There is a lack of study on the pathophysiological roles of

IL-36, IL-37, and IL-38 in SSc, which might provide us new study area. Here, we aim

to give a brief overview of IL-1 family cytokines and discuss their pivotal roles in the

pathogenesis of SSc.
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INTRODUCTION

Systemic sclerosis (SSc) is an idiopathic autoimmune disease characterized by immune dysfunction,
vasculopathy, and progressive fibrosis in skin and internal organs. Clinically, skin thickening and
fibrosis are the most typical features of SSc. In patients with SSc, major causes of premature death
are the pathological changes in lung, gastrointestinal tract, kidney, heart (1). However, the etiology
and pathogenesis of immune abnormalities and fibrosis in SSc are poorly understood, which leads
to a lack of effective treatments for SSc. The current treatment is mainly non-specific symptomatic
treatment, which can only temporarily improve the condition but cannot fundamentally control
the progress of fibrosis (2).

The interleukin (IL)-1 family is a group of 11 proinflammatory and anti-inflammatory cytokines.
Recent findings show that expression of most IL-1 family cytokines, such as IL-1α, IL-1β, IL-18, and
IL-33, was abnormal in many autoimmune diseases including SSc. Similarly, gene polymorphisms
of IL-1α, IL-1β, IL-18, and IL-33 were reported to be correlated with SSc susceptibility. Therefore,
in this review, we provide a brief introduction of IL-1 family cytokines biological functions, the
association of IL-1 family genes and SSc and the roles of IL-1 family cytokines in the expression and
pathogenesis of SSc. The IL-1 family cytokines and their roles in SSc are summarized in Table 1.
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TABLE 1 | The role of IL-1 family members in the pathogenesis of SSc.

Common name IL-1 family name Receptor Co-receptor Potential roles in SSc or fibrosis

IL-1α IL-1F1 IL-1R1 IL-1 RAcP (also

termed IL-1R3)

Up-regulated in the lesional skin and serum. Induce the production of IL-6 and

PDGF. Promote viability of SSc fibroblasts.

IL-1β IL-1F2 IL-1R1 and IL-1R2 IL-1 RAcP Elevated in the serum, BAL, and lesional skin. Induce IL-6 and TGF-β1, promote

Th17 cell differentiation

IL-1Ra IL-1F3 IL-1R1 NA Up-regulated in SSc-affected fibroblasts. Induce fibroblasts differentiate into

myofibroblast

IL-18 IL-1F4 IL-18Rα (also

termed IL-18R1 or

IL-1R5)

IL-18Rβ (also

termed IL-1R7)

Elevated in serum and BAL. Pro-and anti-fibrotic effects were reported in fibrosis

IL-33 IL-1F11 ST2 (also termed

IL-1R4)

IL-1 RAcP Down-regulated in early SSc, upregulated in late SSc. Elevated in the serum.

Induce M2 macrophages and ILC2 to produce IL-13 and TGF-β

IL-36α, IL-36β,

IL-36γ

IL-1F6 IL-36R (also

termed IL-1R6)

IL-1 RAcP Drive fibrosis and activate the NLRP3 inflammasome

IL-36Ra IL-1F5 IL-36R NA Unknown

IL-37 IL-1F7 IL-18Rα SIGIRR (also

termed IL-1R8)

Down-regulate pro-inflammatory cytokines

IL-38 IL-1F10 IL-36R TIGIRR-2 (also

termed IL-1R9)

Unknown

THE BIOLOGICAL CHARACTERISTICS OF
IL-1 FAMILY CYTOKINES

The IL-1 family consists of 7 members with agonistic functions
(IL-1α, IL-1β, IL-18, IL-33, IL-36α, IL-36β, and IL-36γ) and 4
members with antagonistic activities, including IL-1Ra, IL-36Ra,
IL-37, and IL-38 (3). IL-1 family cytokines are divided into 3
subfamilies based on the length of precursor protein and the
N-terminal pro-pieces for each precursor. The IL-1 subfamily
consists of IL-1α, IL- 1β, IL-33, and possess the longest pro-
pieces, composed of ∼270 amino acids. The IL-18 subfamily is
comprised of IL-18 and IL-37 and also possess long pro-pieces
composed of ∼190 amino acids. IL-36 subfamily comprising IL-
36α, IL-36β, IL-36γ, and IL-38 possess the shortest pro-pieces of
∼150 amino acids (4).

Most IL-1 family members are commonly expressed as
full-length precursors that require proteolytic processing for
biologically mature forms. The full-length IL-1α is cleaved by the
cysteine protease calpain, whereas IL-1β and IL-18 precursors
require proteolytic cleavage by the inflammasome (5). IL-33
and IL-36 require neutrophil proteinases such as elastase and
proteinase-3 for their processing (6, 7). IL-37 is cleaved by
capsase-1 before maturation (8). IL-38 is bioactive as a full-
length molecule.

IL-1 family cytokines activate signal transduction by the
IL-1 receptor (IL-1R) family, which consists of 10 members:

IL-1R1, IL-1R2, IL-1R accessory protein (IL-1RAcP), IL-18Rα,

IL-18Rβ, ST2 (or IL-33R), IL-36R, single Ig IL-1R-related

molecule (SIGIRR), three Ig domain-containing IL-1R related-

2 (TIGGIR-2), and TIGGIR-1 (9). The receptor and co-receptor

of IL-1 family are summarized in Table 1. With the exception of
SIGIRR, which contains only one extracellular immunoglobulin
(Ig) region, the other IL-1R members have three extracellular
Ig regions. The intracellular domains of the IL-1R members are

toll-like/IL-1R (TIR) domains. IL-1R2 is unique in IL-1R family
because of lacking a TIR domain.

Pro-inflammatory cytokines of IL-1 family (IL-1α, IL-1β, IL-
18, IL-33, IL-36) bind to similar conserved receptors consisting
of extracellular Ig domains and intracellular TIR domains and
induce cell activation through recruiting cytoplasmic myeloid
differentiation primary response protein 88 (MyD88), IL-1R
associated kinase 4 (IRAK4), tumor necrosis factor receptor-
associated factor 6 (TRAF6), which ends up in the activation of
nuclear factor-κB (NF-κB), and mitogen-activated protein kinase
(MAPK) (10). IL-37 binds to the IL-18Rα and subsequently
recruits SIGIRR, which does not trigger the recruitment of
MyD88 (11). IL-38 mainly binds to the IL-36R. Both IL-
37 and IL-38 exert anti-inflammatory effects by inhibiting
NF-κB and MAPK signaling (12). IL-1Ra and IL-36 Ra, in
competition with IL-1α, IL-1β, and IL-36, respectively, bind
to IL-1R1 and IL-36R, and cannot recruit the co-receptor,
which eventually results in the inhibition of IL-1 and IL-36
signaling (Figure 1).

THE ASSOCIATION OF IL-1 FAMILY GENES
AND SSC

Different single nucleotide polymorphisms (SNPs) may result
in the production of structurally different proteins with specific
transcription rate and biological function. Investigating the
correlation between SNPs of a specific gene and SSc seems
to be inducible to understand the disorder’s pathogenesis and
find biomarkers for predicting the risk of SSc. In recent years,
genome-wide association studies have revealed associations
between genes encoding IL-1 family cytokines and SSc, which
further supported the participation of IL-1 family cytokines in
pathogenesis of the disease.
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FIGURE 1 | Common signaling pathway for IL-1 family cytokines. IL-1α, IL-1β, IL-18, IL-33, and IL-36 bind to IL-1R family members, recruiting MyD88, IRAK4,

TRAF6, which resulted in the activation of NF-κB and MAPK and then promoting the transcription of several inflammatory genes. IL-37 and IL-38 exert

anti-inflammatory effects by inhibiting NF-κB and MAPK signaling. IL-1Ra and IL-36 Ra cannot recruit the signaling chain.

IL-1 family gene complex is located on chromosome 2q13–
21. It consists of IL-1A, IL-1B, and IL-1RN. The human IL-
1α (IL-1A) gene contains common SNPs including rs1800587
and rs17561, which have been reported to be linked to several
autoimmune diseases in some populations. IL-1A rs1800587 was
reported to be associated with SSc susceptibility in the Slovak
Caucasian, Japanese, and Chinese populations (13–15). However,
this association was not supported by other relevant studies
(16). And in the meta-analysis, IL-1A rs17561 or rs1800587
polymorphism seems not to be statistically linked to the risk of
SSc (17). Recently, a study demonstrated a significant association
between the IL-1β (IL-1B) (+3962; rs1143634) SNP and the
development of a severe ventilatory restriction in SSc patients.
This SNP acted as an independent risk factor for restrictive
lung disease along with the diffuse cutaneous subset of SSc and
the presence of the anti-topoisomerase I antibody in a Cox
regression model (18). However, in another study focused on
Italian SSc patients, the frequency of the IL-1B rs1143634 CT
genotype was significantly lower in patients with SSc compared
to the control group, which indicated that this allele might
be protective (16). Mattuzzi et al. described that IL-1BC-
31C (rs1143627) and IL-1BC-511-T (rs16944) were significantly
more frequent in SSc patients compared with controls (19).
Also, Beretta determined the ability of epistatic interactions
of cytokine SNPs to predict susceptibility to disease subsets
in SSc. They performed the MDR analysis and showed a
significant epistatic interaction among IL-1 receptor Cpst1970T,
IL-6 Ant565G, and IL-10 C-819T SNPs increased the dcSSc
susceptibility (20).

The association between IL-18 SNPs and SSc susceptibility
was also analyzed. Results showed that IL-18 rs187238 and
IL-18 rs1946518 polymorphism were not correlated with SSc

TABLE 2 | Genetic polymorphisms in the IL-1 family cytokines that are

associated with SSc.

IL-1 family SNP associated with SSc Risk/protection References

IL-1A rs1800587 Risk (13–15)

rs17561 (17)

IL-1B rs1143634 Protection (16)

rs1143627 Risk (19)

rs16944 Risk (19)

IL-18 rs1946518 (13)

rs187238 (13)

IL-33 rs7044343 Risk (21)

rs1157505 (13)

rs11792633 (13)

rs1929992 (13)

susceptibility. However, ESR and dyspnea were associated
with IL-18 rs187238 and IL-18 rs1946518 polymorphism,
respectively (13).

Several studies focused on the association of genetic
polymorphism of IL-33 in SSc patients. A multicentric
preliminary study in 300 Turkish patients with SSc and
280 healthy controls showed that rs7044343 polymorphism of
IL-33 gene was related to increased susceptibility to SSc (21).
However, another study failed to find any association between
IL-33 rs7044343 polymorphism and SSc susceptibility in Chinese
population (13).

These results indicate that genetic variations of certain IL-1
family members are implicated in the pathogenesis of the disease
and associate with SSc susceptibility. Table 2 summarizes the
association between SNPs and SSc.
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THE EXPRESSION AND FUNCTION OF IL-1
FAMILY CYTOKINES IN SSC

The Expression and Function of IL-1α in
SSc
The expression of IL-1α and IL-1β mRNA were barely detectable
in unstimulated dermal fibroblasts, however, their expression
was strongly increased after adding IL-1α and TNF-α. Cultured
dermal fibroblasts from patients with SSc expressed higher levels
of intracellular IL-1α than fibroblasts from healthy subjects
(22). Immunohistochemical analysis showed that the expression
of intracellular IL-1α was constitutively up-regulated in the
lesion skin fibroblasts of SSc patients. The production of pro-
collagen and IL-6 were decreased when the expression of IL-
1 α was inhibited via IL-1α siRNA in SSc-affected fibroblasts.
Conversely, overexpression of IL-1α through stable transfection
in normal fibroblasts induced the differentiation of the SSc
fibroblast phenotype (23). These evidence suggested that IL-1α
could have a potential role in regulating fibroblast–myofibroblast
differentiation, which is believed to be a key event in SSc. In
addition, the serum level of IL-1α in SSc is controversial. Lin et al.
reported that SSc patients with high serum IL-1α concentrations
were more likely to have digital ulcers (24). These data emphasize
the need for further research to determine the role of IL-1α in SSc
pathogenesis, particularly in obliterative vasculopathy.

Endogenous IL-1α can induce fibroblast proliferation and
collagen production through promoting the production of IL-
6 and platelet-derived growth factor (PDGF) in SSc. Then,
inhibition of endogenous IL-1α resulted in the decreased
expression levels of IL-6 and PDGF in SSc fibroblasts (25).
IL-6 is a critical mediator of fibrosis in SSc via inducing
pro-fibrotic gene expression in vivo, enhancement of TGFβ1
production and by regulating TGFβ receptor (26, 27). TGF-
β1 is a major regulator of fibrosis through stimulating cells
undergoing epithelial-mesenchymal transition (EMT), fibroblast
proliferation, ECM synthesis, and inhibition of collagenase and
matrix metalloproteinases (MMP) (28, 29).

As mentioned above, IL-1α also induced PDGF, a potent
chemotactic factor for inflammatory cells and TGF-β1, which
can directly induce the differentiation of fibroblasts into actively
EMC-producing myofibroblasts (30). What’s more, in SSc
fibroblasts, IL-1α can bind nuclear protein necdin in SSc
fibroblasts and antagonize the function of necdin, which has
an inhibitory effect on procollagen type I production (31). In
addition, IL-1α and IL-1β were found to promote the viability
of cultured fibroblasts and myofibroblasts from patients with
SSc and this directly induced expression of N-cadherin and
α-SMA, which is commonly used as a specific marker of
myofibroblasts formation (32). These findings showed that IL-1
might contribute to fibroblast–myofibroblast differentiation and
the myofibroblasts longevity, which are believed to be key events
in SSc consequent skin fibrosis in patients with SSc.

In animal models of allergy, IL-1α and IL-1βwere required for
Th2 cell activation during airway hypersensitivity response (33).
IL-1α and IL-1β were also proved to sustain the Th2 immune
responses in parasites infestation (34). However, very few studies
focused on the effects of IL-1α either IL-1β in Th2 cells in SSc.
Considering the pathogenic role of Th2 cells in SSc, we would

have expected to find many papers studying the pathogenic roles
of IL-1α and IL-1β in SSc patients.

The Expression and Function of IL-1β in
SSc
In patients with SSc, studies have observed a distinct elevation
of IL-1β in the serum and bronchoalveolar lavage fluid (BAL)
(35). In the lesion skin tissue of SSc patients, the expression levels
of IL-1β and IL-18 were significantly up-regulated. Furthermore,
there was a positive association between dermal fibrosis severity
evaluated by modified Rodnan skin score (MRSS) and IL-
1β and IL-18 expression, respectively (36). IL-1β has been
abnormally expressed in a variety of fibrotic diseases. Studies have
showed that pulmonary fibrosis induced by bleomycin, renal
interstitial fibrosis resulting from unilateral ureteric obstruction,
liver fibrosis in hypercholesterolemic and cardiovascular fibrosis
after myocardial infarction are all attenuated in IL-1β-deficient
mice (37–40).

Like IL-1 α, IL-1β also induces myofibroblast activation
and fibrosis through IL-6 and TGF-β1. In addition, it has
been observed that IL-1β and TGF-β2 can drive endothelial
to mesenchymal transition (EMT), which is an important
pathologic process in fibrosis (41). IL-1β has also been found to
participate in the differentiation of Th17 cells that may play a
crucial role in the development of tissue fibrosis (42).

What’s more, the upstream regulation of IL-1β also has effects
on the pathogenesis of SSc. The inflammasome has been found
to be important in the pathogenesis of SSc by activating some
IL-1 family cytokines such as IL-1β and IL-18. Inflammasomes
are poly-protein complexes. Many subtypes of inflammasomes
have been identified, and the nucleotide-binding domain, leucine
rich repeat containing family and pyrin domain-containing 3
(NLRP3) inflammasomes are the most extensively studied in SSc.
The critical function of the NLRP3 inflammasome is to activate
caspase-1, which can cleave the precursors of IL-1β and IL-
18 into biologically active forms. Inhibition of caspase-1 could
reduce the secretion of IL-1β and IL-18 in SSc skin and lung
fibroblasts. In addition, the expression of α-SMA protein was
decreased in SSc dermal myofibroblasts when treated with a
caspase-1 inhibitor. Furthermore, NLRP3−/− mice were resistant
to bleomycin-induced skin fibrosis (43). One study observed
the significantly increased expression of NLRP3, caspase-1, IL-
1β, IL-18, and a positive correlation between the severity of
dermal fibrosis and NLRP3 inflammasome in SSc lesion skin
(36). Mechanistically, Artlett et al. reported that inflammasome
promoted the expression of miR-155, which is critical in driving
fibrosis in SSc (44). Overall, NLRP3 inflammasome and its
subsequent effectors have been proven to be critical in the
development of SSc, and deemed as promising candidates for
targeting treatment in the clinics.

The Expression and Function of IL-Ra in
SSc
IL-1Ra comprises 4 different isoforms. One isoform (sIL-1Ra)
is secreted and the other three (icIL-1Ra1, icIL-1Ra2, and icIL-
1Ra3) are intracellular. Both sIL-1Ra and icIL-1Ra1 mRNAs
were constitutively expressed by human dermal fibroblasts,
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whereas intracellular IL-1Ra was markedly up-regulated in SSc-
affected fibroblasts compared to normal skin fibroblasts after
stimulating with IL-1 β or TNF-α (22). When Intracellular IL-
1Ra is overexpressed in cultured normal human skin fibroblasts
via transfection with a viral vector, it induces a myofibroblasts
phenotype characterized by increased expression of α-SMA and
plasminogen activator inhibitor-1 (PAI-1), which plays a crucial
role in fibrogenesis and is expressed markedly in myofibroblasts,
along with decreased expression of collagenase and MMP-1 (an
enzyme involved in the breakdown of ECM in the skin) (45).
Collectively, these studies suggested that intracellular IL-1Ra
might be relevant to the pathogenesis of fibrosis in SSc.

The Expression and Function of IL-33 in
SSc
Studies showed that IL-33 played an important role in
the pathogenesis of multiple autoimmune diseases, such as
systemic lupus erythematosus (SLE), rheumatoid arthritis (RA)
and inflammatory bowel disease (IBD) (46–48). Recently, an
increasing number of studies have shown the potential role of
IL-33 in SSc. In the skin biopsies from early SSc patients, the
expression of IL-33 protein was down-regulated. By contrast,
in patients with late stage SSc, IL-33 protein was constitutively
found inmost endothelial cells (49). Several studies demonstrated
that serum level of IL-33 was elevated in patients with SSc
compared with healthy controls. High serum level of IL-33 was
positively correlated with peripheral vascular involvement, such
as digital ulcers and the severity of skin sclerosis and pulmonary
fibrosis (50–52).

When IL-1RAcP−/−, ST2−/−, and wild-type (WT) mice were
treated by recombinant IL-33, IL-1RAcP−/−, and ST2−/− mice
did not develop cutaneous fibrosis compared to WT mice, which
means that IL- 33 induces cutaneous fibrosis by type 2 immunity
is ST2 and IL-1RAcP-dependent (53). IL-33 can participate in
the polarization of M2 macrophages to produce IL-13 and TGF-
β1, which are both profibrotic cytokine in pathological fibrosis
(54). In addition, IL-33 also induced the expansion of type 2
innate lymphoid cells (ILC2s) to increase the production of IL-13
(55) (Figure 2).

In brief, the critical role of IL-33 in SSc pathogenesis has been
elucidating. However, more studies on the precise function of
IL-33 in the process of immune dysfunction, vasculopathy, and
fibrosis are required in SSc.

The Expression and Function of IL-18 in
SSc
Serum IL-18 levels in SSc patients were significantly higher
than that in control subjects and positively correlated with the
presence of anti-nuclear antibody (ANA) and clinical grades in
patients with SSc, respectively (56). IL-18 levels in serum and
BAL in patients with IPF were also increased compared with
control subjects (57). These results indicated that IL-18 may be
involved in the process of fibrosis. However, the exact mechanism
of the IL-18 in fibrosis is controversial because both pro-and
anti-fibrotic effects were reported in the literature.

Kitasato et al. reported that IL-18 mediates hepatic fibrosis
by activating CD4+ T cells, and that this effect is blocked by
anti-IL-18 treatment. Moreover, in renal fibrosis, stimulating
proximal tubular cells with IL-18 could induce α-SMA, collagen

FIGURE 2 | The pathogenic roles of IL-1 family in SSc. Key mechanisms by which IL1α, IL-1β, and IL-33 promotes a variety of cells activation and transition are

summarized in a schematic form. IL-1α and IL-1β can induce fibroblast proliferation and fibrosis through promoting the production of IL-6 and PDGF. In addition, IL-1β

can also promote EMT and the differentiation of Th17 cells, which both play crucial roles in SSc. IL-33 induces the expansion of Th2 cells, ILC2, and M2 macrophages

to increase the production of IL-13. IL-13 is a profibrotic cytokine that is sufficient for the induction of fibrosis in SSc. PDGF, platelet-derived growth factor; EMT,

epithelial-mesenchymal transition; ILC2, type 2 innate lymphoid cell.
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I, and fibronectin production in a dosage and time dependent
fashion (58).

On the contrary, some studies have observed that IL-18 has
anti-fibrotic effects. Nakatani-Okuda et al. reported that mice
deficient in IL-18 developed more severe fibrosis than WT mice
(59). Furthermore, Kim et al. demonstrated that IL-18 down-
regulated the production of collagen in human dermal fibroblasts
through the E26 transformation-specific-1 and the ERK pathway,
indicating that IL-18 may have anti-fibrotic effects in patients
with SSc (60). Whether IL-18 has pro-fibrotic or anti-fibrotic
effects need further validation.

The Pathogenesis of IL-36, IL-37, and IL-38
in SSc
At present, increasing number of studies suggested important
roles of IL-36, IL-37, and IL-38 in a variety of autoimmune
diseases. However, few studies have evaluated their expression
and pathophysiological roles in SSc patients. Thus, information
obtained from studies of other autoimmune and fibrotic
diseases may be beneficial to understand their potential effects
on SSc.

IL-36 comprises 3 isoforms, IL-136α, IL-36β, and IL-36γ. At
present, very limited evidence in the researches regarding IL-
36 in SSc or fibrosis has been reported. IL-36α was observed
to induce tubulointerstitial fibrosis in the mice model with
unilateral ureteral obstruction. In IL-36 receptor knock-out mice,
fibrosis was attenuated (61). In this study, recombinant IL-36α
can activate the NLRP3 inflammasome. IL-36α was also elevated
in the fibrotic tissue of patients with chronic pancreatitis, which
further implicated IL-36 as a profibrotic cytokine (62). Several
studies had shown that IL-36 was related to autoimmune diseases
such as RA, SLE, and psoriasis (63, 64).

Low doses of IL-37 inhibited joint inflammation and
significantly decreased synovial IL-1β, TNF-α, IL-6, CCL3,
CXCL1 in an arthritis mice model (65). IL-37 also played an
effective immunosuppressive role in experimental psoriasis by
down-regulating pro-inflammatory cytokines such as IL-6, TNF-
α, and IL-1β (66). No data about IL-37 and fibrosis has been
reported so far.

IL-38 seems to play a role in the development of fibrosis.
The expression of IL-38 is significant in the lungs of patients
with acute idiopathic pulmonary fibrosis (67). However, further
investigation is needed to explore their potential roles and their
receptors in SSc.

In conclusion, the functional implications of IL-36 and IL-38
are not yet known in SSc, but similar studies in tubulointerstitial
fibrosis and IPF have indicated that IL-36 and IL-38 may induce

fibrosis. A similar understanding in SSc would represent a
significant advance. IL-37 down-regulates pro-inflammatory and
pro-fibrotic cytokines such as IL-6 and IL-1β. Therefore, whether
IL-37 could play immunosuppressive and anti-fibrotic roles in
SSc requires further study.

CLINICAL APPLICATION VIA INHIBITING
IL-1 FAMILY CYTOKINES IN SSC

In recent years, clinical application targeting IL-1 family
cytokines has been used in multiple autoimmune diseases such
as RA and gout (68, 69). However, few studies have explored the
clinical benefits in patients with SSc.

In a clinical trial, rilonacept, an IL-1 receptor fusion
protein, did not show treatment-related efficacy in patients
with SSc compared to placebo, and also failed to reduce
the expression of IL-6, C-reactive protein (CRP), or CCL18
expression (70). Although anti-IL-1 therapy seems to be
ineffective according to limited studies, the development of
new biologics with specific IL-1 antagonists and the blocking
of IL-18 or IL-33 may show potential clinical usefulness in
the future.

CONCLUSION

The IL-1 family of cytokines have been shown to play a vital
role in the pathogenesis of SSc, and the IL-1 family gene
polymorphisms have been demonstrated to be closely related to
SSc. Recent studies have investigated the abnormal expression
of IL-1 and its potential role in the fibrosis process. However,
many aspects of IL-1 family members in SSc remain to be
elucidated. There is large room for the mechanism study of IL-
1 family cytokines, especially for IL-37 and IL-38. Furthermore,
researches exploring the potential benefits of simultaneously
inhibiting multiple members of the IL-1 family cytokines in vivo
are promising.
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