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Human monocytes are divided in three major populations; classical (CD14+CD16−),

non-classical (CD14dimCD16+), and intermediate (CD14+CD16+). Each of these

subsets is distinguished from each other by the expression of distinct surface markers

and by their functions in homeostasis and disease. In this review, we discuss the most

up-to-date phenotypic classification of human monocytes that has been greatly aided

by the application of novel single-cell transcriptomic and mass cytometry technologies.

Furthermore, we shed light on the role of these plastic immune cells in already recognized

and emerging human chronic diseases, such as obesity, atherosclerosis, chronic

obstructive pulmonary disease, lung fibrosis, lung cancer, and Alzheimer’s disease. Our

aim is to provide an insight into the contribution of human monocytes to the progression

of these diseases and highlight their candidacy as potential therapeutic cell targets.
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INTRODUCTION

Human monocytes were originally defined by their distinctive morphology at the beginning of the
previous century by Paul Ehrlich and Ilya Metchnikoff [reviewed in (1)]. The invention of flow
cytometry in the 1970s enabled the design of a monocyte-specific antibody panel based on the
surface protein levels of the pattern recognition receptor CD14 and the Fc gamma III receptor
CD16 (2).

Two populations were identified; the classical (CD14++CD16+) and the non-classical
(CD14dimCD16+) (2). Subsequently, an intermediate for CD14 and CD16 (CD14+CD16+

HLA-DR+CD86+CD11c+) monocyte population with a distinct transcriptomic profile (LYZ,
S100A8, CD14, S100A10, HLA-DRA, CD74, IFI30, HLA-DPB1, CPV) was discovered (3–5).
At this time, it was also suggested that this population can be separated from non-classical
monocytes by the expression of 6-sulfo LacNAc (SLAN) (6). These “intermediate” monocytes
displayed comparable ROS production and phagocytosis potential, lower adhesion to surfaces, but
demonstrated higher class II molecule expression and IL-12 production than classical monocytes
(3, 4). In mice, two monocyte subsets were identified in the bloodstream by flow cytometry
and intravital microscopy; a short-lived Gr-1+CCR2+CX3CR1lo which migrates to tissues during
inflammation and a Gr-1−CCR2−CX3CR1hi one, which carries out CX3CR1-dependent patroling
of the vasculature during homeostasis (7–9).

Investigation in the developmental trajectories of the three described monocyte subsets with
deuterium labeling in humans suggested that intermediate and non-classical monocytes emerge
sequentially from the pool of classical monocytes (10). In fact, mathematical modeling of
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monocyte differentiation demonstrated a linear trajectory from
classical monocytes to non-classical monocytes, although it is
very likely that not all of them follow the same path or that
the intermediate to non-classical monocyte step occurs outside
the bloodstream (11). An elegant study provided another line
of evidence to support this concept. In particular, endotoxin
challenge led to a rapid loss of all monocyte subsets. However,
their re-appearance from the bone marrow or marginated
pools followed different kinetic patterns; classical monocyte
numbers were restored first, with intermediate and non-
classical monocytes following. Of note, the first two subsets
followed a peak in CCL2, CCL3, and CCL4 blood levels, in
contrast to the latter which were sensitive to CX3CL1 (12).
In mice, monocyte development clearly occurs in the bone
marrow where granulocyte-monocyte (GMP) and monocyte-
DC (MDC) progenitor pools produce functional monocytes
(13). Furthermore, during infections, monocyte progenitor
reprogramming happens already in the bone marrow (14).

With the development of multi-dimensional single-cell
techniques, assessment at the single-cell transcriptome
level unexpectedly suggested 4 monocyte subsets in healthy
volunteers; classical, non-classical, and 2 monocyte subsets,
one expressing genes involved in cell cycle, differentiation and
trafficking and the other being associated with a NK cell-like
signature (15). By generating new single-cell transcriptomics
data we now have evidence that the latter monocyte subset
was due to misclassification of a particular subset of NK cells,
indicating that the current model with 3 major subsets is still
valid (16).

Classical monocytes were found to be primed for
phagocytosis, innate sensing/immune responses and migration,
intermediate monocytes were the only subset expressing
CCR5 and were well-suited for antigen presentation, cytokine
secretion, apoptosis regulation, and differentiation and non-
classical monocytes are involved in complement and Fc
gamma-mediated phagocytosis and adhesion (17, 18). However,
it was also concluded that the current monocyte subsets are
not homogeneous populations, but instead can be clustered in
smaller, transcriptionally distinct subsets (17).

Using a mass cytometry approach, Thomas and colleagues
showed that traditional gating on CD14 and CD16 frequently
led to contaminations of intermediate and non-classical
monocytes; instead, the addition of markers, such as CD36,
CCR2, HLA-DR, and CD11c enabled more precise separation of
human monocytes (19). Another mass cytometry protocol
increased the resolution of the non-classical monocyte
phenotype and distinguished CD14dimCD16+SLAN− from
CD14dimCD16+SLAN+ non-classical monocytes. All non-
classical monocytes in this study exhibited less CD36, CD64,

Abbreviations: AD, Alzheimer’s disease; Aβ, amyloid beta; CNS, central nervous
system; COPD, chronic obstructive pulmonary disease; CVD, cardiovascular
disease; IPF, idiopathic pulmonary fibrosis; moDC, monocyte-derived dendritic
cell; moMΦ , monocyte-derived macrophage; NCD, non-communicable disease;
oxLDL, oxidized low density lipoprotein; SLAN, 6-sulfo LacNAc; T2D, type 2
diabetes; IM, interstitial macrophage.

CCR2, CD11b, and CD33, but more CD45, CD11c, and HLA-
DR expression than classical and intermediate monocytes,
becoming consistent in terms of useful surface marker selection
for reliable monocyte subset isolation (20). Lastly, another
study counted 8 monocyte clusters in healthy individuals
using a broad range of lineage, adhesion, antigen presentation,
migration, activation, cell death, and survival markers. Classical
monocyte subsets differed on the levels of IgE, CD61/CD9,
and CD93/CD11a, whilst non-classical monocyte subsets were
further divided by the expression of CD9 and SLAN which
linked them to increased efferocytosis and migration to CCL16
in comparison with SLAN− non-classical monocytes (21). It will
be interesting to learn in larger cohorts of healthy and diseased
individuals whether such cellular subsets are of functional
relevance in vivo.

Monocyte subsets have been shown to exhibit distinct
functional properties which partly rely on differential
methylation status of immune-related genes (22). For
example, classical monocytes migrate to CCL2 and CCL3
gradients and are more efficient than intermediate monocytes
in producing ROS and constraining fungi (23–25). In
fact, CD14+ human monocytes express higher levels of
chemokine receptors, such as CCR1, CCR2, CCR5, CXCR1,
and CXCR2 which highlights their potential to migrate to
cues stemming from injured or inflamed tissues (18, 24),
but are also characterized by their ability to secrete pro-
inflammatory molecules, such as IL-6, IL-8, CCL2, CCL3,
and CCL5 (18, 26). Based on evidence originating from
murine studies [reviewed in (1, 27)], but also recent human
observations (28), it is now widely accepted that classical
monocytes have the ability to differentiate into monocyte-
derived macrophages (moMφs) and DCs (moDCs) (29) and
play an integral part in shaping inflammation and its resolution
in tissues.

Intermediate monocytes express the highest levels of antigen
presentation-related molecules (18, 30) and were also shown to
secrete TNF-α, IL-1β, IL-6, and CCL3 upon TLR stimulation
(18, 26, 31), while Szaflarska and colleagues described an anti-
tumoral phenotype for these cells (32).With regard to chemokine
receptors, they express more CCR5 than classical monocytes
and this likely accounts for their high susceptibility to HIV-
1 infection (5, 24, 33). CD14+CD16+ monocyte numbers are
expanded in the blood of patients with systemic infections,
implying that they must play an important role in the rapid
defense against pathogens (34, 35). However, their exact role
in immunity remains elusive as another report found that they
are the main producers of IL-10 upon TLR stimulation (36).
Whether these cells can produce pro- and anti-inflammatory
mediators simultaneously or whether there are different kinetics
of expression for these factors requires further exploration.

On the other hand, a comparison of CD16+ and CD16−

monocytes revealed that despite the remarkable similarities
which suggest a common developmental origin, CD16+ cells
possess a more mature phenotype -as assessed by transcriptome
profiling- and associate with gene ontology terms, such as cell-
to-cell adhesion, cell trafficking, proliferation, and differentiation
(37). In addition, they express higher levels of CX3CR1 which
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explains the fact that they migrate and adhere more than CD16−

monocytes to fractalkine-secreting endothelium (5, 25).
Non-classical human monocytes express a distinct

transcriptomic and metabolic profile (respiratory chain
metabolism) in comparison to classical monocytes which
utilize carbohydrate metabolism as their energy source (38).
Similar to CD14+CD16+ monocytes, they present antigen
processing capabilities, but are distinguished from classical
monocytes by their association with wound healing processes
(38). Furthermore, they have antagonizing functions to
classical monocytes and promote neutrophil adhesion at the
endothelial interface via the secretion of TNF-α (39) and do
not reach the classical monocyte production levels of pro-
inflammatory cytokines (40). Finally, a role for the SLAN+

subset of non-classical monocytes in TNF overproduction
in viraemic HIV-infected patients was proposed, suggesting
that they might be considered as a major actor in the
immune hyperactivation of the disease (41). While SLAN
seems to delineate a subset of non-classical monocytes,
there is no evidence for transcriptional differences between
SLAN+ and SLAN− cells (16) which requires further work

to understand the reasons for the discrepancy between
homogeneity at the transcriptional, but heterogeneity at the
protein level.

In recent years the concept of trained immunity has been
introduced (42). Monocytes exposed to ß-glucan or BCG react
toward a related secondary stimulus with a faster onset and a
more pronounced inflammatory response (43–45). Surprisingly,
it is not entirely clear, whether all monocyte subsets can exert
such a response or whether only a subset of monocytes is
capable to be programmed in such a way. Furthermore, it is
unclear whether there are changes in the training response when
monocytes transition from classical via intermediate to non-
classical monocytes.

Taken together, human monocyte subsets display remarkable
heterogeneity in their surface marker expression and function;
classical monocytes exhibit a more pro-inflammatory
phenotype via their ability to secrete soluble mediators and
to differentiate into monocyte-derived DCs to bridge innate
and adaptive immune responses, intermediate monocytes are
specialized in antigen presentation and play an important
role in HIV infections, while non-classical monocytes are

FIGURE 1 | Human monocyte subsets in health. Human monocytes mature in the bone marrow and are subsequently released into the circulation as CD14+

classical monocytes. Progressively, classical monocytes (CD14+CD16−) give rise to non-classical monocytes (CD14dimCD16+) through an intermediate step of

CD14+CD16+ monocytes. Classical monocytes in humans can be distinguished from the other two subsets by additional markers, such as CD36, CCR2, and CD64

and take part in the host’s anti-microbial responses, such as adhesion to the endothelium, migration, and phagocytosis. Intermediate monocytes are characterized by

their high expression of CCR5 and HLA-DR molecules and are involved in antigen processing and presentation and transendothelial migration. Non-classical

monocytes divide into a SLAN+ and a SLAN− population, express high levels of CX3CR1 and specialize in complement and FcR-mediated phagocytosis,

transendothelial migration and anti-viral responses. CM, classical monocytes; IM, intermediate monocytes; NCM, non-classical monocytes.
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responsible for the anti-viral responses of this lineage
(Figure 1). In this review, we summarize the most recent
findings on monocyte behavior in human chronic diseases
and put extra emphasis on phenotypic changes that occur
and correlate with disease severity or progression. We
decided to focus on chronic inflammatory diseases, such as
atherosclerosis, diet-induced syndromes, respiratory diseases,
and neurodegenerative conditions as case studies for the
heterogeneity and plasticity that these cells exhibit in humans
(Figure 2).

MAJOR LIFESTYLE CHANGES AND THEIR
EFFECTS ON HUMAN MONOCYTES

Non-communicable diseases (NCDs) are among the main
causes of death in western countries. The close correlation
between dietary habits and morbidity and mortality of
chronic NCDs has been already extensively characterized
(46, 47). In the last 20 years the shift to a more sedentary
lifestyle and a Western type high-caloric diet has led to a
continuously growing percentage of obese and overweight
people (48). According to the World Health Organization,
more than half the European population is overweight,
of which 30% is obese (49), with this percentage also
dramatically increasing in South America and Asia (50).
Additionally, obesity is clearly associated with an increased
risk of several co-morbidities, such as type 2 diabetes (T2D),
cardiovascular disease (CVD), atherosclerosis, kidney and
liver failure, sterile inflammation (51, 52), and certain types of
cancer (53).

Dietary habits have been shown to drastically affect the
number and composition of the three populations of circulating
monocytes. Obesity has been shown to induce monocytosis of
the intermediate and non-classical subsets (54, 55), while
transcriptomic analysis of monocytes in obese donors
demonstrated increased expression of TLR4 and TLR8 and
secretion of pro-inflammatory cytokines, such as IL-1β and TNF
in response to LPS or ssRNA stimulation (54).

Moreover, all circulating monocytes in obese donors express
more CX3CR1, implying an increased chemotactic potential
toward CX3CL1-secreting adipocytes (54). In accordance with
this observation, obesity has been characterized by an increased
amount of monocyte-derived adipose tissuemacrophages in both
mouse and human (53, 56). Caloric restriction has beneficial
effects in many chronic metabolic disorders like T2D, non-
alcoholic liver disease and CVD (57–59) and short-term fasting
is sufficient to reduce the numbers of all monocyte populations
in healthy human subjects (60).

Nevertheless, in depth characterization of mechanistic
changes occurring due to different dietary habits is still lacking.
Modern high-dimensional technologies (e.g., multi-color flow
cytometry, mass cytometry, single-cell RNA-seq) will contribute
to understanding primary and secondary effects of diet on the
monocyte compartment, possibly dissecting the influence of
single macronutrients.

HUMAN MONOCYTE DIFFERENTIATION IN
THE GUT IS INFLUENCED BY DIETARY
COMPONENTS

Metabolites play a major role in the differentiation of monocytes
and affect their functionalities, as exemplified by the short chain
fatty acid β-hydroxybutyrate, which upon its release from the
liver under prolonged fasting, has been shown to suppress
the NLRP3 inflammasome-induced IL-1β and IL-18 production
by human monocytes (61). Similarly, Goudot and colleagues
found that in vitro activation of human monocytes with 6-
formylin-dolo(3,2-b)carbazole (FICZ), an endogenous ligand for
the environmental sensor aryl hydrocarbon receptor (62), biases
monocyte differentiation into moDCs via a BLIMP-1-dependent
mechanism (63). Finally, bacterial butyrate imprints a host
protection program via epigenetic remodeling during monocyte
tomacrophage differentiation in the lamina propria (64). Inmore
detail, in the absence of tissue-damaging inflammation, butyrate
induces macrophages to upregulate antimicrobial proteins, such
as calprotectin.

The mechanisms by which metabolites alter monocyte
functions have many aspects in common with the concept
of innate immune cell memory where initial priming with
a stimulus leads to sustained epigenetic reprogramming that
culminates in a phenotypic change upon subsequent challenge
(42, 65). Emerging evidence on diet-associated triggers shows
that they can induce cellular reprogramming in humans. For
instance, in vitro exposure of human monocytes to oxidized low
density lipoprotein (oxLDL) reprograms the cells to enhance
the expression of pro-inflammatory cytokines and chemokines
(66). Furthermore, single nucleotide polymorphisms at the gene
regions of the inflammasome adaptor ASC and the IL-1 receptor
antagonist were identified to have an effect on the training
response of human monocytes to oxLDL which proposes the
involvement of the inflammasome in this process (67). Taken
together, diet-related triggers may induce differential levels of
training in human individuals, thus adding another layer of
heterogeneity to human monocyte immune responses.

MONOCYTES AND MONOCYTE-DERIVED
CELLS IN ATHEROSCLEROSIS

Atherosclerosis is triggered -at least in part- by the elevated levels
of oxLDL and LDL which accumulate in the intima of arterial
walls (68, 69). A vicious cycle of infiltrated immune cells which
store lipid species in the intima and recruit more leukocytes leads
to the formation of atherosclerotic plaques, mostly situated in
branching points of the vessels. The consequences of ruptured
plaques and subsequent clogging of arteries include myocardial
infarction and stroke which are the leading causes of death
worldwide (70).

Monocytes play a key role in the early formation and
maturation of plaques. They are attracted to the arteries by
chemokines, such as CCL2 secreted by activated endothelial
cells (71–77) and take up lipids within the subendothelial space
to differentiate into foam cells (76, 78). Additionally, they can
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FIGURE 2 | Monocyte functions in disease. Monocytes are involved in human diseases both by their direct functional effects, but also indirectly through their

differentiation into macrophages. Diet influences the numbers of non-classical monocytes, monocyte migration, and cytokine production, effects which are

counteracted by fasting. In addition, the epigenetic landscape is altered by metabolites in a process called innate immune memory. In atherosclerosis, monocytes

differentiate into foam cells which secrete pro-inflammatory cytokines and chemokines, store lipids and are possibly involved in calcification. Differentiation of

monocytes to DCs also contributes to antigen presentation. In the lung, changes in monocyte numbers are the most common observation in disease. Monocytes

display high heterogeneity and their functions may be impaired like in COPD, whereas monocyte location seems to be crucial in lung cancer, with monocytes close to

tumors being immunocompromised. Finally, monocytes infiltrate the brain in neurodegenerative diseases, such as Alzheimer’s disease. CD36 and TREM2 are

upregulated and enhance phagocytosis of Aβ plaques in monocyte-derived macrophages. NCM, non-classical monocyte; IM, interstitial macrophage.

phagocytose precipitated cholesterol crystals (79) and oxidized
lipid species (66, 80, 81) that activate the inflammasome, leading
to a highly inflammatory form of cell death called pyroptosis and
the induction of innate immune responses (79).

Research on the functional differences of human monocytes
in atherosclerosis provided mechanistic insight into their role
in the disease. Isolation of monocytes from individuals with
symptomatic coronary atherosclerosis and elevated levels of
the CVD risk factor lipoprotein(a) displayed a long-lasting
pro-inflammatory phenotype (80, 82, 83). These functional
differences are accompanied by changes in the monocyte
epigenetic landscape. For example, the expression of pro-
inflammatory genes such, as TNF, IL6, CCL2, and CD36 in
oxLDL-trained monocytes are regulated by trimethylation of
H3K4 residues at the promoter regions (66). Similarly, a large
study in control and CVD patients showed that the expression of
the transcription coactivator ARID5B positively correlates with

CVD. It acts by removing repressive H3K9me2 histone marks
from its target genes which are related to inflammatory/immune
responses, chemotaxis, extravasation, and phagocytosis (84).

To date, epidemiological studies investigating the correlation
between circulating monocytes and the occurrence of
cardiovascular events or atherosclerosis severity using flow
cytometry have yielded contrasting results due to technical
and experimental design reasons (74, 85–96). Briefly, Hamers
and colleagues first showed that SLAN+CXCR6+ non-classical
monocytes are more frequent in patients with atherosclerosis.
This subset presents with a higher capacity to migrate toward
the chemokine CXCL16 secreted by macrophages in plaques and
is probably involved in the clearance of apoptotic cells from the
necrotic core (21). On the other hand, a longitudinal study on a
larger cohort revealed a correlation of classical monocytes with
reverse cardiac events and a negative association of intermediate
monocyte numbers with plaque thickness (96). The correlation
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of elevated monocyte counts and higher risk for cardiac events
has been confirmed in other reports, as well (90). However,
classical monocyte counts could not be associated with plaque
stability or increased chance of cardiac events after carotid
endarterectomy in patients with already existing atherosclerotic
plaques (94). Additionally, other studies demonstrated that
elevated intermediate monocyte counts play a pivotal role in the
growth and stability of already existing atherosclerotic plaques
or cardiac attacks (86–88, 97, 98). Elevated CCL2 levels in the
early phases of the development of atherosclerotic plaques may
lead to increased classical monocyte counts and could thus be
considered a predictive marker, while later on, the presence
of necrotic cores may rather recruit non-classical monocytes
to control vascular homeostasis and the clearance of debris
(21, 99, 100).

Computational deconvolution of whole transcriptome data
from 126 human carotid plaques using known signatures for
leukocytes revealed that macrophages represent about 50% of
cells in human atherosclerotic plaques (101). The origin of these
cells in human atherosclerotic plaques is not fully resolved. Lin
and colleagues argued for the monocyte origin of all described
macrophage subtypes in murine atherosclerotic plaques by
lineage tracing of bone marrow-derived myeloid cells (102).
Interestingly however, only a proportion of the foam cells exhibits
a monocyte origin (103) which is compatible with the concept
of smooth muscle cell transdifferentiation into foam cells and
macrophage-like cells (104–107).

The role and heterogeneity of monocyte-derived cells in the
atherosclerotic plaques needs to be further investigated as they
could serve as therapeutic targets. As a matter of fact, single-cell
RNA-seq analysis of atherosclerotic plaques provided an insight
into the heterogeneity of macrophages present in transgenic
mouse models. Three main subsets of macrophages have been
identified; the resident-likemacrophages, which probably overlap
with aortic resident macrophages present in steady state, a set of
pro-inflammatory macrophages and a subtype of macrophages
with a high expression of Trem2 and genes associated with
lipid-metabolic pathways and cholesterol efflux (101, 108). As
shown by Kim and colleagues, the Trem2hi cells probably reflect
the lipid-laden foam cells (103). The most diverse macrophage
spectrum in atherosclerotic plaques was so far presented in mice
(102), with some of the conserved markers also being validated
in human atherosclerotic plaques (101, 108). Furthermore, all
single-cell RNA-seq studies of the murine plaque environment
defined subsets of DCs. Whereas Kim and colleagues subdivided
DC subsets into DC1 and DC2 (103), Cochain et al. found only
one DC subset which they hypothesized to be monocyte-derived
(108). Indeed, monocyte lineage tracing also included a subset of
DC-like cells which was termed as CD74hiMHChi macrophages
(102). These results indicate that at least part of the DCs found in
atherosclerotic plaques may be of monocyte origin. Interestingly,
the moDCs of the latter study differentially express Ahr which
has been associated with monocyte to DC differentiation and
they are more present during plaque progression rather than
regression (63, 108).

Monocyte-derived cells may also contribute to the
calcification of the cap, another major feature of the

atherosclerotic plaque, despite the earlier consensus that it
is mainly mediated by the transdifferentiation of smooth muscle
cells to osteoclast-like cells (109). Single-cell RNA-seq of murine
plaques revealed a macrophage subset expressing osteoclast
genes like osteopontin and human plaques express their protein
products (108). Notably, there is a unique osteogenic monocyte
subtype in humans defined by the expression of CD14+, bone
alkaline phosphatase and osteocalcin which is linked to the
degree of calcification and the burden of necrotic cores (110).
These cells may also differentiate into calcium-depositing
macrophages upon transmigration.

In summary, the composition and ontogeny of monocyte-
derived cells in the atherosclerotic plaques has been well-
described in mice. Monocytes are recruited to the intima of
arteries upon lipid deposition and differentiate into a spectrum of
pro-inflammatory macrophages, lipid-laden foam cells, and DCs.
Experimental limitations still hamper the translation of these
findings to humans. In addition, the contribution of different
monocyte subsets to disease progression suffers from low
temporal and functional resolution in epidemiological studies.
A focus on high-dimensional phenotyping of plaque-associated
macrophages, monocytes and their progenitors in humans will
allow a deeper understanding of disease development and will
hopefully lead to novel therapeutic targets.

MONOCYTE PHENOTYPE AND
FUNCTIONS IN HUMAN RESPIRATORY
DISEASES

At steady state, the myeloid compartment of the human
lung consists of the CD163+/++CD206+CD64+CD14lo alveolar
macrophage population, CD169− interstitial macrophages,
CD14+ tissue monocytes and two populations of (CD1a+/−)
monocyte-derived cells (111–113). Monocytes express typical
blood monocyte markers, such as CD14, CD11b, CCR2,
and CD16, but at extravascular sites they possess higher
levels of CD141, CD11c, HLA-DR, and CCR7, indicating
a tissue-imprinted phenotypic change that is reminiscent
of DCs (111, 114). Indeed, location is key for monocyte
functions, as exemplified by the enrichment of intermediate
monocytes in distal airways and the weaker production of
pro-inflammatory mediators than in the peripheral blood
(114). Similarly, accumulation of CD141+CD14+ pulmonary
mononuclear phagocytes at the T cell zones of draining lung
lymph nodes likely facilitates antigen presentation and T cell-
mediated immunity (111).

Changes in monocyte counts have been observed in muco-
obstructive lung diseases and fibrotic disorders (115, 116).
For example, total numbers of monocytes and the non-
classical subset change in the blood of patients with chronic
obstructive pulmonary disease (COPD) (117), while classical
monocyte counts can be a prognostic marker of mortality
in patients with idiopathic pulmonary disease (IPF) (118).
However, other monocyte subsets may contribute to disease
progression, as shown for intermediate monocytes expressing
CD64 or CCR2 (119). Finally, monocytes do not only affect
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disease outcome by their direct functions, but also through their
differentiation to macrophages. This was shown in IPF patients
where alveolar macrophages expressed a gene signature similar
to that of monocyte-derived macrophages of bleomycin-treated
animals (120).

Studies using bulk transcriptomics suggested that monocytes
express a shared gene signature with alveolar macrophages which
is overexpressed in COPD compared to healthy individuals
and correlates with lung function (121). However, these studies
are hampered by the fact that immune cells are treated as
homogeneous populations and thus a direct link between
peripheral blood monocyte subsets with distinct phenotypes and
alveolar macrophage populations in the bronchi of patients with
COPD is missing. To resolve this issue, it will be necessary
to employ single-cell technologies, such as single-cell RNA-seq
and study the differentiation trajectories of peripheral blood
monocytes and lung-derived myeloid populations.

Moreover, the frequency of CD206+ non-classical monocytes
is reduced, while that of CD163+CD206+CCR5+ is increased
(117). Congruent with this, intermediate monocytes from
patients with COPD also overexpressed CCR5 as a result of
high systemic IL-6 and sIL-6R levels. However, their migration
capability to CCL5 or CXCR3 chemokines in comparison with
non-smokers was reported to be either impaired (122) or not
affected at all (123). Lastly, miRNAs could account for monocyte
functional dysregulation. Dang and colleagues showed that
increased miR-24-3p expression in blood T cells and monocytes
from patients with COPD was associated with decreased levels of
genes involved in the TLR and NLR pathways which remains to
be experimentally validated (124).

Lung cancer is one of the most prevalent cancers worldwide
(125) and non-small cell lung cancer (NSCLC) is the most
common subtype. Although T cells have been extensively studied
in the past, the importance of monocytes in the disease is starting
to emerge as recent evidence links their levels to a greater risk
of recurrence (126) and worsened post-operative disease-free
and overall survival rate (127, 128). The power of single-cell
transcriptomics to deconvolute the immune cell structure of
NSCLC was evaluated both in mouse and humans (129). Lung
tissue-derived myeloid cells in NSCLC patients were divided into
14 transcriptional states; three populations carried signatures
of monocytes, 9 of macrophages, one of monocytes/DCs and
one subset was characterized by cell cycle ontology terms. In
alignment with human monocyte subset expression signatures,
the lung monocyte populations identified in this study were
defined as classical (CD14, FCN1), non-classical (CDKN1C,
LILRB2, ITGAL), and neutrophil-like (S100A8, S100A9, CSF3R).
Nevertheless, although these monocyte populations matched to
the three major peripheral blood monocyte populations from the
same study, on average, considerable transcriptional differences
were seen, such as those related to expressed chemokines and
chemokine receptors (129).

Similar to the findings in COPD, tumor infiltrating CD14+

cells in patients with early lung cancer express a mixture of
FcγRs (CD64, CD32), cytokine receptors (CD115) and scavenger
receptors (CD163, CD206). Further phenotyping revealed that
monocyte/TAM localization is driven by microenvironmental

cues and thus HLA-DRhi TAMs are found at the tumor lesion,
whereas HLA-DRlo/− monocytes reside at distant sites (130).
Of note, tumor monocytes displayed a compromised ability to
stimulate T cells in direct contrast to TAMs. These results are in
line with a previous report on stage I lung adenocarcinoma which
found that CD14+ and CD16+ monocyte numbers are decreased
at the tumor site, express less HLA-DR than macrophages and
secreted less IL-8 and IL-1β at the tumor site compared to
monocytes at the rest of the tissue (131). With single-cell-
omics technologies now entering this field, we anticipate further
knowledge about spatial and temporal changes of monocytes in
blood, lung parenchyma, and bronchoalveolar lavage in these
major lung diseases.

HUMAN MONOCYTES IN
NEURODEGENERATIVE DISEASES: CASE
STUDY IN ALZHEIMER’S DISEASE

Neurodegenerative diseases are disorders that disturb the proper
functioning of neurons in the central nervous system (CNS).
They may affect the structure or the survival of the neurons,
which are unable to regenerate after the damage, thus leading
to cognitive or motor dysfunction. The immune system was
only recently found to play an important role in neuronal
injury that occurs in an inflammatory milieu through a complex
interplay between resident (microglia) and infiltrating myeloid
cells (monocytes) (132, 133). The major neurodegenerative
diseases include Alzheimer’s disease (AD) which affects over
150 million people worldwide (134, 135), Parkinson’s disease
(136), Huntington’s disease (137), and amyotrophic lateral
sclerosis (138).

AD is characterized by the accumulation of insoluble
amyloid beta (Aβ) in the extracellular matrix which forms
plaques and of hyperphosphorylated tau protein in the
cytoplasm which forms neurofibrillary tangles (139). Studies
have shown that these protein aggregates are strongly associated
with neuroinflammation, synaptic loss and impaired neuronal
function which ultimately lead to cognitive decline (135, 140,
141). The progressive deposition and aggregation of Aβ peptides
in the brain are the result of an imbalance between their
production and clearance, a process in which brain-resident
microglia and brain-infiltrating peripheral monocytes (moMφs)
are involved (134, 142).

Because of the technical and ethical limitations of human
CNS studies, most of the work on the molecular mechanisms
of neurodegenerative diseases has been conducted in murine
disease models. The infiltration of monocytes in the brain
through the blood-brain barrier was shown in murine models
to be mediated via the CCL2-CCR2 axis with microglia and
recruited monocytes located in the close proximity of deposited
Aβ plaques (143), although some controversial studies based on
irradiation experiments exist (144). In the context of monocyte
infiltration to the brain, monocytes differentiate into moMφs
which upregulate the expression of surface proteins, such as
CD11c, TREM2, and CD36 (145). In this study, Martin and
colleagues sorted microglia as (CD45midCD11b+) andmoMφs as
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(CD45hiCD11b+), a common strategy also used in other studies
(146–148). The role of monocytes in AD is multi-faceted. In a
larger consortium led by the Neher group, we recently provided
evidence that a systemic immune response to LPS stimulation
can lead to localized immune training in the brain (149). This,
alongside the knowledge that AD is often accompanied by
a systemic inflammatory response (150), poses the question:
how does the interaction behind this bidirectional relationship
work? Whether inflammation is a result of AD pathology or
not, an earlier causal factor or both of these at once is yet to
be answered.

A human study using blood and brain tissue from healthy and
old subjects found that increased expression of the myeloid cell
surface receptor CD33 is linked to the AD risk allele rs3865444C
(151). This is noteworthy as it expands previous work in murine
models whereby increases in CD33 expression lead to higher
uptake of Aβ42 peptides and lower deposition of Aβ plaques
(152). Building on this, another study confirmed the relationship
between CD33 and risk allele rs3865444C, further suggesting that
it can result in higher surface expression of TREM2, another
biomarker of AD pathology in the cortex (153).

Recently, there has been a renewed interest in the link
between TREM2 expression and AD pathology, in particular
where the late onset forms are concerned (154). In the presence
of functional TREM2, CD68-positive microglial activity initially
promotes the clearance of Aβ aggregates by triggering microglia
clustering around the plaques. However, due to the concomitant
overexpression of ApoE levels in the vicinity of the plaques,
Aβ deposition is progressively enhanced. On the other hand,
TREM2 loss-of-function mutant mice reported higher levels
of Aβ seeding, suggesting TREM2 involvement is a double-
edged sword.

The characterization of AD in the brain has recently been
advanced by emerging single-cell technologies which allow
an in-depth look at changes in aging transcriptomes. One
study assessed age-related microglia changes by examining
gene expression profiles of purified parietal cortex microglia
leading to the identification of human-specific signatures. The
study suggests that with increasing age, microglia downregulate
actin cytoskeleton-related genes (TLN1, PFN1, EVL, ARPC1A,
ARPC1B, CORO1A, CAP1, CTNNA2, VASP) and cell surface
receptors (P2RY12, IL6R, TLR10) (155). More recently, a dataset
consisting of 80,660 single nuclei transcriptomes from AD
patients’ human prefrontal cortexes at different stages of the
disease indicated the existence of heterogeneity in six identified
cell types. Four microglial subpopulations were identified and
CD81, SPP1,APOC1, PTPRG, andAPOEwere highly upregulated
in AD samples. In addition, these subpopulation profiles
uncover new AD-associated genes, including the complement
component C1QB and CD14, which have not been reported
before. Interestingly, transcriptional changes in response to
the earlier disease stages were more cell type-specific in
comparison with more ubiquitous late stage variations where

the genes being upregulated represented a more general stress
response (156).

In none of these single-cell sequencing studies on AD
presented above have researchers been able to identify bone
marrow-derived monocytes. The reason for this could be
monocyte exclusion in sorting panels, such as in Galatro
et al. (155) or the utilization of known marker genes
in cell type classification as in Mathys et al. (156). In
contrast, single-cell studies on pre-clinical models of other
neuroinflammatory diseases, such as multiple sclerosis, the
numbers of microglia and circulating monocytes in the brain
have been shown to be increased in comparison with homeostasis
(157). Consequently, the way monocytes are involved in
neurodegenerative diseases depends on both the condition itself
and the severity stage.

CLOSING REMARKS

Human monocytes are still widely studied in context of
peripheral blood and the advent of novel single-cell technologies,
including sequencing-based methods have fueled new interest
in these cells. While higher heterogeneity has been suggested,
we still propose classical, intermediate, and non-classical
monocytes as the three major subsets within the monocyte
cell space. We would suggest further heterogeneity being
explained by functional states of these important immune cells.
However, this requires a community effort with guidelines
on how to define such newly defined cell states in the
monocyte compartment. This will also be important in view
of the increasing interest in tissue-associated monocytes and
their ability to differentiate into moMφs or moDCs. Of
particular interest are current and future studies on spatio-
temporal behaviors of monocyte-derived cells within diseased
tissues and organs. We are convinced that the new single-
cell technologies can help to decipher the role of these
important cells during the major chronic, but also acute
inflammatory diseases.
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