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Plasminogen activation is essential for fibrinolysis—the breakdown of fibrin polymers in

blood clots. Besides this important function, plasminogen activation participates in a wide

variety of inflammatory conditions. One of these conditions is hereditary angioedema

(HAE), a rare disease with characteristic attacks of aggressive tissue swelling due to

unregulated production and activity of the inflammatory mediator bradykinin. Plasmin

was already implicated in this disease decades ago, but a series of recent discoveries

have made it clear that plasmin actively contributes to this pathology. Collective evidence

points toward an axis in which the plasminogen activation system and the contact

system (which produces bradykinin) are mechanistically coupled. This is amongst others

supported by findings in subtypes of HAE that are caused by gain-of-function mutations

in the genes that respectively encode factor XII or plasminogen, as well as clinical

experience with the antifibrinolytic agents in HAE. The concept of a link between

plasminogen activation and the contact system helps us to explain the inflammatory side

effects of fibrinolytic therapy, presenting as angioedema or tissue edema. Furthermore,

these observations motivate the development and characterization of therapeutic agents

that disconnect plasminogen activation from bradykinin production.
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INTRODUCTION

Plasminogen Activation: More Than “Just” Fibrinolysis?
The main purpose of plasminogen activation is to break down fibrin in blood clots. Hereto,
tPA (tissue-type plasminogen activator) from endothelial cells binds to fibrin. Next, tPA activates
adjacent plasminogen molecules which cleave fibrin. Alternatively, the urokinase system can
generate plasmin. Hereto, uPA (urokinase type-plasminogen activator) binds to a dedicated
receptor (uPAR) on activated endothelial cells, circulating cells (e.g., monocytes), and tissue-
resident cells. Interestingly, uPAR expression can take place in situations that are unrelated to
fibrinolysis. For example, endothelial cells can sense hypoxia and express uPAR in response (1).
Alternatively, there is a proposed role for VEGF-induced uPAR expression in angiogenesis (2).
Furthermore, uPAR expression is strongly upregulated at sites of inflammation (3), indicating that
plasmin has roles beyond fibrinolysis.

The Contact System: More Than “Just” Coagulation?
The contact system consists of factor XII (FXII), plasma prekallikrein (PK) and high-molecular
weight kininogen (HK). These factors assemble on (negatively) charged particles and polymers to
generate enzymatic activity. The contact system owes its name to the clotting response that follows
when blood contacts surface materials, such as the diagnostic coagulation reagent kaolin. Since
its discovery, it has become clear that the contact system is a driving force behind thrombosis
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and hemoincompatibility (4). Remarkably, deficiency in contact
factors does not translate into bleeding disorders (5–7),
suggesting that a function beyond hemostasis justifies the
existence of this enzyme system.

During contact activation, FXII and PK activate each other
through reciprocal cleavage into FXIIa and PKa. C1-inhibitor
(C1-INH) controls both enzymes. HK is essential to this reaction,
as it connects PK to the surface. Truncation of full-length
FXIIa (αFXIIa) by PKa into βFXIIa eliminates its clotting
potential. However, βFXIIa remains an excellent fluid-phase PK
activator (8). Most information on contact system activation in
vitro strongly suggests that FXII activation requires a surface.
However, clinical observations point toward to a complimentary
mechanism for FXII activation, dissimilar from classical surface-
bound contact activation.

Links Between Plasminogen Activation
and Contact Activation (Figure 1)
FXII is strikingly homologous to tPA (Figure 2). They both
contain kringle domains, epidermal growth factor-like domains,
as well as fibronectin-type I domains. To a certain extent, FXII
and tPA are biochemically inter-exchangeable. In 1972, it was
reported that FXIIa can act as a plasminogen activator (9).
More recently, it was reported that fibrin-bound polyphosphate
polymers amplify this reaction (10). There is some clinical
evidence supporting the role of FXIIa as plasminogen activator:
FXII-deficient human subjects have a lowered capacity for
plasminogen activation in response to systemically administered
desmopressin (activates endothelial cells) (11). Future studies are
needed to disentangle the seemingly conflicting roles of FXII as
clotting factor and plasminogen activator.

FIGURE 1 | Links between the plasminogen activation and contact activation. tPA, tissue-type plasminogen activator; uPA, urokinase-type plasminogen activator;

uPAR, urokinase-type plasminogen activator receptor; PLM, plasmin; FXIIa, activated factor XII; PKa, plasma kallikrein; HK, high molecular-weight kininogen; BK,

bradykinin; C1-INH, C1 inhibitor. PAP, plasmin-α2-antiplasmin. HAE-PLG, HAE-FXII, HAE-C1-INH and HAE-HK represent forms of hereditary angioedema related to

gain-offunction mutations in each factor.

Conversely, plasmin can also act as a FXII activator. In 1971, it
was identified that plasmin can activate FXII into FXIIa (12). We
recently confirmed this (13). However, the original biochemical
observation remained without consequence for decades. This is
largely attributable to the fact that PKa is a muchmore competent
FXII activator than plasmin is. Plasmin can also act as a direct and
reciprocal PK activator, and accelerates bradykinin release from
HK (14). Together, these biochemical links between plasminogen
activation and the contact system make it attractive to speculate
that in the very early stages of in vivo contact activation, when
PKa has yet to become activated; plasmin has an initiating role.
Lessons from human pathology, such as hereditary angioedema
and neuroinflammation, suggest that this might be the case.

HEREDITARY ANGIOEDEMA

C1 Inhibitor Deficiency
Hereditary angioedema (HAE) is a rare disease with
characteristic swelling of the deep skin and mucosa caused
by local vascular leakage. The onset of tissue swelling attacks
is highly unpredictable, but reported triggers include physical
exertion, mental stress, mechanical trauma and infections (15).
Experienced patients report prodromal symptoms; telltale signs
that an attack is imminent (16). Most notably, these patients may
have erythema marginatum, a nonpruritic rash that presents
gradually (17) and can become clinically apparent very early in
life (18).

HAE was first clinically identified in 1888 (19), and connected
to C1 inhibitor deficiency in 1963 (20). The associated disease
is now called HAE-C1-INH (OMIM # 106100) and affects
1:50,000 people. To date, 488 mutations have been identified
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FIGURE 2 | Domain architectures of factor XII and tissue-type plasminogen

activator. FnI, Fibronectin type I domain; FnII, Fibronectin type II domain; EGF,

epidermal growth factor-like domain; KR, Kringle. Both molecules contain a

protease domain that becomes active after molecular scission, resulting in an

two-chain disulfide-linked molecule.

that cause HAE-C1INH (http://www.hgmd.cf.ac.uk). Some of
these are de novo mutations (21). There are two subtypes:
quantitative deficiency (type I) and qualitative deficiency (type
II). Interestingly, in some heterozygous type I HAE-C1-INH
carriers, C1-INH expression levels that are far below the expected
50%. For a subset of these mutations, there is an explanation: the
mutation causes C1-INH to form intracellular aggregates, which
incorporate “healthy” wild type C1-INH as well and prevent
secretion (22).

In search for the disease mediator in HAE, it was
initially thought that unregulated complement activation caused
the tissue swelling attacks. Around the same time, it was
suggested that PKa activity was involved in the disease
phenotype (23). However, it took decades to directly identify
bradykinin as central mediator (24, 25). At present, a variety of
therapeutic strategies are available that have the aim to reduce
bradykinin production, including C1-INH replacement therapy,
or monoclonal antibodies and oral therapies that target and
control PKa (26, 27).

There are two receptors for bradykinin (and Lys-bradykinin,
which is generated by tissue kallikreins): the kinin B2- and
B1 receptors (kB2R and kB1R, respectively). Whereas kB2R
is constitutively present on the vascular endothelium, kB1R
is expressed by cells at sites of infection and inflammation.
KB2R mainly recognizes full-length (lys-)bradykinin. Removal
of the C-terminal lysine from (lys-)bradykinin by soluble
carboxypeptidase N or membrane-bound carboxypeptidase M,
generates a sequence that is preferred by kB1R. Endothelial
kB2R activation induces cytoskeletal rearrangements,
uncoupling of tight junctions and triggers NO production,
which instructs underlying endothelial cells to relax. A
direct, small molecule inhibitor of kB2R has therapeutic
value during acute attacks, showing that the interaction

between full length (lys-)bradykinin and kB2R is key to HAE
pathology (28).

The mechanism behind the localized presentation of the
clinical symptoms inHAE is of high interest. It has been proposed
that a currently unidentified trigger incites systemic contact
activation. Excessive localized vascular leakage is a consequence
of locally increased cellular kB1R presentation (29). Indeed,
there is evidence for activation products of contact activation
during (30), and before the onset of attacks (31). On the other
hand, the localized detection of bradykinin at the site swelling
(32), together with its limited circulating half-life suggest that
bradykinin production is a localized process (33).

PLASMINFLAMMATION: PLASMIN IN
HAE-C1-INH

Plasminogen activation is seen during attacks of HAE-C1-
INH (34–38). It remains a question what triggers and drives
this plasminogen activation. It can be speculated that it is
secondary to bradykinin-driven endothelial cell activation, which
is accompanied by release of plasminogen activators (39) and
depletion of PAI-1 (40). Alternatively, marker for coagulation
are also increased in HAE patients: thrombin-antithrombin
complex levels, prothrombin fragment 1+2 and D-dimer levels
are all increased (36, 41). This suggests that coagulation is first
triggered when plasma leaks into the extravascular space, which
in turn triggers plasmin formation. However, a study in HAE
patient shows that C1-INH replacement therapy lowers F1+2
levels, while fibrinolytic parameters remain elevated (42). This
suggests that plasminogen activation duringHAE-C1INH attacks
is unrelated to its role in “normal” fibrinolysis.

Interestingly, circulating peripheral blood cells of C1-INH
deficient patients express increased amounts uPAR during
swelling attacks (43). Furthermore, these patients benefit from
prophylactic treatment with the antifibrinolytic agent tranexamic
acid, which reduces both the frequency and severity of HAE
attacks (44). Finally, careful in vitro studies show that C1-INH-
deficient plasma generates excessive amounts of bradykinin when
tPA is added (45). This occurs in a FXII and PKa-dependent
manner. These combined observations suggests that plasmin has
an active role in the pathogenesis of HAE-C1-INH.

Hereditary Angioedema With Normal
C1-INH Activity
Not all forms of HAE are attributable to C1-INH deficiency:
there are cases in which patient families experience tissue swelling
attacks while both levels and activity of C1-INH are normal (46).
These together are classified as type III HAE (OMIM # 610618).
So far, there are four individual forms (47). Below, I will highlight
three of those that may be linked:

HAE-FXII

This form is caused by mutations in the F12 gene (encodes
FXII). It was first identified in 2006 in a genetic study under
HAE patients with normal C1-INH activity (48), and connected
to increased spontaneous FXII activity in plasma (49). Since
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then, five separate mutations have been found that give the same
phenotype (50). These patients are often female, and respond
well to kB2R antagonism, as well as tranexamic acid. This
indicates that, also in these patients, bradykinin is the responsible
disease mediator and that plasmin contributes to pathogenesis.
On protein sequence level, these mutations are all located
the proline-rich region of FXII. This unstructured and flexible
sequence connects the surface-binding domains of FXII to its
protease domain (51). Investigations into the underlying disease
mechanisms showed us that mutations c.1032C>A (results in
T309K in the mature protein) and c.1032C>G (results in T309R
in the mature protein) both eliminate an O-linked glycosylation
site from the proline-rich region (52). This enhances activation by
the anionic polymer dextran sulfate. However, C1-INH inhibits
both these FXIIa mutants with the same efficiency as it can
inhibit wild type FXIIa. In other words, these mutants are not
resistant against inhibition. In further studies, we identified that
the replacement of the threonine (T) residue at position 309
with a positively charged arginine (R) or lysine (K) residue
introduces putative cleavage sites for trypsin-like serine proteases
(13). The same holds true for mutation c.971_1018 + 24del72
(this replaces an existing sequence with a new one that contains
5 arginines). Although PKa is essential to the activation and
subsequent processing of normal wild type FXII, we found that
it did not cleave at the putative newly introduced cleavage
sites. We next considered plasmin as a candidate enzyme as
it A) has the ability to directly activate FXII; B) is active
in HAE-C1-INH and C) tranexamic acid has value for HAE-
FXII (53). We found that plasmin indeed cleaves these three
pathogenic forms of FXII at the mutated positions, separating
the surface binding domains from the protease domain (13).
The resulting fragment is in many aspects similar to βFXIIa,
but in this case, it has not yet been activated (i.e., it should
be called βFXII). However, this truncating event leads FXII
to expose its activation loop, leaving it highly sensitive to
activation by PKa or plasmin in solution (54). In similar manner,
others have more recently found that FXII mutants T309K
and T309R can also be truncated by thrombin and FXIa (55).
This sets the stage for swelling attacks after injury in HAE-
FXII patients. There are two more mutations in FXII that cause
HAE: c.892_909dup (duplicates residues 279–284 in mature
FXII) and c.1027G>C (A324P in mature FXII). We found that
these are not susceptible to truncation by plasmin (unpublished
findings) and it currently remains unclear how these mutations
cause pathology.

HAE-PLG

Very recently, Bork et al. identified a mutation in the
plasminogen gene through wholeexome sequencing studies in
German patient families that have HAE with normal C1-
INH activity. The mutation c.9886A>G causes an amino acid
substitution in kringle 3 (K311E; mature protein) (56). The
interesting thing about this mutation is that it should restore
the lysine-binding properties of kringle 3 that are normally
lacking in this human plasminogen kringle (57). It is of high
interest and clinical relevance to elucidate how this mutation
translates into the seemingly selective clinical phenotype of

recurrent angioedema, rather than a bleeding diathesis (this is the
picture of hyperfibrinolysis). Conversely, it is interesting that α2-
antiplasmin deficiency (hyperfibrinolysis) does not appear to be
accompanied by attacks of tissue edema.

Since the first report on HAE-PLG, the very same mutation
has been found in patients from Japan (58), Bulgaria, Spain,
Greece (59) and another German patient family (60). Germenis
et al. also pointed out that the mutation may not cause
disease purely in a stand-alone manner: several patients in their
study had additional polymorphisms in the plasminogen gene
or alternatively in enzymes that are involved in bradykinin
metabolism (59). Not completely surprisingly, these patients
respond well to prophylactic treatment with tranexamic acid,
indicating that lysine-dependent target engagement of mutant
plasminogen is a critical step in the disease mechanism. More
importantly, HAE-PLG patients that experience acute attacks
respond well to the kB2R antagonist icatibant, suggesting that
bradykinin is an important disease mediator during swelling
attacks (60).

HAE-HK

Even more recently, a new form of HAE with normal C1-INH
was identified in a family with a mutation in the KNG1 gene
(c.1136T>A; p.Met379Lys). This gene encodes HK, as well as
the splice variant low-molecular weight kininogen (LK). The
mutation is located in close vicinity to the physiological N-
terminal cleavage sites that normally mediates (lys-)bradykinin
liberation from its precursor protein, and therefore highly likely
to change the release kinetics of bradykinin-based vasoactive
peptides. This exciting discovery leads to many questions. Does
this mutation selectively affects the release of bradykinin by PKa,
or the release of lys-bradykinin by tissue kallikreins? Does the
sequence Lys-lys-bradykinin (or its des-Arg metabolite) react
normally with kB2R and kB1R?

IMPLICATIONS FOR THE BRAIN

Tissue swelling and edema formation are general features of both
chronic and acute inflammation. In a surprisingly broad and
growing spectrum of diseases beyond HAE, bradykinin has been
implicated as a disease mediator. For example, FXII-dependent
bradykinin production is held responsible for impairment of the
blood-brain barrier in Alzheimer’s disease. It has been repeatedly
found that aggregated amyloid β peptide can directly trigger
FXII, leading to PKa activity and targeting of this inflammatory
pathway has therapeutic value in models for this disease (61–63).
Interestingly, experimental knockdown of C1-INH expression in
mouse studies recapitulates many of these neurological features
without the apparent involvement of amyloid β peptide. This
suggests that proper control over bradykinin production is
essential for a healthy blood-brain barrier in general (64), and
might relate to the signs of depression that are reported in HAE
patients (65, 66).

So how does plasmin fit into this picture? Targeting
plasminogen expression in mouse models for Alzheimer’s
disease attenuates disease progression similar to knockdown of
FXII (67). In similar manner, LPS-triggered neuroinflammation
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is attenuated in mice that lack plasminogen or tPA (68).
The other way around, experimental induction of sustained
hyperfibrinolysis by system overexpression of plasminogen
activators in mice leads to increased permeability of the
bloodbrain barrier (69). This is attributable to plasmin-driven
bradykinin production, fitting with the clinical observation
that bradykinin-driven angioedema is a rare (1–5%) side-
effect of thrombolytic therapy (70). However, brain edema
after thrombolytic therapy is much more common and
generally considered an unavoidable treatment-associated evil.
Interestingly, preclinical studies point out that this phenomenon
is actually caused by PKa-driven bradykinin production (71).

THERAPEUTIC TARGETING OF
PLASMINFLAMMATION

Evidently, plasmin-mediated breakdown of blood clots is
required for a healthy vasculature; hypofibrinolysis is a risk
factor for venous thromboembolism (72). Although prophylactic
treatment of HAE patients with antifibrinolytic agents is well-
tolerated, human plasminogen deficiency is associated with
development of ligneous conjunctivitis (73). This suggests
that generalized neutralization of plasminogen activation might
have adverse effects. Considering that the urokinase system
can mediate plasminogen activation in a fibrin-independent
manner, it is attractive to speculate that selective targeting
of this axis has benefit in repressing excessive plasmin-
dependent bradykinin formation, while tPA remains available for
physiological fibrinolysis. Although this a possibility, how about
simply targeting the contact factors?

In vivo studies in mouse models, human deficiencies and drug
trials have shown us that targeting the contact system is generally
safe. However, it should be remembered that there is a proposed
role for FXII-dependent coagulation in thrombus stabilization
(74). For blockade of plasminflammation, it would be needed
to selectively inhibit the molecular interactions between
plasmin(ogen) and FXII or other contact factors. Identification

of these interaction sites is of high interest, as these can be used
for development of agents (e.g., monoclonal antibodies) that
selectively neutralize plasminflammation, while leaving other
physiological functions of the involved systems intact.

CONCLUSION

When combining insights from biochemical studies and clinical
observations in rare diseases, it becomes clear that plasminogen
activation and the plasma contact system are functionally
intertwined. Although the role of FXIIa as plasminogen activator
was discovered first, the role of plasmin as contact activator is
clinicallymore apparent. Inmany states of pathology where FXII-
driven bradykinin production contributes to inflammation, the
endogenous FXII activator has yet to be identified. However,
more often than not, plasmin is present and ready. Development
of strategies to uncouple fibrinolysis from plasmin-triggered
bradykinin production should have value for treatment of
inflammatory conditions.
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