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Pre-clinical models and clinical trials demonstrate that targeting the action of the cytokine,

granulocyte macrophage-colony stimulating factor (GM-CSF), can be efficacious in

inflammation/autoimmunity reinforcing the importance of understanding how GM-CSF

functions; a significant GM-CSF-responding cell in this context is likely to be

the monocyte. This article summarizes critically the literature on the downstream

cellular pathways regulating GM-CSF interaction with monocytes (and macrophages),

highlighting some contentious issues, and conclusions surrounding this biology. It also

suggests future directions which could be undertaken so as to more fully understand this

aspect of GM-CSF biology. Given the focus of this collection of articles on monocytes,

the following discussion in general will be limited to this population or to its more mature

progeny, the macrophage, even though GM-CSF biology is broader than this.
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INTRODUCTION

The glycoprotein, granulocyte macrophage-colony stimulating factor (GM-CSF) or CSF2, was
originally defined as a hemopoietic growth factor based upon its ability to form colonies in vivo
of granulocytes, and macrophages from bone marrow precursor cells (1). However, subsequently,
it has been viewed more as a cytokine acting via a specific receptor, expressed mainly on myeloid
cell populations, such as monocytes/macrophages, neutrophils and eosinophils, to enhance their
survival and/or to activate/differentiate them (2–5). While not having a significant effect on steady
state myelopoiesis, in the lung GM-CSF signaling normally maintains surfactant homeostasis
and its disruption causes pulmonary alveolar proteinosis (PAP) most likely due to compromised
alveolar macrophage development (6, 7). This GM-CSF-driven development of lung alveolar
macrophages is of fetal monocyte origin (8). Recently it has been proposed that GM-CSF is required
for cholesterol clearance in alveolar macrophages with reduced cholesterol clearance being the
primary macrophage defect driving PAP pathogenesis (9). There is evidence that GM-CSF also
controls non-lymphoid tissue dendritic cell (DC) homeostasis (10).

Seeing that this Review resides within a collection of articles on monocytes its content
will generally be focussed on this population and its tissue counterpart, the macrophage, even
though GM-CSF biology is broader involving other responding cell types such as neutrophils
and eosinophils.

GM-CSF AND AUTOIMMUNE/INFLAMMATORY DISEASE

Based mainly in data using GM-CSF gene deficient mice or neutralizing monoclonal
antibody (mAb) in models of autoimmunity and chronic inflammation, it is apparent
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that GM-CSF can be a key driver of tissue inflammation and its
associated pain. Examples include arthritis, EAE, cardiovascular
disease, and lung disease. The data summarizing these findings
have been reviewed recently (11–14) although some of this
data more pertinent to the main topic of this Review will be
mentioned. It should also be noted that systemically administered
GM-CSF can have beneficial effects in inflammatory disease (for
example, colitis) and host defense (for example, as an adjuvant)
although caution should be exercised in assessing the significance
of such administration for the role of endogenous GM-CSF in
inflamed tissue (5, 14).

Given the potentially wide range of GM-CSF biology
involving multiple cellular sources and responding myeloid
cell types (5), human conditions that involve both acquired
and/or innate immunity could fall within the realm of GM-
CSF influence. As a result of some of the basic biology
from pre-clinical models and GM-CSF expression in the
corresponding human condition, a number of clinical trials
using neutralizing mAbs to target GM-CSF or its receptor in
autoimmune/inflammatory diseases have been performed and
are continuing. There have been beneficial effects on disease
severity in rheumatoid arthritis and asthma trials but, for reasons
yet to be elucidated, not in plaque psoriasis—the data from these
trials have been reviewed recently (11, 13–15).

GM-CSF RECEPTOR AND SIGNALING

The GM-CSF receptor (GM-CSFR) is a type I cytokine receptor
comprising in a multimeric complex a binding (α) subunit and
a signaling (β) subunit, the latter shared with interleukin 3 (IL-
3) and interleukin-5 (IL-5) receptors. These pathways have been
linked to key residues in the intracellular regions of GM-CSFR
using mainly receptor mutants expressed in cell lines (16–18).
Key downstream signaling pathways from GM-CSFR are often
those involving JAK2/STAT5 and ERK (16, 17, 19–21) with ERK
activity linked to GM-CSF enhancement of human monocyte
survival in vivo (21). The GM-CSF-driven development of
lung alveolar macrophages is dependent on the transcription
factors, PU.1 (22) and PPARγ (23). The debated contribution of
other transcription factors, namely interferon regulatory factor
(IRF) 4 and IRF5, to GM-CSF-driven monocyte/macrophage
polarization (24–26), is discussed below.

The various cellular responses (survival, proliferation,
activation and/or differentiation) appear to be explained by
dose-dependent and sequential activation by GM-CSF of
specific signaling pathways downstream of the activated receptor
(16, 27). For example, physiological picomolar concentrations
of GM-CSF are able to promote Ser585 phosphorylation in the
cytoplasmic domain of the GM-CSFR β subunit to regulate
cell survival via phosphoinositide 3-kinase activity and in the
absence of other biological responses which occur at higher
GM-CSF concentrations (18, 28). A time- and dose-dependent
licensing process in mouse and human monocytes by GM-CSF
in vivo has been described that disables their inflammatory
functions and promotes their conversion into suppressor
cells (29): this two-step licensing requires activation of the

AKT/mTOR/mTORC1 signaling cascade by GM-CSF followed
by signaling through the IFN-γR/IRF-1 pathway. Consistent
with these dose-dependent signaling responses, dose dependent
effects of a neutralizing anti-GM-CSFmAb onmonocyte-derived
activation/polarization vs. cell number levels were found in an
inflammation model—indications were that higher local GM-
CSF concentrations were needed for the activation/polarization
response (30). Monocytes/macrophages generated in vivo from
mouse bone marrow precursors with different concentrations
of GM-CSF differed in function with possible implications for
GM-CSF-dependent pathology (31)—cells generated with a
high concentration of GM-CSF were more potent in generating
cytokines and chemokines. The links between the various
signaling pathways listed and their dependence on GM-CSF
concentration in monocytes/macrophages requires further
analysis to assess their contribution to the various cellular
responses mentioned above. Additional signal transduction
findings, particularly linked with the role of GM-CSF in
inflammation, are described below.

CELLULAR SOURCES OF GM-CSF AND
“NETWORKS”

Both hemopoietic [e.g., T and B lymphocytes (12, 32–35)
and innate lymphoid cells such as ILC3] (36–38) and non-
hemopoietic cell types (e.g., fibroblast, endothelial, and epithelial
populations) can produce GM-CSF although usually requiring
an activating stimulus (5, 12, 14, 32, 37, 39–43). In accord
with this requirement, in the steady state GM-CSF circulates
at low levels and tends to be expressed basally in non-sterile
tissues such as skin, lung and gut (44, 45). Even though in
inflammation GM-CSF can serve as a communication conduit
between tissue-invading lymphocytes and myeloid cells, there
is some controversy as to which factors can induce GM-CSF
production in T helper (Th) cells (12).

To help understand the chronicity of certain
inflammatory/autoimmune responses, a “CSF network”
hypothesis was originally proposed in which there is
an interdependent co-regulation of proinflammatory
cytokines, such as IL-1 and TNF, with GM-CSF as part of a
positive feedback “loop” involving communication between
monocytes/macrophages and neighboring cell populations, such
as fibroblasts, endothelial cells etc. (3–5, 46); this concept has
been expanded to include cytokines, such as IL-23 and IL-6,
as components of an autocrine/paracrine “network” involving
macrophages, DCs and Th cells (45, 47, 48). Recently, positive
feedback “loops” have also been put forward involving GM-CSF
in inflammatory-dilated cardiomyopathy and breast cancer
metastasis (49, 50).

GM-CSF AND MONOCYTE/MACROPHAGE
FUNCTION

Macrophage Polarization
Based only on increased expression of pro-inflammatory
cytokines, GM-CSF-treated monocytes/macrophages have been
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termed “M1-like” (51). However, such cells have also been
considered to have characteristics of both M1 and M2 cells,
for example, as regards their cytokine expression (39, 52),
and GM-CSF-activated mouse monocytes have been reported
to alleviate experimental colitis (52). Partly on account of
the modest overlap with classical M1 polarization and their
dual M1/M2 characteristics, it has been recommended that the
M1/M2 polarization terminology not be applied to GM-CSF-
treated monocytes/macrophages (14, 25, 26, 53). Even though
increased mRNA expression for TNF, IL-1β, and IL-6 is readily
observed in GM-CSF-treated (primed) monocytes/macrophages
in vivo, significant cytokine secretion usually requires another
stimulus, such as lipopolysaccharide (26, 54, 55).

Endogenous mediators can contribute to the phenotypes
of GM-CSF-treated monocytes/macrophages (25). As an
example, GM-CSF-mediated macrophage polarization of human
monocytes in vivo has been reported to be modulated by
endogenous activin A (25, 56); it also has been proposed that
the GM-CSF-induced PPARγ expression in human macrophages
is primarily regulated in this way (57). Endogenous TGF-β has
also been invoked to have a similar role in the development and
homeostasis of mouse alveolar macrophages (58). Since most, if
not all, mediators involved in the host inflammatory response
to injury and/or infection are endeavoring to be beneficial by
restoring homeostasis, it is important to explore such a role for
GM-CSF in its action on monocytes/macrophages.

Monocytes, Macrophages, and DCs
It is debated as to whether GM-CSF can give rise to monocyte-
derived DCs (MoDCs) in vivo or not (10, 14, 30, 59–61) even
though GM-CSF, often in combination with IL-4, is widely
used in vivo to generate mouse and human DC populations
from bonemarrow precursors and bloodmonocytes, respectively
(20, 62–64). Twomajor types of GM-CSF-dependent phagocytes,
termed macrophages and inflammatory DCs, have been claimed
to have arisen in vivo from mouse CD209− and CD209+

monocyte subsets (65)—their relationships to the in vivo
generated populations (see below) also need further analysis.
Mouse CD103+ DCs (also called cDC1) from different lymphoid
and non-lymphoid tissues have distinct functional activities and
there has been disagreement about the contribution of GM-CSF
to their development in vivo (10, 14, 66, 67) with perhaps varying
levels of GM-CSF helping to explain the discrepancies between
different studies (68). Obviously, more work needs to be done
to understand the role of GM-CSF in cDC development in the
steady state and during inflammation. It has been proposed that
the effector functions of GM-CSF-expanded myeloid cells in vivo
are guided by their tissue microenvironment (69).

Mouse populations generated by GM-CSF from bone marrow
precursors are heterogeneous with cells having both DC and
macrophage features being observed—such features include
surface markers, morphology, motility, antigen presentation, T
cell activation, cytokine production, and gene expression profiles
(51, 70–73); in fact their nomenclature is debated as to whether
they should be termed DCs or macrophages (25, 73–75). As an
advance on the use and interpretation of the data from such
cultures, cell sorting strategies have isolated populations from

them with macrophage and DC properties (73). Again the GM-
CSF concentrations employed likely contribute to the phenotypes
of the resulting populations (31). The in vivo relationships of
the in vivo generated populations from mouse bone marrow and
human monocyte cultures are not fully defined.

Inflammation/Autoimmunity
In chronic inflammation and autoimmunity myeloid
populations, for example, monocyte/macrophages and
neutrophils, the cell populations which are potentially responsive
to GM-CSF, are likely candidates to be regulating tissue damage
and inflammation, being capable of releasing mediators, such as
cytokines, chemokines, proteases and reactive oxygen species,
as part of this response (5, 12, 26, 76, 77) (Figure 1). Of likely
relevance to its function in inflammation/autoimmunity, GM-
CSF upregulates class II MHC (21, 78, 79) and CD1 expression
(80, 81) in human monocytes. However, it is worth noting
that it cannot be assumed that monocytes/macrophages are
the only myeloid cell types via which GM-CSF functions to
regulate autoimmunity/inflammation (5). Amongst members
of the macrophage lineage, GM-CSF initiates cardiac disease
in resident mouse tissue macrophages (40) while in contrast
only CCR2+ Ly6C+ monocytes require GM-CSF to lead to
a pathogenic signature for EAE progression characterized
by the induction of genes linked to inflammasome function,
phagocytosis and chemotaxis, i.e., they become pathogenic
DCs (76). Interestingly, it was reported that intrinsic GM-
CSFR signaling by mouse monocytes and their precursors is
not a prerequisite for the differentiation of monocytes into
inflammatory monocyte-derived DCs in vivo during acute
injuries (10). Nevertheless, moDCs do become more abundant in
mice in which levels of GM-CSF are increased indicating again
that GM-CSF can still be a critical factor influencing moDC
differentiation, particularly under conditions where GM-CSF
levels are elevated (61). GM-CSF-responsive CCR2+ moDCs
and not Csf2rb−/− moDCs are critical for Th17 induction and
EAE progression (60). In addition to being able to preferentially
control putative moDC numbers in antigen-induced mouse
peritonitis, GM-CSF could also regulate macrophage numbers
in the inflamed peritoneal cavity (30, 82, 83). Whether this
regulation of monocyte-derived populations was due to effects
of GM-CSF on cell trafficking in or out of a lesion and/or cell
survival is unknown (30, 83) although effects on the latter
parameter in other inflammatory/autoimmune models have
been discounted (40, 60). Interestingly, in this context it has been
suggested that GM-CSF controls mouse DC survival in non-
lymphoid tissues as the mechanism for their homeostasis (10).
There is also evidence that during an inflammatory response
GM-CSF may act systemically to promote hemopoietic cell
mobilization and development (40, 84–87).

GM-CSF vs. M-CSF (CSF-1)
The gene expression profiles of human monocytes differentiated
for 7 days in GM-CSF or M-CSF (CSF-1) differ substantially
(25) and display distinct bioenergetic profiles (88). Since
monocytes/macrophages are in general likely to be exposed
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FIGURE 1 | GM-CSF and monocytes/macrophages in inflammation. Depicted are some potential local and systemic actions of GM-CSF on monocyte/macrophage

populations during an inflammatory reaction. Whether particular actions operate are currently debated and are likely to depend on the nature of the inflammatory

reaction and the levels of GM-CSF attained from hemopoietic (e.g., lymphocyte) and non-hemopoietic (e.g., fibroblast) cell populations. Locally GM-CSF can act in a

concentration—dependent manner on target cells (resident macrophages and/or blood-derived monocytes) to promote their survival and/or

polarization/differentiation; the latter cell target can give rise to MoDCs. Their polarization/differentiation can be characterized by the production of proinflammatory

mediators such as cytokines (e.g., IL-1β, TNF), proteases, reactive oxygen species (ROS), etc. One interesting pathway (zoomed), which seems to be important for

GM-CSF-dependent inflammation and associated pain, leads to CCL17 production via JMJD3 and IRF4. GM-CSF can also act systemically in the blood and/or bone

marrow, either directly or indirectly ( ) via its cellular targets in the tissue, leading to migration/mobilization of monocytes or their precursors and/or

monocyte development from these precursors (myelopoiesis) ( ). MoDC, monocyte-derived DC.

to CSF-1 in the steady state, it has been proposed that pro-
inflammatory stimuli, such as GM-CSF and interferon γ, lead
to a cellular state of “CSF-1 resistance” or compromised CSF-1
signaling (5). CSF-1 could also be another endogenous mediator
contributing to the phenotype of GM-CSF-treated human
monocytes (89). Human monocytes differentiated in CSF-1 are
widely used as a model for steady state tissue macrophages. In
contrast to this widely used practice of employing CSF-1 as the
differentiation stimulus, human monocytes treated in vivo with
GM-CSF for 3 days have been used as a starting population of
“macrophages” to analyse the transcriptional regulator networks
upon cellular activation by a diverse range of stimuli (75, 90),
stressing the need for researchers in the macrophage field to be
conscious of the terminology used in any particular article.

GM-CSF and Interferon Regulatory Factors
(IRFs)
Based on a number of reports (91–94), the hemopoietic-specific
transcription factor, IRF4 (95), appears to be a key signaling
molecule regulating the adoption of DC-like properties in GM-
CSF-treated precursors such as monocytes. Ly6Chi Trem4neg

mouse monocytes can differentiate into Zbtb46+ MoDCs in
response to GM-CSF and IL-4 in an IRF4 dependent manner
(96). Also, GM-CSF-IRF4 signaling upregulates MHC Class
II expression in mouse macropahges (97). However, IRF5

rather than IRF4, has been reported to be important for GM-
CSF-mediated macrophage polarization (24) although there is
disagreement with this conclusion in that IRF4 is considered
to be more important based on the divergent data for the
relative enhanced expression of the two IRFs by GM-CSF in
human monocytes (25, 26). There is no obvious reason for
this divergence although subtle differences in culture conditions
could perhaps play a role. In support of the importance of
IRF4, there is recent evidence that IRF4, most likely acting
in monocytes/macrophages, is important in controlling how
GM-CSF promotes arthritis and associated pain, as well as
inflammatory pain per se (26, 98). There is evidence in
turn that enhanced JMJD3 histone demethylase activity is
required for GM-CSF-induced IRF4 transcription to occur
in monocytes/macrophages as well as for GM-CSF-induced
inflammatory pain (26) (see below).

GM-CSF/CCL17 Axis
We recently found that the chemokine, CCL17, is the most
highly up-regulated gene in GM-CSF-treated human monocytes
and, unlike TNF and IL-1β, is secreted at high levels by GM-
CSF-treated monocytes and mouse macrophages (26). It was
also found surprisingly that CCL17 mediated GM-CSF-driven
inflammatory pain as well as GM-CSF-driven and GM-CSF-
dependent arthritic pain and disease. These pro-inflammatory
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actions of GM-CSF via CCL17 in turn required IRF4 and JMJD3
activity (26) (Figure 1). This proposed pro-inflammatory effect
of IRF4 in macrophages was also surprising as IRF4 is usually
considered to have an anti-inflammatory role in such cells since it
down-regulates their production of pro-inflammatory cytokines
such as TNF and IL-1β (99–101). Thus, GM-CSF joins the list of
cytokines, such as IL-4 and TSLP, which can up-regulate CCL17
expression in monocytes/macrophages. This new GM-CSF →

CCL17 pathway appears to be active in rheumatoid arthritis
patients since circulating CCL17 levels are dramatically reduced
upon anti-GM-CSF receptor monoclonal antibody therapy (102).

More recent studies have indicated that the GM-CSF →

CCL17 pathway can be linked with TNF activity (103) as
well as regulating experimental osteoarthritic pain and optimal
disease (98)—the latter model data have led to a clinical
trial being initiated in osteoarthritis using a CCL17 antagonist
(NCT03485365 ClinicalTrials.gov). Interestingly, CCL17 may
not necessarily be functioning as a chemokine in its regulation
of inflammatory pain and arthritic pain/disease (98, 103).

CONCLUSIONS

It would appear from the above that GM-CSF-dependent
inflammatory pathways in monocytes (and macrophages) are
likely to be critical for the purported role of GM-CSF in
inflammation, autoimmunity and host defense. In addition to
attempting to summarize the relevant literature on this topic I
have tried to highlight some of the contentious issues which are

currently being debated. Such issues, which I have endeavored
to represent diagrammatically (Figure 1), are: (i) when, how and
at what concentrations GM-CSF controls cell number and/or
activation/differentiation (polarization) in vivo, (ii) whether GM-
CSF controls MoDC development in vivo, (iii) the nature
of GM-CSF-induced cell polarization, (iv) whether IRF4- or
IRF5- dependent pathways are more important for GM-CSF-
dependent biology, (v) when and how endogenous GM-CSF can
act systemically in addition to locally in tissues, and (vi) how
relevant are the effects of systemically administered GM-CSF to
the actions of endogenous GM-CSF.

In order to understand better the role of GM-CSF-dependent
pathways, future studies in some of the following areas are likely
to be informative: (i) additional clinical trials targeting GM-CSF
action and that of other putative downstream mediators, such as
CCL17, (ii) human monocyte/macrophage studies, (iii) cellular
metabolic responses to GM-CSF, and (iv) the significance of
GM-CSF→ IRF4 signaling.
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