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Toxoplasma gondii secretes rhoptry (ROP) and dense granule (GRA) effector proteins to

evade host immune clearance mediated by interferon gamma (IFN-γ), immunity-related

GTPase (IRG) effectors, and CD8+ T cells. Here, we investigated the role of

parasite-secreted effectors in regulating host access to parasitophorous vacuole (PV)

localized parasite antigens and their presentation to CD8+ T cells by the major

histocompatibility class I (MHC-I) pathway. Antigen presentation of PV localized parasite

antigens by MHC-I was significantly increased in macrophages and/or dendritic cells

infected with mutant parasites that lacked expression of secreted GRA (GRA2, GRA3,

GRA4, GRA5, GRA7, GRA12) or ROP (ROP5, ROP18) effectors. The ability of various

secreted GRA or ROP effectors to suppress antigen presentation by MHC-I was

dependent on cell type, expression of IFN-γ, or host IRG effectors. The suppression

of antigen presentation by ROP5, ROP18, and GRA7 correlated with a role for

these molecules in preventing PV disruption by IFN-γ-activated host IRG effectors.

However, GRA2 mediated suppression of antigen presentation was not correlated with

PV disruption. In addition, the GRA2 antigen presentation phenotypes were strictly

co-dependent on the expression of the GRA6 protein. These results show that MHC-I

antigen presentation of PV localized parasite antigens was controlled by mechanisms

that were dependent or independent of IRG effector mediated PV disruption. Our findings

suggest that the GRA6 protein underpins an important mechanism that enhances CD8+

T cell recognition of parasite-infected cells with damaged or ruptured PV membranes.

However, in intact PVs, parasite secreted effector proteins that associate with the PV

membrane or the intravacuolar network membranes play important roles to actively

suppress antigen presentation byMHC-I to reduce CD8+ T cell recognition and clearance

of Toxoplasma gondii infected host cells.

Keywords: Toxoplasma gondii, dense granule, rhoptry, antigen presentation, immunity related GTPases

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.02104
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.02104&domain=pdf&date_stamp=2019-09-06
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:david.j.bzik@dartmouth.edu
https://doi.org/10.3389/fimmu.2019.02104
https://www.frontiersin.org/articles/10.3389/fimmu.2019.02104/full
http://loop.frontiersin.org/people/701849/overview
http://loop.frontiersin.org/people/731095/overview
http://loop.frontiersin.org/people/696686/overview
http://loop.frontiersin.org/people/723726/overview


Rommereim et al. T Cell Recognition of PV Antigens

INTRODUCTION

Toxoplasma gondii [hereafter, Toxoplasma] frequently infects
warm-blooded vertebrates including humans (1), yet infection
by this parasite typically causes little disease burden due to
the development of strong protective CD8+ T cell immunity.
Recognition of Toxoplasma-infected cells by CD8+ T cells
is critical for immune control of infection by this obligate
intracellular pathogen (2). The initiation of CD8+ T cell
responses during infection is determined by the ability of
professional antigen presenting cells to acquire and present
antigens in the context of major histocompatibility complex
I (MHC-I). Toxoplasma infected cells have been observed
in vitro to present antigen to CD8+ T cells (3–5), and perforin
mediated cytolysis of parasite infected cells suggests these
cells present antigen in vivo to prime effector CD8+ T cells
(6, 7). Surprisingly, professional antigen presenting cells that
phagocytosed Toxoplasma failed to initiate significant CD8+ or
CD4+ T cell responses in vitro or during in vivo infection. Active
invasion and formation of the parasitophorous vacuole (PV)
in infected macrophages and dendritic cells is critical for the
priming of significant CD4+ and CD8+ T cell responses (5).

A unique aspect of Toxoplasma biology is parasite replication
within a specialized non-fusogenic PV that the parasite forms
upon entering a host cell by active invasion (8). Currently
identified endogenous CD8+ T cell antigens of Toxoplasma are
dense granule (GRA) or rhoptry (ROP) secreted proteins that
reside within the lumen of the PV (9, 10), or that localize
to the limiting PV membrane (PVM) (11, 12). Targeting of a
model CD8+ T cell antigen to different cellular compartments
in Toxoplasma revealed that antigens localized to the PV lumen
were associated with the highest level of presentation by MHC-
I in parasite infected host cells (13). Retargeting the ROP5
PVM antigen to the PV lumen resulted in markedly increased
antigen presentation of the endogenous CD8+ T cell epitope (12).
Collectively, these previous studies suggested that Toxoplasma
antigens associated with the PV initiate the CD8+ T cell
responses to infection.

Toxoplasma antigens are presented via the classical MHC-I
pathway once their cognate protein antigen reaches the host cell

cytosol (9, 14). Various models have been proposed for antigen
release from the PV (15), though the mechanisms that control
the release of PV localized antigens to the host cell cytosol for

processing and presentation by MHC-I are still unknown. A
retro-translocation model is based on the physical association
and fusion of the PVmembrane with host endoplasmic reticulum
(4). Another model suggested the host immunoproteasome
could directly access PVM localized parasite proteins (10).
Alternatively, parasite antigens may be released from the PV after
PVM/PV disruption by host cell autonomous IFN-γ-dependent
mechanisms (3, 16, 17). Nonetheless the PVM is unlikely to be
an idle target as certain PVM-associated Toxoplasma secreted
effector molecules participate in parasite mediated mechanisms
that effectively resist IFN-γ and immunity related GTPases
(IRG) dependent host cell mechanisms that would otherwise
effectively degrade the PV to promote parasite clearance (17–
26). Understanding the mechanisms that regulate the entry of

Toxoplasma antigens into the host pathway for presentation
by MHC-I and CD8+ T cell recognition is important for
designing effective vaccines against intracellular pathogens or
cancer (27–32).

We hypothesized that host cell mediated disruption of the
PV could release PV localized parasite antigens to increase
antigen presentation by MHC-I and the recognition of infected
cells by CD8+ T cells. Consequently, parasite secreted effector
proteins which preserve the integrity of the PV may function to
suppress antigen presentation by infected host cells. Consistent
with this hypothesis, we show that deletion of ROP5 or ROP18 in
infected macrophages and dendritic cells, or GRA7 in infected
macrophages, increased PV clearance and the presentation of
soluble PV antigen by MHC-I molecules. In contrast, deletion of
GRA2 increased the presentation of soluble PV antigen byMHC-
I molecules, though PV clearance was not affected. Moreover, the
increased antigen presentation phenotypes observed in the GRA2
deletion mutant were critically dependent on the expression of
the GRA6 protein. Collectively, our results reveal that host cell
type, host IFN-γ, and host IRG effectors are targets of multiple
rhoptry and dense granule secreted effectors that function in
association with PV membranes to dynamically regulate CD8+

T cell recognition of Toxoplasma infected host cells.

MATERIALS AND METHODS

Ethics Statement
All procedures involving mice were reviewed and approved by
the Institutional Animal Care and Use Committee of Dartmouth
College (Animal Welfare Assurance Number #A3259-01) and
were in accordance with the guidelines published in the Guide for
the Care andUse of Laboratory Animals of the National Institutes
of Health.

Mice
C57BL/6 female mice were purchased from Jackson Labs (Bar
Harbor ME) and maintained at the Center for Comparative
Medicine and Research at the Geisel School of Medicine at
Dartmouth in specific-pathogen-free conditions.

Parasites and Cell Culture
All parasite cultures were maintained in vitro by serial passages in
human foreskin fibroblast (HFFs) monolayers in Eagle’s modified
essential medium (EMEM) (Gibco) supplemented with 1% fetal
bovine serum (FBS) (Life Technologies) (33).

Generation of Isogenic OVA-Expressing
Knockout and Complemented Parasite
Strains
All strains used or developed in this study are listed in Table S1.
Knockout targeting constructs were developed and parasites
were transfected following the previously described protocol
(34). Primers used for construct development and knockout or
complementation validation are in Table S2. OVA expressing
strains were engineered by amplifying ptubP30-OVA by PCR
from plasmid ptubP30-OVA/sagCAT (35) using primers ptub_R
and DHFR.3′_F that contain overlaps with the UPRT 5′- and
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3′- untranslated regions (UTRs) to generate plasmid pOVA,
that targets OVA to the UPRT locus following FUDR negative
selection (Figure S1A) (34). The 1rop5-OVA and 1gra2-OVA
strains were complemented by targeting the WT gene, rop5C for
1rop5 and gra2 for 1gra2, to the endogenous gene locus and
then using 6TX selection to isolate positive clones (Figures S2A,
S2D). The 1rop18 strain was complemented with targeting
plasmids containing WT ROP18 (ROP18), a kinase dead ROP18
(ROP18KD) (36) or a ROP18 protein unable to interact with
ATF6β (ROP18ATF6β) (37). Each of the ROP18 complementation
targeting plasmids contained the complementing ROP18 with
a ROP18 promoter and ptubP30-OVA construct flanked by
the UPRT 5′- and 3′- UTRs to target the plasmid to UPRT
in the parental RH1ku801rop18::HXGPRT strain using 5-
fluorodeoxyuridine (FUDR) selection to isolate positive clones
(Figure S3A). Plasmid pROP18KD was engineered to mutate
the aspartic acid to an alanine at position 394 in ROP18
(38) by QuickChange site direct mutagenesis (Agilent). Plasmid
pROP18ATF6β was generated with primers that deleted amino
acids 147 to 164 in ROP18 (37). Genotype verification of gene
replacements and deletion events was assessed by PCR and
sequencing as previously described (34).

Validation of OVA Expressing and
Complemented Strains
HFF cells were cultured on coverslips and infected with parasites
for 24–48 h. To visualize OVA expression the cultures were fixed
with Histochoice (Amresco), and permeabilized with 0.001%
Triton X-100 (Sigma). To visualize ROP18 the cultures were fixed
with Histochoice and permeabilized in 0.1% saponin for 10min.
To visualize ROP5, cultures were fixed with 4% PFA (Electon
Microscopy Sciences) and permeabilized with 0.01% Triton X-
100. To visualize GRA2, cultures were fixed with 4% PFA and
permeabilized with 0.1% saponin. All samples were blocked with
10% FBS, incubated with primary antibodies (1 h at RT): rabbit
α-OVA (1:1,000, Bethyl Laboratories), rabbit α-ROP18 (ROP18-
His WA525, 1:500, Sibley laboratory), rabbit α-ROP5 [MO556,
1:3,000, (23)], and mAb α-GRA2 (France-Delauw Laboratory,
1:500). Cultures were washed 3 times with PBS and incubated
1 h at RT with secondary antibodies conjugated to an Alexa Fluor
(Invitrogen). Samples weremounted in ProLong Gold with DAPI
(Invitrogen) and then imaged with a Nikon A1R SI confocal
microscope (Nikon, Inc.). Confocal images were processed with
FIJI (39).

Preparation of Antigen Presenting Cells
Bone marrow derived macrophages (BMM8) were differentiated
from bone marrow isolated from C57BL/6 WT or Irgm1/m3
knockout (18) mice in a 5-day culture with 30% L929-culture
supernatant as previously described (40). Bone marrow derived
dendritic cells (BMDC) were differentiated from bone marrow
isolated from C57BL/6 or Irgm1/m3 knockout (18) mice in a 9-
day culture with GM-CSF (Peprotech) as previously described
(41). Purity was verified by FACS analysis (data not shown) and
unless otherwise stated, all incubations with BMM8s or BMDCs
were performed at 37◦C.

Flow Cytometry Based Secretion Assay
A previously described flow cytometry based secretion assay was
used to measure the accumulation of OVA protein in the lumen
of the PV to verify that different mutant strains of Toxoplasma
expressed and secreted equivalent OVA into the PV lumen (42).
BMM8 and BMDCs were infected with Toxoplasma at a MOI
of 2.5 and incubated for 24 h. Cells were then washed with PBS,
fixed with PFA (4%) and permeabilized with saponin (0.05%) to
selectively expose PV lumen proteins for analysis. The expression
of OVA was compared to the expression of GRA5 in each PV. To
identify the infected cells that were double positive for GRA5 and
OVA, processed cells were stained for mouse α-GRA5 (1:1,000,
Biotem, TG 17.113) and revealed using AF647 goat anti-mouse
IgG (1:500), and stained with rabbit α-OVA (1:1,000, Bethyl) and
revealed using AF488 goat anti-rabbit IgG (1:500).

B3Z T Cell Activation Assay
In vitro antigen presentation by BMM8 and BMDCs was
measured using the B3Z CD8+ T cell hybridoma that expresses
β-galactosidase upon recognition of the SIINFEKL peptide
(OVA257−264) presented on H-2Kb-molecules (Provided by
N. Shastri, University of California, Berkley) (43). WT and
Irgm1/m3 KO BMM8 or BMDC (105) were seeded on 96-well
trays and incubated overnight (BMM8) or for 4–6 h (BMDC).
To activate cells (primed) prior to infection they were cultured
for 4–6 h with IFN-γ (100 U/ml, Peprotech) and TNF-α (10
U/ml, Peprotech). Parasites were added to the APCs at an MOI
of 2.5 and incubated for 12 h. Infected cultures were then spun
down and washed twice with RMPI medium without phenol
red (Gibco) and B3Z cells (105) were added to the culture
and incubated for 12 h. Lysis buffer (44) containing CPRG
(final concentration 100µM) was added to the cultures and
plates were incubated for 14 h. Absorbance was read at 562 nm,
with 650 nm as the reference wavelength. Data is from three
experiments, each conducted in triplicate then averaged and
normalized with reference to uninfected controls and represented
as the fold change compared to an uninfected control or as the
percent increase of each knockout compared to RH-OVA for the
same condition.

Parasitophorous Vacuole Clearance Assay
WT and Irgm1/m3−/− BMM8 and BMDCs (4 × 106) were
seeded on 6-well trays overnight or for 6 h, respectively. To
quantitate the level of IFN-γ-dependent PV clearance, the
Toxoplasma infected cells were either incubated for 4–6 h with
normal culture media (non-activated cells) or media containing
IFN-γ (final concentration of 100 U/ml, Peprotech) and TNF-
α (final concentration of 10 U/ml, Peprotech) (primed cells),
and then infected with 100 tachyzoites/well and incubated for
6 days at 37◦C. The medium was removed from each well and
the remaining monolayer was fixed and stained with coomassie
brilliant blue to reveal plaques formed from the surviving
Toxoplasma PVs. The number of plaque forming units (PFUs)
per well were counted and the percent killing (PV clearance) was
determined by dividing the difference of the number of PFUs
in unprimed and primed cells by the total number of PFUs in
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the unprimed cells. The assay was performed in triplicate in two
separate experiments.

IRG Coating Assay of the PVM
WT and Irgm1/m3−/− APCs were seeded on a coverslip and
incubated overnight (BMM8) or for 4–6 h (BMDC), then
primed with IFN-γ (final concentration of 100 U/ml, Peprotech)
and TNF-α (final concentration of 10 U/ml, Peprotech) for 6 h.
Coverslips were infected with parasites at an MOI of 4 for
45min then washed and fixed with 4% PFA (ElectronMicroscopy
Sciences). Cells were then permeabilized with 0.1% saponin
(Sigma) and blocked in 10% FBS. For visualization, cultures were
incubated with mouse α-GRA5 (1:2,000, Biotem, TG 17.113)
and rabbit α-Irgb6 [1:1,000, (18)], then washed and incubated
with secondary antibodies anti-mouse Alexa Fluor 568 and anti-
rabbit Alexa Fluor 488 (Invitrogen). Coverslips were mounted in
ProLong Gold with DAPI (Invitrogen) and imaged at 63x with
a Nikon A1R SI confocal microscope (Nikon, Inc.). All images
were processed with FIJI (39). A minimum of 500 vacuoles was
scored for each strain for quantification of Irgb6 vacuole coating.

In vivo Infections
Groups of mice were infected intraperitoneally with 100,000
(105) or 1,000 (103) tachyzoites in 0.2ml PBS. Parasite viability
was determined by a plaque forming unit (PFU) assay (data
not shown).

Statistics
Statistical analysis was performed using PRISM software
(Graphpad Software). Survival was analyzed by the Log-
rank (Mantel-Cox) test performed using the Gehan-Breslow-
Wilcoxon test; a P ≤ 0.05 was considered significant. All other
statistical calculations were performed using the non-parametric
Mann-Whitney test; a P ≤ 0.05 was considered significant.

RESULTS

Development of a 1ku80 Genetic Model to
Evaluate CD8+ T Cell Recognition of
Toxoplasma Infected Host Cells
The model T cell antigen ovalbumin (OVA) was previously
engineered as a single copy gene to drive high-level expression
and secretion of soluble OVA protein (amino acids 140–386)
into the lumen of the parasitophorous vacuole (PV) (3, 13, 35).
This OVA transgene was targeted to the UPRT locus in the
genetically tractable type I strain RH1ku80 background (33,
45) and clones of RH-OVA expressing a single copy of OVA
inserted into the UPRT locus were isolated after selection in 5-
fluorodeoxyuridine (FUDR) (Figures S1A,B) (46). As expected,
OVA accumulated specifically in the PV lumen inside of the PV
membrane (PVM) and did not accumulate in parasites or in
the host cell (Figures S1C,D). This PV localized OVA antigen
contains the SIINFEKL epitope that can be presented by MHC-
I at the host cell surface to prime H-2kb restricted SIINFEKL
specific CD8+ T cells if OVA antigen is released from the
PV and is correctly processed by the host cell MHC-I antigen
presentation machinery.

Presentation of PV Localized OVA Antigen
by MHC-I Is IFN-γ and Irgm1/m3
Dependent in Macrophages and IFN-γ
Dependent and Irgm1/m3 Independent in
Dendritic Cells
Irgm regulatory molecules such as Irgm1 and Irgm3 regulate
the host cell IRG effector mechanisms that attack the PVM to
clear PVs and parasites from infected host cells (16–18, 47). To
investigate the role of IFN-γ priming, host cell Irgm1/Irgm3
molecules, and cell type in regulating the presentation of
PV associated parasite antigens by MHC-I, wild type (WT)
and Irgm1/m3 deficient (Irgm1/m3−/−) bone marrow derived
macrophages (BMM8s) or bone marrow derived dendritic cells
(BMDCs) were primed with IFN-γ, or left unprimed and then
host cells were infected with RH or RH-OVA. Irgm1/m3−/−

BMM8s or BMDCs lack functional IRG effector molecules.
Presentation of the OVA SIINFEKL peptide by MHC-I on
the host cell surface was measured using the sensitive and
quantitative B3Z antigen presentation assay (43) in previously
optimized assay conditions to determine the fold change (or
fold-activation) in antigen presentation in host cells infected
with RH-OVA compared to host cells infected with parental RH
not expressing OVA antigen (3, 13). As expected, RH infected
WT or Irgm1/m3−/− BMM8s or BMDCs induced only low
background levels of B3Z CD8+ T cell activation (<1-fold
change). In contrast, antigen presentation by RH-OVA infected
WT BMM8s primed with IFN-γ was markedly increased in
comparison to unprimedWT BMM8s, unprimed Irgm1/m3−/−

BMM8s, as well as primed Irgm1/m3−/− BMM8s infected
with RH-OVA parasites (Figure 1, top panel). However, in
contrast to macrophages, antigen presentation was increased in
both IFN-γ primed WT BMDCs as well as in IFN-γ primed
Irgm1/m3−/− BMDCs (Figure 1, bottom panel). These results
show that presentation of PV localized OVA antigen by MHC-
I is IFN-γ and Irgm1/m3 dependent in macrophages, and IFN-γ
dependent but Irgm1/m3 independent in dendritic cells. Thus,
IFN-γ was required for stimulating antigen presentation in
parasite infected cells, whereas the role of Irgm1/m3molecules in
antigen presentation of parasite antigens was cell type dependent.

Development of Isogenic OVA-Expressing
Parasite Strains Deleted for Parasite
Rhoptry and Dense Granule Secreted
Effectors
Since IFN-γ primed presentation of PV localized Toxoplasma
antigens by MHC-I through both Irgm1/m3 dependent and
Irgm1/m3 independent mechanisms (Figure 1), we hypothesized
that the parasite may utilize a range of secreted effectors to limit
antigen presentation by MHC-I. To address this hypothesis, we
first identified candidate secreted Toxoplasma rhoptry (ROP) and
dense granule (GRA) secreted proteins that have been previously
localized to the PV, the PVM, the intravacuolar network (IVN)
membranes within the PV lumen, or that have been linked
to parasite resistance against host IFN-γ or IRG effectors.
Knockouts of ROP5, ROP18, GRA2, GRA3, GRA4, GRA5,
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FIGURE 1 | Immunity related GTPases are necessary for optimal antigen

presentation in BMM8s but not in BMDCs. Antigen presentation in WT and

Irgm1/m3−/− BMM8s (top panel) or WT and Irgm1/m3−/− BMDCs (bottom

panel) infected with a wild type non-OVA expressing strain (RH) or

OVA-expressing strain (RH-OVA) was determined by CD8+ B3Z activation.

For statistical analysis activation was compared between specified host cell

conditions (WT/Irgm1/m3−/− or primed/unprimed) infected with a specific

Toxoplasma strain. Mean ± SEM. Mann-Whitney test. *P < 0.05, **P < 0.01.

GRA6, GRA7, GRA8, and GRA12 were developed in the isogenic
parental RH-OVA [1ku80] background. Several knockout
strains were complemented with either the corresponding WT
gene allele or with a gene allele possessing an engineered
mutation (Figures S2, S3). All strains engineered in this study
are listed in Table S1. OVA expression and secretion into the
PV lumen was initially assessed by confocal microscopy, and
as expected by virtue of sharing an identical single copy OVA
gene, OVA accumulation in the PV appeared to be equivalent in
each of these isogenic mutant strains (Figure S1D). In addition,
we selectively examined the expression of PV localized OVA,
compared to expression of PV localized GRA5, using a FACS
based assay to verify that in a large population of Toxoplasma-
infected macrophages (Figure S4A), or infected dendritic cells
(Figure S4B), the expression of PV localized OVAwas equivalent
between the different isogenic mutant strains. Thus, under the
antigen presentation assay conditions used here to measure

the presentation of PV localized OVA antigen by MHC-I, the
PVs between the different mutant strains expressed equivalent
amounts of PV localized OVA antigen.

ROP5 Regulates the Presentation of PV
Localized OVA Antigen by MHC-I Through
Irgm1/m3 Dependent and Irgm1/m3
Independent Mechanisms in Macrophages
and Dendritic Cells
Given previous findings that 1rop5 PVs are easily physically
disrupted by the action of Irgm1/m3 dependent host IRG
effectors (20, 22, 23, 26, 48), we hypothesized that host cells
infected with 1rop5 parasites may exhibit increased levels of
antigen presentation by MHC-I molecules from the release of
PV localized OVA antigen into the host cell cytosol following
IRG-mediated destruction of the PV. To assess this hypothesis,
we measured B3Z CD8+ T cell activation in unprimed or
IFN-γ primed WT and Irgm1/m3−/− BMM8s and BMDCs
infected with RH-OVA or 1rop5 parasites. Compared to RH-
OVA, antigen presentation in cells infected with 1rop5 parasites
was markedly increased in all conditions (Figure 2A). In contrast
to antigen presentation by BMM8s infected with parental
RH-OVA that was dependent on both IFN-γ and Irgm1/m3,
antigen presentation in BMM8s infected with 1rop5 parasites
was boosted by priming with IFN-γ, but was not strictly
dependent on either IFN-γ or Irgm1/m3−/− (Figure 2A). These
results suggested that ROP5 controls two distinct pathways
of antigen presentation by macrophages, one pathway is
dependent on Irgm1/m3 molecules while the second pathway is
independent of Irgm1/m3molecules. In addition, IFN-γ priming
of macrophages increases antigen presentation by both pathways.
Remarkably, compared with BMM8s, essentially identical
patterns of Irgm1/m3 dependent and Irgm1/m3 independent
antigen presentation were also observed in BMDCs infected
with 1rop5 parasites (Figure 2B). Thus, the loss of ROP5
created identical patterns of antigen presentation in BMM8s
and BMDCs, whereas in cells infected with parental RH-OVA
that expresses ROP5, antigen presentation by macrophages was
dependent on Irgm1/m3 and IFN-γ, while antigen presentation
by dendritic cells was dependent only on IFN-γ (Figures 1, 2).

The ROP5 locus in the virulent type I RH strain appears
to express 2 copies of the ROP5A gene allele type, 2 copies
of the ROP5B gene allele type, and 2 copies of the ROP5C
gene allele type (22). All six of these ROP5 gene alleles
were deleted in 1rop5 parasites. The ROP5C gene allele type
was previously correlated with IRG evasion and virulence
in mice (24). Therefore, we complemented 1rop5 parasites
with a single copy of the ROP5C gene allele (1rop5::ROP5C
parasites) (Figure S2). Expression of the ROP5C gene allele
partially rescued the Irgm1/m3 and IFN-γ dependent antigen
presentation phenotype in BMM8s infected with1rop5::ROP5C
parasites (Figure 2A). In contrast, antigen presentation levels
were similar in WT and Irgm1/m3−/− BMDCs infected
with 1rop5::ROP5C parasites (Figure 2B), suggesting that the
ROP5C allele substantially rescued the Irgm1/m3 and IFN-γ
dependent antigen presentation phenotype in dendritic cells.
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FIGURE 2 | 1rop5 increases antigen presentation by BMM8s and BMDCs and decreased survival in BMM8s. Antigen presentation in WT and Irgm1/m3−/−

BMM8s (A) and WT and Irgm1/m3−/− BMDCs (B) infected with wild type OVA expressing parasites (RH-OVA), 1rop5 knockout (1rop5), and complemented 1rop5

strain (ROP5C). For statistical analysis B3Z activation was compared between RH OVA and the specified parasite strain for the infecting APC (i.e., WT or

Irgm1/m3−/−). Quantification (C) and immunofluorescence (D) of representative images of Irgb6 (green) and GRA5 (red) localization on the PV in BMM8s.

Comparison of in vitro killing of PVs (E) by primed and unprimed BMM8s as determined by plaque forming units (PFUs) at day 6 post infection. Quantification (F) and

immunofluorescence (G) representative images of Irgb6 (green) and GRA5 (red) localization on the PV in BMDCs. Comparison of in vitro killing of PVs (H) by primed

and unprimed BMDCs as determined by PFUs at day 6 post infection. Mean ± SEM. Mann-Whitney test. *P < 0.05, **P < 0.01, ****P < 0.0001.

These results also suggested that the ROP5C gene allele did
not substantially rescue the Irgm1/m3 independent antigen
presentation phenotype in macrophages or in dendritic cells.

ROP5 Regulates PV Survival in
Macrophages and Dendritic Cells
To assess the role of Irgm1/m3 dependent IRG effectors and PV
disruption in ROP5 mediated antigen presentation phenotypes,

we measured IRG coating of the PVM and PV killing in
IFN-γ primed BMM8s and BMDCs infected with RH-OVA,
1rop5, or 1rop5::ROP5C parasites. Compared with parental
RH-OVA, Irgb6 coating of the PVM was strikingly increased
in IFN-γ primed WT BMM8s (Figures 2C,D) and in IFN-
γ primed WT BMDCs (Figures 2F,G) infected with 1rop5
parasites. BMDCs infected with 1rop5 parasites expressing a
single ROP5C gene allele (1rop5::ROP5C parasites) (Figure S2)
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resisted Irgb6 coating of the PVM as well as the parental
RH-OVA strain (Figures 2F,G). In contrast, resistance to Irgb6
coating of the PVM was not rescued in BMM8s infected
with 1rop5::ROP5C parasites (Figures 2C,D). As expected, PV
survival was not detected in WT BMM8s infected with 1rop5
parasites (Figure 2E), though PV survival was partially rescued in
WT BMM8s infected with 1rop5::ROP5C parasites (Figure 2E).
These results suggested that PV survival in IFN-γ primed
macrophages required multiple ROP5 alleles to resist the IFN-γ
and Irgm1/m3 dependent mechanisms of PV killing (Figure 2E),
though a single ROP5C allele was sufficient for PV survival
in dendritic cells (Figure 2H). In addition, these phenotypes
correlated with reduced killing (∼60%) of PVs in dendritic cells
compared to killing (∼100%) of PVs in macrophages infected
with 1rop5 parasites. Compared to parental RH-OVA, killing of
PVs was increased only ∼3-fold in BMDCs infected with 1rop5
parasites, whereas killing of PVs was increased at least 20-fold
in BMM8s infected with 1rop5 parasites (Figures 2E,H). While
PV killing was not detected in Irgm1/m3−/− BMM8s infected
with 1rop5 parasites (Figure 2E), surprisingly, we found that
ROP5 also regulated an Irgm1/m3 independent mechanism of
PV killing in IFN-γ primed BMDCs (Figure 2H). Moreover, a
single ROP5C gene allele rescued PV survival in IFN-γ primed
Irgm1/m3−/− BMDCs infected with 1rop5::ROP5C parasites
(Figure 2H). Consistent with these ex vivo PV killing phenotypes,
complementation of 1rop5 parasites with the ROP5C gene allele
significantly rescued the acute virulence of 1rop5 parasites
in mice (Figure S5). Collectively, these findings suggest that
ROP5 limited antigen presentation inmacrophages and dendritic
cells by neutralizing Irgm1/m3 and IFN-γ dependent host IRG
effectors to prevent PV disruption and the release of PV localized
OVA antigen for presentation by host MHC-I molecules.
ROP5 also blocked an Irgm1/m3 independent pathway for the
presentation of PV localized antigens by MHC-I. This Irgm1/m3
independent pathway was boosted by priming host cells with
IFN-γ, but was not significantly associated with PV clearance in
macrophages or dendritic cells.

ROP18 Regulates Antigen Presentation
Primarily Through Irgm1/m3 Dependent
Mechanisms in Macrophages and Through
Irgm1/m3 Independent Mechanisms in
Dendritic Cells
ROP5 is a central component of distinct ROP17 or ROP18 high
molecular weight PVM associated protein complexes (25) where
it regulates the ability of ROP18 to phosphorylate IRGs (23) to
neutralize their PV killing effector functions (36). In contrast
to 1rop5 parasites (Figure 2A, top panel), antigen presentation
was not increased in unprimed WT or Irgm1/m3−/− BMM8s
infected with 1rop18 parasites (Figure 3A, top panel). However,
IFN-γ primed WT BMM8s infected with 1rop18 parasites
exhibited markedly increased antigen presentation compared
to IFN-γ primed Irgm1/m3−/− BMM8s (Figure 3A, bottom
panel). Together, these results suggested that ROP18 selectively
suppressed an Irgm1/m3 and IFN-γ dependent pathway of
antigen presentation in macrophages. Consistent with these

results, Irgb6 coating of the PVM (Figures 3B,C) and PV
killing (Figure 3D) was increased in IFN-γ primed WT BMM8s
infected with 1rop18 parasites. Complementation of 1rop18
parasites with the WT ROP18 gene allele (1rop18::ROP18)
(Figure S3) rescued these Irgm1/m3 and IFN-γ dependent
antigen presentation, Irgb6 coating, and PV killing phenotypes
(Figures 3A–D). In contrast, complementation of 1rop18
parasites with ROP18 mutants possessing a non-functional
kinase-dead (KD) domain (ROP18KD) that fails to phosphorylate
IRGs (36), or with a ROP18 mutant with a deletion of the
N-terminal ATFβ6 domain (ROP18ATF6β) (Figure S3) that
mediates ROP18 association to the host ATFβ6 sensor (37),
as well as to the PVM (49, 50), failed to fully rescue these
phenotypes (Figures 3A–D). Thus, the Irgm1/m3 and IFN-γ
dependent ROP18 mediated suppression of antigen presentation
in macrophages was dependent on the ROP18 kinase activity
and the N-terminal ATFβ6 domain of ROP18. Collectively, these
results suggested that ROP18 limited antigen presentation in
IFN-γ primed macrophages primarily through its Irgm1/m3
dependent interaction with IRG effector proteins to prevent PV
disruption and the release of PV localized OVA antigen.

In contrast to unprimed WT and Irgm1/m3−/− macrophages
infected with 1rop18 parasites, a significant increase in antigen
presentation was observed in unprimed WT and Irgm1/m3−/−

BMDCs infected with 1rop18 parasites (Figure 3E, top
panel). Moreover, in contrast to IFN-γ primed WT and
Irgm1/m3−/− macrophages (Figure 3A, bottom panel), the
levels of antigen presentation were similar between IFN-γ
primed WT and Irgm1/m3−/− BMDCs infected with 1rop18
parasites (Figure 3E, bottom panel). This Irgm1/m3 independent
pathway of increased antigen presentation in BMDCs infected
with 1rop18 parasites was rescued by the WT allele of ROP18
(1rop18::ROP18) (Figure 3E, bottom panel). Together, these
results suggested that ROP18 suppressed antigen presentation
in dendritic cells primarily through a mechanism that was
not dependent on Irgm1/m3 molecules. Consistent with these
results, the absence of ROP18 did not affect Irgb6 coating
of the PVM in BMDCs (Figures 3F,G) and only weakly
influenced PV killing (Figure 3H). In addition, ROP18’s ability
to suppress this Irgm1/m3 independent pathway of antigen
presentation was significantly rescued in unprimed as well
as in IFN-γ primed Irgm1/m3−/− BMDCs infected with
kinase-dead 1rop18::ROP18KD parasites, or infected with
1rop18::ROP18ATF6β parasites (Figure 3E). These results
suggested that the kinase activity and the ATF6β domain of
ROP18 were not strictly necessary for ROP18’s ability to suppress
the Irgm1/m3 independent mechanism of antigen presentation
in dendritic cells.

PVM Associated Dense Granule Proteins
GRA3 and GRA7 Regulate Antigen
Presentation
To determine whether other PVM localized proteins also
influenced antigen presentation, we evaluated the role GRA3,
GRA5, and GRA8, three other secreted dense granule proteins
that selectively localize to the PVM (51). GRA8 played no
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FIGURE 3 | Infection with the 1rop18 strain results in increased antigen presentation by BMM8s and BMDCs corresponding with decreased parasite survival.

Antigen presentation in WT and Irgm1/m3−/− BMM8s (A) or WT and Irgm1/m3−/− BMDCs (E) infected with wild type OVA expressing parasites (RH-OVA), 1rop18

knockout (1rop18), wild-type complemented 1rop18::ROP18 strain (ROP18), kinase-dead (inactive) complemented 1rop18::ROP18KD (ROP18KD), and

1rop18::ROP18ATF6β (ROP18ATF6β). For statistical analysis B3Z activation was compared between RH OVA and the specified parasite strain for the infecting APC

(i.e., WT or Irgm1/m3−/−). Quantification (B) and immunofluorescence (C) representative images of Irgb6 (green) and GRA5 (red) localization on the PV in BMM8s.

Comparison of fold change in percent killing of PVs between knockout and RH-OVA (D) by primed and unprimed BMM8s as determined by PFUs at day 6 post

infection. Quantification (F) and immunofluorescence (G) representative images of Irgb6 (green) and GRA5 (red) localization on the PV in BMDCs. Comparison of the

fold change in percent killing of PVs between knockout and RH-OVA (H) by primed and unprimed BMDCs as determined by PFUs at day 6 post infection. Mean ±

SEM. Mann-Whitney test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

detectable role in regulating antigen presentation inmacrophages
or dendritic cells (Figures 4A,B). Antigen presentation was
selectively, and slightly, increased in unprimed WT BMDC
infected with 1gra5 parasites (Figure 4A). In contrast, antigen
presentation was markedly increased in unprimed and in IFN-
γ primed WT and Irgm1/m3−/− BMM8s and BMDCs infected
with 1gra3 parasites (Figures 4A,B). Remarkably, the increases
in antigen presentation in unprimed and in IFN-γ primed WT

and Irgm1/m3−/− BMDCs infected with 1gra3 parasites were
similar in magnitude (Figure 4B). These results suggested that
GRA3 regulated a mechanism of antigen presentation that was
not specifically dependent on Irgm1/m3 molecules, IFN-γ, or
cell type.

The PVM localized GRA7 molecule associates with
ROP5/ROP18 high molecular weight protein complexes (25).
Consistent with this localization, GRA7 was previously shown
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FIGURE 4 | 1gra3 exhibits BMDC specific and IRG and IFN-γ independent increases in antigen presentation. Antigen presentation in WT and Irgm1/m3−/− BMM8s

(A) and WT and Irgm1/m3−/− BMDCs (B) infected with wild type OVA expressing parasites (RH-OVA), 1gra3, 1gra5, 1gra7, or 1gra8. Quantification (C) and

immunofluorescence (D) representative images of Irgb6 (green) and GRA5 (red) localization on the PV in BMM8s. Comparison of fold change in percent killing of PVs

between knockout and RH-OVA (E) by primed and unprimed BMM8s as determined by PFUs at day 6 post infection. For statistical analysis B3Z activation was

compared between RH OVA and 1gra3 strains in the specified host cells. Mean ± SEM. Mann-Whitney test. *P < 0.05, **P < 0.01.

to coordinate its activities with the ROP18 kinase to enhance
resistance to IRG mediated clearance in macrophages (52, 53).
Consistent with this role for GRA7 and our hypothesis that
PV disruption increases antigen presentation of PV localized
antigens by MHC-I, antigen presentation was unaffected in
unprimed BMM8s and was markedly increased in IFN-γ
primed WT BMM8s, indicating that GRA7 suppressed a major
IFN-γ and IRG dependent pathway of antigen presentation in
macrophages. This GRA7 phenotype in BMM8s was similar
to, though slightly reduced in magnitude, in comparison
to BMM8s infected with 1rop18 parasites (Figure 3A). In
addition, minor increases in antigen presentation were observed
in primed Irgm1/m3−/− BMM8s (Figure 4A), and in unprimed
Irgm1/m3−/− BMDCs (Figure 4B) infected with 1gra7
parasites. As expected, 1gra7 PVs exhibited increased coating
with Irgb6 in IFN-γ primed BMM8s (Figures 4C,D), and
consistent with this observation, increased Irgm1/m3 dependent
killing of the 1gra7 PV (Figure 4E). Collectively, these results
suggested that GRA7 limited antigen presentation primarily in
IFN-γ primed macrophages through its Irgm1/m3 dependent
interaction with IRG effectors to prevent PV disruption and
the release of PV localized OVA antigen for presentation
by MHC-I.

Intravacuolar Network Membrane
Associated GRA Proteins Regulate Antigen
Presentation
In addition to GRA7, the GRA12 molecule was also previously
shown to be selectively associated with high molecular weight

ROP5 and ROP18 PVM localized protein complexes (25).
Moreover, GRA12 was previously localized to a nanotubular
membrane system in the PV (54) that is called the nanotubular

membranous network, or alternatively, the intravacuolar
network (IVN). GRA2, GRA4, GRA6, and GRA12 localize to
the membranes that comprise the intravacuolar network (IVN)

(51). GRA6 is required for the maintenance of IVN membrane

structures in the PV, while GRA2 is required for the assembly of
the membranous nanotubules that comprise the IVN (55). GRA2

was previously reported to influence IRG association with the
PVM association (24, 52), and GRA2 has also been reported to

suppress the presentation of the endogenous membrane-bound
GRA6 C-terminal epitope byMHC-I (42). To examine the role of

IVN localized GRA proteins in regulating antigen presentation

of the soluble OVA PV localized antigen, we engineered
several isogenic OVA-expressing GRA knockout strains (1gra2,
1gra2::GRA2, 1gra21gra4, 1gra21gra6, 1gra4, 1gra6, and

Frontiers in Immunology | www.frontiersin.org 9 September 2019 | Volume 10 | Article 2104

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Rommereim et al. T Cell Recognition of PV Antigens

1gra12) (Figure S1). Antigen presentation was increased
in unprimed and IFN-γ primed WT and Irgm1/m3−/−

BMM8s and BMDCs infected with 1gra12 parasites. Antigen
presentation levels in unprimed or IFN-γ primed WT and
unprimed or IFN-γ primed Irgm1/m3−/− BMM8s and BMDCs
infected with 1gra12 parasites were similar (Figures 5A,E).
These results suggested that GRA12 regulated a mechanism

of antigen presentation that was not dependent on Irgm1/m3
molecules, IFN-γ, or cell type.

Similar and significant increases in antigen presentation were
observed in unprimed and IFN-γ primed WT or Irgm1/m3−/−

BMM8s infected with 1gra2 or 1gra21gra4 parasites
(Figure 5A). In addition, increased antigen presentation
was observed in IFN-γ primed WT BMM8s compared with

FIGURE 5 | 1gra2 increases antigen presentation in BMM8s in the presence of GRA6. Antigen presentation in WT and Irgm1/m3−/− BMM8s (A) or WT and

Irgm1/m3−/− BMDCs (E) infected with wild type OVA expressing parasites (RH-OVA), 1gra2 knockout (1gra2), wild-type complemented 1gra2::GRA2 strain

(GRA2), 1gra21gra4 double knockout (1gra21gra4), 1gra4 knockout (1gra4), 1gra21gra6 double knockout (1gra21gra6), 1gra6 knockout (1gra6), 1gra12

knockout (1gra12). For statistical analysis B3Z activation was compared between RH OVA and the specified parasite strain for the infecting APC (i.e., WT or

Irgm1/m3−/−). Quantification (B) and immunofluorescence (C) representative images of Irgb6 (green) and GRA5 (red) localization on the PV in BMM8s. Comparison

of fold change in percent killing of PVs between knockout and RH-OVA (D) by primed and unprimed BMM8s as determined by PFUs at day 6 post infection.

Quantification (F) and immunofluorescence (G) of representative images showing Irgb6 (green) and GRA5 (red) localization on the PV in BMDCs. Mean ± SEM.

Mann-Whitney test. *P < 0.05, **P < 0.01.
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IFN-γ primed Irgm1/m3−/− BMM8s infected with 1gra2 or
1gra21gra4 parasites (Figure 5A). In contrast, no increase in
antigen presentation was observed in BMM8s infected with
1gra4 parasites (Figure 5A), suggesting that it was the absence
of GRA2 that was most important for the antigen presentation
phenotype in BMM8s infected with 1gra21gra4 parasites.
Complementation of 1gra2 parasites with the WT GRA2 gene
allele inserted into the UPRT locus significantly rescued these
1gra2 antigen presentation phenotypes in BMM8s (Figure 5A).
These results suggested that GRA2 regulated Irgm1/m3−/−

dependent and Irgm1/m3 independent mechanisms of antigen
presentation in BMM8s infected by 1gra2 or 1gra21gra4
parasites. However, in contrast to macrophages infected with
1rop5 (Figures 2C–E), 1rop18 (Figures 3B–D), or 1gra7
parasites (Figure 4E), increased Irgb6 coating of the PVM
(Figures 5B,C) or increased PV killing were not observed in
IFN-γ primed WT BMM8s infected with 1gra21gra4 parasites
(Figure 5D). These results suggested that deletion of GRA2
increased Irgm1/m3 and IFN-γ dependent antigen presentation
in BMM8s without any associated increase in IRG mediated
PV clearance.

Antigen presentation levels were similar between IFN-γ
primed WT BMDCs and IFN-γ primed Irgm1/m3−/− BMDCs
infected with 1gra2 or 1gra21gra4 parasites (Figure 5E). In
contrast, only small increases in antigen presentation were
observed in BMDCs infected with 1gra4 parasites (Figure 5E),
suggesting that it was the absence of GRA2 that was necessary
for the antigen presentation phenotype in BMDCs infected with
1gra21gra4 parasites. These results suggest that GRA2 regulated
an Irgm1/m3 independent mechanism of antigen presentation
in dendritic cells. Complementation of 1gra2 parasites with the
WTGRA2 gene allele rescued the Irgm1/m3 independent antigen
presentation phenotype in BMDCs (Figure 5E). No increase in
Irgb6 coating of the PVM was observed in BMDCs infected with
1gra2 or 1gra21gra4 parasites (Figures 5F,G).

GRA2 was previously reported to limit CD8+ T cell
recognition of the membrane-bound immunodominant HF10
epitope present at the C-terminus of the GRA6 antigen (42).
This interpretation of GRA2-associated antigen presentation
phenotypes was based on the assumption that the GRA6
molecule itself did not influence antigen presentation by MHC-
I (42). Thus, to formally eliminate any potential role of the
GRA6 molecule in affecting the antigen presentation phenotypes
of mutants deleted for GRA2, we developed 1gra6 parasites
as well as double knockout 1gra21gra6 parasites (Figure S1).
No significant antigen presentation phenotype was observed
in BMM8s infected with 1gra6 parasites (Figure 5A), though
antigen presentation was slightly increased in unprimed or
IFN-γ primed WT or Irgm1/m3−/− BMDCs infected with
1gra6 parasites (Figure 5E). However, the absence of both
GRA6 and GRA2 molecules in 1gra21gra6 parasites markedly
decreased or abolished the antigen presentation phenotypes
observed in BMM8s and BMDCs infected with 1gra2 or
1gra21gra4 parasites (Figures 5A,E). These results revealed that
the expression of the GRA6 protein was required to observe the
major increase in antigen presentation by MHC-I in host cells
infected with 1gra2 parasite strains.

DISCUSSION

The CD8+ T cell response is essential for establishing control
of Toxoplasma infection (56, 57), yet the mechanisms by
which Toxoplasma antigens enter the host cell cytosol for
presentation by MHC-I and whether secreted Toxoplasma
effector proteins regulate antigen presentation are unknown
(15). Here we demonstrate that host IFN-γ and IRG effector
proteins contribute to antigen presentation in macrophages as
well as in dendritic cells and we find that parasite antigens
released from disrupted parasite vacuoles are presented by host
cell MHC-I molecules. Additionally, our results suggest that
Toxoplasma secreted effectors, ROP5, ROP18, GRA2, GRA3,
GRA7, and GRA12 suppressed antigen presentation by infected
host cells (Figure S6). The diversity of parasite molecules capable
of limiting presentation of PV localized antigens in both the
presence and absence of IRG proteins, or stimulation of cells
by IFN-γ, suggests a multi-layered system for presentation
within cells and distinct mechanisms between macrophages and
dendritic cells. Our results highlight the adaptability of the
parasite to multiple cellular environments and the necessity of
parasite control of host cell antigen presentation mechanisms
within infected cells, which are regulated by the secretion
of distinct ROP and GRA proteins. Remarkably, the GRA2
antigen presentation phenotype was found to be co-dependent
on expression of the GRA6 molecule. Our work underscores that
Toxoplasma deploys multiple mechanisms mediated by rhoptry
and dense granule secreted effectors associated with the PVM and
the IVN membrane systems to regulate IRG effector dependent
and independent mechanisms that control the presentation of
soluble parasite PV localized antigens by MHC-I in infected host
cells for CD8+ T cell recognition (Figure 6).

It is well-established that the immunodominant antigens of
Toxoplasma recognized by CD8+ T cells are associated with the
PV (12, 13). Moreover, the development of a protective CD8+ T
cell response to Toxoplasma is dependent on parasite invasion
and PV formation within myeloid cells (5). Since Toxoplasma
infection prevents apoptosis of the host cell, this process of
antigen presentation by MHC-I in cells invaded by Toxoplasma
is not dependent upon apoptosis of the host cell (58–60). Thus,
the PVM serves as a barrier to host cell access to relevant parasite
antigens in the PV. Previous studies reported that PV localized
antigens were optimally recognized by CD8+ T cells if the antigen
was localized to the lumen of the PV (12, 13). Moreover, IRG
proteins were previously shown to enhance antigen presentation
of type II Toxoplasma in macrophages (3) as well as in mouse
embryonic fibroblasts (61) suggesting that disruption of the
PVM by host IRG effectors (15, 16, 62) increased host cell
access to PV localized antigens and their presentation by MHC-
I molecules. Our results confirmed these previous findings and
show that antigen presentation of soluble PV lumen localized
antigen by MHC-I is dependent on IFN-γ stimulation and
functional IRG effector molecules in macrophages infected with
the virulent type I RH strain. In infected dendritic cells, however,
antigen presentation was not dependent on IRG effectors but was
increased by IFN-γ stimulation, as well as PV killing. Indeed, our
study is the first to examine a role for IRG dependent killing on
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FIGURE 6 | Model of antigen presentation by MHC-I in Toxoplasma infected antigen presenting cells. (A) In Toxoplasma infected WT macrophages low levels of

antigen presentation occur in an IFN-γ and IRG-dependent manner, with minimal Irgb6 vacuole coating and parasite killing. (B) However, in macrophages, if the

parasites lack ROP5 or ROP18 molecules that can resist IRGs, the IRG proteins are able to coat the vacuole and disrupt the PV, releasing antigen into the host cell

cytosol for increased processing and presentation by MHC-I. Yet as we demonstrate in this study, IRGs are not the only mechanism by which antigen is released from

the parasitophorous vacuole (PV) for antigen presentation. (C) In the absence of IRGs and IFN-γ stimulation macrophages infected with the 1gra2 knockout that lacks

a mature intravacuolar network (IVN) increased antigen presentation selectively in the presence of GRA6 but not in the absence of GRA6, highlighting the importance

of IVN associated GRA proteins in regulating presentation of PV antigens. Additionally, another IVN localized GRA protein, GRA12, suppresses antigen presentation in

macrophages independently of IFN-γ or IRGs. (D) A parasite that expresses ROP5, ROP18, GRA2, and GRA3 has minimal levels of antigen presentation in dendritic

cells. (E) If the dendritic cell is activated with IFN-γ it activates IRGs that lead to disruption of the parasitophorous vacuole of parasites that lack ROP5 or ROP18

molecules that can resist IRGs thereby increasing antigen presentation. (F) The loss of GRA2, which leads to an absence of intravacuolar network, increases antigen

presentation in dendritic cell selectively in the presence of GRA6. As well, there appears to be dendritic cell-specific mechanisms for accessing antigens in the

parasitophorous vacuole, as only in dendritic cells does the loss of GRA3 increase antigen presentation in the absence of IRGs and IFN-γ stimulation.

the Toxoplasma PV in dendritic cells. These findings suggested
that parasite secreted effectors regulated IRG dependent and
independent pathways of antigen presentation in host cells
infected with the virulent type I RH strain.

Rhoptry proteins ROP5 and ROP18 block host IRG’s to
preserve the integrity of the PVM (20, 22–24, 26, 36, 38, 48, 49,
63, 64). Remarkably, essentially identical patterns of IRG effector
dependent and independent antigen presentation were observed
in macrophages and dendritic cells infected with1rop5 parasites,
suggesting that ROP5 suppressed both pathways of antigen
presentation. The Irgm1/m3 and IFN-γ dependent pathway
in macrophages and dendritic cells correlated with increased
Irgb6 coating of the PVM and destruction of the PV, though
macrophages were more efficient in killing PVs than dendritic
cells. Our results show that ROP5 blocked components of the

IRG effector pathway in both macrophages and dendritic cells,
but ROP5 did not block the ability of IFN-γ to stimulate antigen
presentation in infected host cells. Thus, ROP5 blocked the IFN-
γ and Irgm1/m3 dependent pathway of antigen presentation by
neutralizing IRG effectors to preserve the integrity of the PVM
and prevent PV disruption and PV clearance. These findings
suggest that PV antigens released from damaged, or killed, PVs
were more efficiently presented by MHC-I than PV antigens in
intact PVs.

In addition to the ability of ROP5 to prevent IRG and IFN-γ
mediated PV killing in macrophages and dendritic cells, our data
also revealed that ROP5 prevented PV killing in IFN-γ activated
Irgm1/m3 deficient dendritic cells. This IFN-γ dependent and
IRG independent pathway of PV killing was detected in dendritic
cells, however, this pathway was not observed in macrophages.
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These results suggest that dendritic cells can use both IRG
dependent and IRG independent mechanisms to kill and clear
PVs in infected cells. In addition to IRG effectors, IFN-γ regulates
host cell guanylate binding proteins (GBPs) and autophagy
proteins that also associate with the PVM (47, 65–70). GBPs
restrict PVs and perturb the PVM (47, 65–70). The targeting
of IRG effectors as well as GBPs to the Toxoplasma PV is
dependent on the expression of Irgm1/m3 molecules (47). In
addition, ubiquitination of the PV is linked with the targeting
of host p62 to the PV (71, 72). Colocalization of ubiquitin and
p62 on Toxoplasma PVs was dependent on p62 stimulation
with IFN-γ, particular autophagy proteins such as Atg3, Atg5,
Atg7, and Atg16L1, and Irgm1/m3 molecules (73). Irgm1/m3
molecules regulate IRG and GBP targeting to the PV as well
as p62 mediated ubiquitination of the PV (74). Moreover,
PV ubiquitination and GBP targeting to the PV is dependent
on initial IRG effector targeting of the PV (74). This PV
ubiquitination pathway is regulated by p62 and the E3 ligase
TRAF6 and PV ubiquitination licenses PVs for GBP binding
(74). Consequently, ROP5 neutralization of IRG effectors also
prevents PV ubiquitination and GBP targeting. Interestingly,
host cell p62 was previously reported to play a role in the
IFN-γ induced presentation of PV localized antigen without
affecting cell autonomous clearance of PVs or the replication of
parasites inside of PVs (73). Our experiments did not specifically
investigate the role of GBPs, host autophagy proteins, PV
ubiquitination, TRAF6, or P62 in the presentation of PV antigens
by MHC-I and it remains to be determined to what extent these
pathways contribute to Irgm1/m3 and IFN-γ dependent antigen
presentation of PV localized antigens in infected macrophages
and dendritic cells. Nonetheless, our results show that these
pathways are not predicted to be involved in the Irgm1/m3
independent pathway of antigen presentation, or in the IFN-
γ stimulated mechanisms that increase Irgm1/m3 independent
antigen presentation.

While ROP5 regulated IRG effector dependent mechanisms of
antigen presentation in macrophages and dendritic cells, ROP18
selectively regulated the IRG effector and IFN-γ dependent
mechanism of antigen presentation in macrophages. ROP18
mediated suppression of antigen presentation in macrophages
was dependent on the ROP18 kinase activity and the N-terminal
ATFβ6 domain of ROP18, which is required for PVM association
(49, 50). Thus, ROP18 limited antigen presentation in IFN-γ
primed macrophages primarily through its Irgm1/m3 dependent
interaction with IRG effectors to prevent PV disruption and the
release of PV localized antigens. In addition to the role of ROP18
in targeting IRG effectors, the host cell NF-κB p65 molecule
was also recently reported to be a phosphorylation target of
ROP18, leading to the blockade of NF-κB activation (75). Since
NF-κB can regulate MHC-I antigen presentation, this ROP18
function represents another potential mechanism to influence
the IRG effector dependent pathway of antigen presentation
in macrophages, and additional studies are still necessary to
determine if ROP18 manipulation of NF-κB regulates antigen
presentation by MHC-I.

ROP18 selectively suppressed the IRG effector independent
pathway of antigen presentation in dendritic cells but not

in macrophages. This finding contrasts with ROP5, which
suppressed this pathway of antigen presentation in both
macrophages and in dendritic cells. The ROP18 kinase activity
was not required for suppressing antigen presentation in
Irgm1/m3−/− dendritic cells, though the ATFβ6 domain of
ROP18 was partially required for this function. Collectively,
our results suggest that ROP5 and ROP18 limited IRG effector
independent antigen presentation in dendritic cells, while ROP5
alone was sufficient to limit this pathway in macrophages.
In contrast, the major pathway of antigen presentation in
macrophages is associated with IRG effector molecules and IFN-
γ stimulation. ROP5 and ROP18 limited this pathway of antigen
presentation by targeting and neutralizing IRG effectors.

ROP5 associates with ROP18, or independently with ROP17,
to establish high molecular weight PVM associated protein
complexes (25). The GRA7 molecule is a PVM associated
molecule that was previously reported to selectively associate
with ROP5/ROP18 protein complexes (25). GRA7 coordinates
its activities to synergize with ROP18 to mediate more effective
resistance to host IRG effectors (52, 53). Our results show that
GRA7 suppressed an Irgm1/m3 and IFN-γ dependent pathway
of antigen presentation selectively in macrophages. Moreover,
we show that GRA7 was required for full resistance to PV
clearance in a 6-day PFU assay, consistent with the recognized
role of GRA7 in resisting IRG mediated PVM disruption
in macrophages. However, previous data has indicated that
the 1gra7 strain was not cleared by IFN-γ stimulated RAW
macrophages in a 20-h assay (52). Together, these observations
raise the question of whether complete disruption of the
PVM is actually necessary for increased antigen presentation
in macrophages, or whether PVM perturbations without PV
clearance, is sufficient. Moreover, GRA7 was recently reported to
induce TRAF6 activation through its physical association with
TRAF6 via MyD88, thereby promoting more effective T cell
immunity againstToxoplasma (76). Since GRA7 directly activates
host innate immunity via MyD88 to activate TRAF6 (76), it is
possible that deletion of GRA7 also results in reduced activation
of TRAF6 and therefore reduced p62mediated PV ubiquitination
and GBP targeting of the PVM.

GRA3, GRA5, and GRA8 are other PVM associated
molecules; however, deletion of GRA8 did not affect antigen
presentation in macrophages or dendritic cells. GRA5 deletion
was associated with a small increase in antigen presentation
selectively in dendritic cells that was dependent on Irgm1/m3 but
was not dependent on IFN-γ priming, hinting that Irgm1/m3,
and IRGs, regulate a minor pathway of antigen presentation
that is not linked to destruction of the PV by IRG effectors.
In contrast, GRA3 regulated a significant pathway of antigen
presentation. While antigen presentation trended slightly higher
in dendritic cells than in macrophages infected with 1gra3
parasites, remarkably, the GRA3 antigen presentation phenotype
was not critically dependent on Irgm1/m3 molecules, IFN-γ, or
cell type. GRA3 is localized to the PVM and was previously
predicted to interact with the host ER protein CAMLG (77,
78). It remains to be determined whether GRA3 interacts with
other host specific molecules such as Rab22a or Sec22b that
play a role in antigen presentation of PV localized antigens
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(79, 80), or whether vacuoles that lack GRA3 are simply leaky
and directly release increased amounts of parasite antigens, or
parasitemolecules that influence antigen presentation byMHC-I.

Similar to ROP5 or ROP18 deletion, a significant IRG
effector and IFN-γ dependent increase in antigen presentation
was observed in macrophages infected with 1gra2 parasites.
GRA2 selectively associates with the IVN membranes and was
previously reported to influence IRG-PVM association (24, 81).
However, in comparison to strains deleted for ROP18 or ROP5,
1gra2 parasites exhibit only a mild defect in acute virulence (82,
83). Moreover, in contrast to deletion of ROP5, ROP18, or GRA7,
the IRG and IFN-γ dependent increase in antigen presentation in
1gra2 parasites did not correlate with any detectable changes in
Irgb6 coating or PV clearance in IFN-γ stimulated macrophages.
GRA2 limited antigen presentation by mechanisms that appear
to be independent of rhoptry proteins.

GRA2 is necessary for normal formation of the membranous
nanotubules of the IVN, and GRA6 also influences the IVN
membrane structures (55, 84). While 1gra21gra4 parasites
exhibited significant and similar antigen presentation phenotypes
as also observed in 1gra2 parasites, 1gra4, 1gra6, and
surprisingly 1gra21gra6 parasites closely resembled parental
RH-OVA parasites and did not exhibit the major IRG and
IFN-γ dependent increase in antigen presentation observed in
macrophages, or the significant increases in antigen presentation
in unprimed or IFN-γ primed Irgm1/m3−/− macrophages or
in unprimed or IFN-γ primed WT or Irgm1/m3−/− BMDCs
infected with 1gra2 or 1gra21gra4 parasites. Consequently,
the marked increase in IRG and IFN-γ dependent antigen
presentation observed in macrophages, or in dendritic cells,
infected with 1gra2 parasites was dependent on the expression
of the GRA6 molecule. Remarkably, the 1gra2 IRG independent
pathway of antigen presentation also required the expression of
the GRA6 molecule. Thus, the major GRA2 antigen presentation
phenotypes were dependent on the expression of the GRA6
protein. These results are striking and suggest an alternative
model that may underpin the IVN associated mechanisms that
control antigen presentation in parasite infected host cells.

GRA2 associates with other GRA proteins immediately
following invasion and secretion of dense granules into the PV
lumen while they are soluble, and upon membrane insertion into
the IVN GRA2 associates with GRA6 (85). With the loss of the
IVN tubular membranes in the 1gra2 background (83), GRA6
may not remain associated with the collapsed IVN membranes
present in the 1gra2 PV lumen (55). Indeed, recent evidence has
shown that GRA6 re-localizes to the PVM in 1gra2 parasites
(42). Moreover, the C-terminal domain of GRA6 that contains
the C-terminal localized HF10 epitope is topologically exposed
on exterior face of the PVM after this re-localization occurs in
1gra2 PVs (80). Thus, in 1gra2 parasites, the GRA6 protein
is exposed on the host cytosolic face of the PVM rather than
being contained within the PV lumen in association with IVN
membranes. These observations are mechanistically important
because the GRA6 protein has been reported to be a potent
activator of the host cell NFAT4 signaling pathway (86). The re-
localization of GRA6 to the PVM could be essential for activation
of the host cell NFAT4 signaling pathway, thereby increasing
antigen presentation observed in 1gra2 parasites. Additional

studies are needed to determine the specific role of GRA6 and
host NFAT4 signaling in the antigen presentation phenotypes
of parasite mutants that lack expression of secreted ROP or
GRA proteins.

GRA12 significantly suppressed antigen presentation in
infected macrophages and dendritic cells. GRA12’s influence
on antigen presentation was not strongly dependent on IFN-γ
stimulation, IRG effectors, or cell type. GRA12 is another protein
that selectively localizes with the IVN (54). The GRA12 molecule
was previously identified to associate with ROP5/ROP18 PVM
associated high molecular weight protein complexes (25). We
recently reported that GRA12 was required for resistance to
host IFN-γ, but not for resistance to IRG coating of the PVM
(87). Our results show that PVM localized GRA proteins (GRA3,
GRA5, and GRA7), and IVN localized GRA proteins (GRA2 and
GRA12) suppressed antigen presentation of PV localized parasite
antigens by MHC-I. Suggesting that the PV membranes, the
PVM and the IVNmembranes, actively and dynamically dampen
antigen presentation by MHC-I in parasite-infected host cells. In
addition, as discussed above for GRA6, if the IVN membrane
structure is not established, which is the case in 1gra2 parasites
(83), antigen presentation by MHC-I is increased through a
GRA6-dependent mechanism. Thus, it remains possible that the
GRA6 protein underpins a general parasite, or host strategy,
to enhance CD8+ T cell recognition of parasite-infected cells
with ruptured PVs, or PVs that contain altered or damaged PV
membranes, the PVM or the IVN membranes. Importantly, the
mechanisms that dampen antigen presentation by MHC-I could
play an important role in establishing the latent infection, by
reducing the CD8+ T cell responses that prevent or control the
latent infection. Interestingly, the GRA6 protein was recently
characterized to also possess a novel N-terminal domain localized
MHC-I epitope that elicits CD8+ T cells with the capability to
eliminate latent cysts in the brain (88). All together, these findings
suggest that active suppression ofMHC-I antigen presentation by
secreted ROP and GRA proteins is likely to be important for the
parasites ability to establish and maintain the latent infection.

Toxoplasma infection also actively suppresses MHC-II
presentation by antigen presenting cells (89–92). However,
multiple reports indicate that Toxoplasma infected antigen
presenting cells are not severely compromised and could even
be activated in their ability to express MHC-I and associated co-
stimulatory molecules (CD80, CD86, or CD40) to functionally
present antigen by MHC-I to activate CD8+ T cells (3–5, 13,
28, 30, 89, 93, 94). Toxoplasma secreted effectors such as ROP5,
ROP18, and GRA7 resist cell autonomous killing mechanisms
to maintain vacuole integrity and parasite survival while also
reducing or delaying host access to PV antigens for CD8+ T
cell recognition. Furthermore, our study highlights that ROP5,
ROP18, GRA2, GRA3, GRA7, and GRA12 also function to
dampen, but not to completely ablate, presentation of parasite
antigens by MHC-I. Moreover, the IRG independent as well as
IRG dependent GRA2 antigen presentation phenotypes were co-
dependent on the expression of the GRA6 molecule. Thus, it
remains to be determined whether all of the antigen presentation
phenotypes associated with ROP5, ROP18, GRA2, GRA3, GRA7,
and GRA12 molecules identified in our study arise from the
re-localization or release of GRA6 and subsequent activation of
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the host cell NFAT4 signaling pathway(s) that leads to increased
presentation of PV antigens by MHC-I.

Collectively, our findings argue for potent recognition
of intracellular Toxoplasma by antigen presenting cells to
activate strong CD8+ T cell responses, and indeed, potent
CD8+ responses are stimulated following vaccination with
live-attenuated non-replicating uracil auxotroph mutants of
Toxoplasma (5, 7, 27, 28, 95–101). Consequently, if Toxoplasma
failed to modulate the host CD8+ T cell responses, the parasite
infection could be cleared before latent infection was established,
and if the parasite dampened the CD8+ T cell responses too
effectively then the host could succumb from parasite replication
and tissue damage or associated inflammation, and consequently,
latent infection would not be established (102). To mediate this
dynamic host manipulation, the IVN membrane system in the
PV lumen could represent a sensor to detect PV membrane
perturbations. PV membrane perturbations could trigger re-
localization of GRA6 to the PVM in still intact vacuoles, or
release GRA6 into the host cytosol. Our findings suggest that
the Toxoplasma GRA6 protein underpins a key mechanism that
enhances CD8+ T cell recognition of parasite-infected cells with
ruptured PVs, or PVs with damaged PVmembranes. In contrast,
intact PVs actively and effectively resist the host cells attempt to
access and present PV localized antigens byMHC-I. This parasite
modulation of host access to PV antigens and their presentation
by MHC-I is likely to represent an adaptive mechanism to fine-
tune the host CD8+ T cell responses to promote host survival as
well as to establish successful latent infection, thereby increasing
parasite transmission. In sum, our data shows that rhoptry
and dense granule secreted proteins that associate with the
parasitophorous vacuole membrane or the intravacuolar network
membranes play important roles to dynamically regulate CD8+

T cell recognition of Toxoplasma infected host cells.
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Figure S1 | Development of OVA-secreting Toxoplasma knock out strains. (A)

Strategy to generate isogenic OVA expressing Toxoplasma by targeting insertion

of OVA into the UPRT locus via 5-fluorodeoxyuridine (FUDR) selection and double

homologous recombination. (B) Validation of OVA insertion by PCR. Six of six

clones (1-6) were positive for both PCR1 (∼1,300 bp) and PCR2 (∼1,600 bp) (see

Figure 1A) showing correct 5′ and 3′ integration of OVA into the UPRT locus. M

= marker. (C) Immunofluorescence validation of OVA expression (green) by

Toxoplasma in HFF cells infected for 48 h in vitro. (D) Validation of OVA expression

(green) by immunofluorescence imaging of OVA expressing strains that lack (1) a

ROP or GRA gene as indicated. Complemented strains are indicated (::).

Figure S2 | Complementation and validation of the 1rop5 and 1gra2 knockout

strains. (A) The strategy for complementation of 1rop5 at it’s endogenous with

the WT ROP5C allele using 6-thioxanthine selection. (B) PCR validation of

1rop5::ROP5C. Six of six clones were positive for both PCR1 (∼3,100 bp) and

PCR2 (∼3,000 bp). (C) Immunofluorescence validation of 1rop5::ROP5C. HFF

cells were infected for 24 h then fixed with 4% PFA, permeabilized with Triton

X-100 and blocked with 10% FBS, cells were stained with anti-rop5 (Kindly

donated by the Sibley Lab) (secondary: Alexa Fluor 488). (D) The strategy for

complementation of 1gra2 at it’s endogenous with the WT GRA2 allele using 6TX

selection. (E) PCR validation of 1gra2::GRA2. Six of six clones were positive for

both PCR1 (∼2,100 bp) and PCR2 (∼1,400 bp). (F) Immunofluorescence

validation of 1gra2::GRA2. HFF cells were infected with parasites for 24 h then

fixed with 4% PFA, permeabilized with Triton X-100 and blocked with 10% FBS,

cells were stained with anti-gra2 (Kindly donated by the Cesbron-Delauw lab)

(secondary: Alexa Fluor 488).

Figure S3 | Complementation and validation of 1rop18 knockout strain. (A)

Strategy for complementation of 1rop18 at the UPRT locus with the WT allele

(ROP18), a kinase dead mutant (ROP18KD), and an ATF6β binding motif mutant

(ROP18ATF6β) using 5-fluordeoxyuridine selection. (B) PCR validation of

1rop18::ROP18. Six of six clones were positive for both PCR1 (∼2,100 bp) and

PCR2 (∼1,600 bp). (C) PCR validation of 1rop18::ROP18KD. Six of six clones

were positive for both PCR1 (∼2,100 bp) and PCR2 (∼1,600 bp). (D) PCR

validation of 1rop18::ROP18ATF6β. Six of six clones were positive for both PCR1

(∼2,050 bp) and PCR2 (∼1,600 bp). (E) Immunofluorescence validation of

1rop18::ROP18, 1rop18::ROP18KD, and 1rop18::ROP18ATF6β. HFF cells were

infected for 24 h and ROP18 was visualized with anti-rop18 (secondary: Alexa

Fluor 488).

Figure S4 | Toxoplasma infected macrophages and dendritic cells express

equivalent OVA antigen in the PV lumen. (A) To verify equivalent expression of OVA

in the PV lumen, BMM8s, and (B) BMDCs were infected with different

Toxoplasma isogneic strains at an MOI of 2.5 and incubated for 22–24 h prior to

fixation with PFA. Cells were then permeabilized with 0.05% saponin and stained

for anti-GRA5 and anti-OVA. Samples were analyzed by FACS and gated on the

cells that were double positive for GRA5 and OVA.

Figure S5 | The ROP5C allele partially complements the virulence defect in

1rop5. Survival data for female C57BL/6 mice infected with either 100,000 or

1,000 tachyzoites of the shown strains (n = 4). Gehan-Breslow-Wilcoxon Test.
∗∗P < 0.005, ∗P < 0.05, ns = not significant.
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Figure S6 | Heat map summary of the effect of ROP or GRA deletion on antigen

presentation by MHC-I. Antigen presentation data from the B3Z assay is

represented as graphical summary plot. Color indicates the fold change increase

in antigen presentation over unprimed wildtype antigen presenting cells infected

with the Toxoplasma RH strain not expressing OVA.

Table S1 | Toxoplasma gondii strains used or developed in this study.

Table S2 | Primers for generating targeted insertions or deletions.

Table S3 | Validation primers.
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