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High dimensional approaches that characterize single cells at unprecedented depth

have helped uncover unappreciated heterogeneity, a better understanding of myeloid

cell origins, developmental relationships and functions. These advancements are

particularly important in cardiovascular disease, which remains the leading cause

of death worldwide. Gradual, monocyte-dependent inflammatory processes, such

as the development of atherosclerotic plaque within arterial vessels, contrasts with

the robust acute response within the myocardium that occurs when a vessel is

occluded. Monocytes and macrophages differentially contribute to tissue injury, repair

and regeneration in these contexts, yet many questions remain about which myeloid cell

types are involved in a coordinated, organ-level sterile inflammatory response. Single

cell RNA sequencing, combined with functional analyses have demonstrated that at

least three populations of resident cardiac macrophages exist, and after tissue injury,

there is significant diversification of the tissue macrophage pool driven by recruited

monocytes. While these studies have provided important insights, they raise many new

questions and avenues for future exploration. For example, how do transcriptionally

defined sub-populations of cardiac macrophages relate to each other? Are they different

activation states along a pre-defined trajectory of macrophage differentiation or do local

microenvironments drive newly recruited monocytes into distinct functions? The answers

to these questions will require integration of high-dimensional approaches into biologically

relevant in vivo experimental systems to ensure the predicted heterogeneity possess

a functional outcome.
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BACKGROUND

Mononuclear phagocytes are central mediators of cardiovascular (CV) disease, the leading cause
of death worldwide (1). In broad terms, CV disease can be classified into two forms; ischemic
and non-ischemic. Ischemic injury initiates within coronary arteries, with gradual accumulation
of LDL cholesterol in the artery wall over decades, leading to a smoldering, monocyte-dependent
chronic inflammatory response that drives atherosclerotic plaque expansion. Acute plaque rupture
leads to diminished blood flow to a segment of the myocardium (myocardial infarction), resulting
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in cell death with or without reperfusion injury—both processes
that also trigger substantial monocyte recruitment. Non-
ischemic cardiovascular injury represents a heterogeneous group
of etiologies that include hemodynamic strain (hypertension),
inflammatory myocarditis (infectious or autoimmune),
cardiotoxicity (such as from chemotherapy), as well as a
variety of other factors, all of which also trigger monocyte
recruitment (2). After injury, cardiac contractile function can
be impaired, promoting the development of heart failure.
Importantly, ischemic and non-ischemic etiologies both trigger
recruitment of monocytes from circulation and activate resident
macrophages that live within the tissue—which together,
coordinate the inflammatory and reparative response to injury.

The traditional view for decades has been that a monocyte
produced in the bone marrow enters tissue and becomes a
tissue macrophage in health and disease (3). This concept,
while initially important—overlooked substantial heterogeneity
within both monocyte production, monocyte fate after entry
into tissue—and separately, the heterogeneity within resident
tissue macrophages. Recent technical advancement in genetic
fate mapping, multi-dimensional (single-cell mass cytometry
[CyTOF], and novel flow cytometric markers;∼40 markers) and
high-dimensional approaches (i.e., single cell RNA sequencing
[scRNA-seq]; 1,000–5,000 transcripts), represents a key inflection
point in our ability to probe the mononuclear phagocyte
system. Subsequent computational analyses can not only help
functionally separate closely related cell types in an unbiased
fashion but can infer developmental relationships between
cells. In this review, we will define our current understanding
of monocyte and macrophage heterogeneity in CV disease
(heart and vasculature), where limitations exist, and possible
opportunities for future investigation in the context of using
high-dimensional approaches.

CIRCULATING MONOCYTE
HETEROGENEITY

During development monocytes are produced in the fetal
liver (through erythroid myeloid progenitors that migrate from
the yolk sac) and subsequently from definitive hematopoietic
stem cells (HSCs) (4). After birth, definitive HSCs in the
bone marrow become the major source of monopoiesis. Blood
monocytes, derived from common myeloid progenitor cells, are
first produced as Ly6Chi monocytes (CD14+CD16− in humans),
which are referred to as classical/inflammatory monocytes due
to their ability to extravasate into tissues, where they execute a
variety of effector functions following injury. In addition, Ly6Chi

monocytes may differentiate into macrophages or dendritic cells
depending on the local tissue environment, or they persist as a
monocyte subset and exit tissue, as demonstrated in the lung (5).
In patients, increased numbers of intermediate CD14+CD16+

monocytes have been correlated to increased risk of CV disease,
impaired recovery after myocardial infarction, microvascular
dysfunction and worse clinical outcomes (6–9).

Examination of chromatin accessibility within the genome of
Ly6Chi monocytes has led to the prediction that differentiation

from classical to Ly6Clo non-classical monocytes (through an
intermediate stage) is the default pathway (10). Non-classical
Ly6Clo monocytes (CD14loCD16+ in humans) play an important
role in patrolling the vasculature and maintaining vessel wall
integrity (11). With the use of scRNA-seq, several groups have
attempted to uncover further heterogeneity that exists within
the blood monocyte pool at steady-state. These studies suggest
a heterogeneous population of intermediate monocytes (murine
Ly6Cint monocytes and human CD14+CD16+ monocytes)
(10, 12). Given the heterogeneous nature of intermediate
monocytes, variation between individual human donors and
different single cell technologies, it is not surprising that some
studies failed to demonstrate a defined intermediate population
(13). Whether increased intermediate monocytes are a marker
of systemic processes driving increased cardiac pathology, or
whether CD14+CD16+ intermediate monocytes are themselves
infiltrating the myocardium and promoting pathology, has yet
to be determined. Advances in profiling circulating monocytes
using CyTOF have yielded enticing clues about potential novel
monocyte subsets that may arise in patients with coronary
artery disease, including increased CXCR6 and Slan (6-sulfo-
LacNac) expression on non-classical monocytes correlating with
increasing severity of atherosclerosis (14) (Figure 1). While a
detailed and unbiased single cell approach focused on peripheral
monocytes (and other circulating cells) has yet to be undertaken
in CV disease, we have compelling evidence in animal studies
that in the setting of inflammation, novel monocyte subsets are
liberated from the bone marrow, which may have important
functional implications.

MONOCYTE DIVERSITY TRIGGERED
DURING INFLAMMATION, AGING, AND
IMPLICATIONS FOR CV DISEASE

During cardiac injury, the monocytic demand is beyond
that available in circulation and in bone marrow or splenic
reservoirs. This HSC drive leads to the increased production
and mobilization of myeloid cells, a process termed “emergency
hematopoiesis” (15). The bone marrow senses increased stress
at distant sites through soluble factors, such as GM-CSF
and IL-1β (16, 17). In the setting of myocardial infarction,
a subset of CCR2+CD150+CD48− hematopoietic progenitors
with enhanced proliferative capacity are mobilized in the bone
marrow through an Mtg16-dependent process (18). Deletion
of Mtg16 decreased monocyte production and led to impaired
infarct healing. Additionally, myocardial infarction and risk
factors for myocardial infarction (sleep deprivation) induces a
state of stress—which itself can trigger increased bone marrow
HSC activity and promote development of atherosclerotic
lesions (19). The chronic months-long process of atherosclerosis
progression in mice (decades in humans) vs. the very acute
inflammatory and hemodynamic fluctuations of a myocardial
infarct trigger very different hematopoietic responses—and while
little is known about the types of monocytes produced in both
settings, it is tempting to speculate.
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For example, scRNA-seq revealed a “neutrophil-like”
Ly6Chi monocyte subset that was mobilized in response
to LPS injection and contained increased expression of
granule enzyme myeloperoxidase protein indicating an
enhanced direct pathogen killing function (20). Additionally,
SatM monocytes (segregated-nucleus-containing atypical
monocytes) were found to be responsible for fibrosis, but not
inflammation, in the setting of pulmonary fibrosis (21). A
Ym1+Ly6Chi monocyte population has been recently shown
to be liberated from the bone marrow to the colon during
the resolution phase of colitis (22). Thus, early production
of monocytes skewed toward inflammation or fibrosis may
be balanced by later production of monocytes that promote
tissue repair.

The accumulation of somatic mutations in hematopoietic
stem and progenitor cells as we age can lead to the clonal
expansion of a particular hematopoietic founder cell, termed
clonal hematopoiesis, due to its competitive advantage over
others. The role of clonal hematopoiesis in cardiovascular
disease has recently emerged, contributing to the aberrant
accumulation of inflammatory monocyte-derived macrophages
in atherosclerosis, hypertension, and ischemic injury
(23, 24). Similarly, increased proliferation and expansion of
hematopoietic stem and progenitor cells in the Apoe−/− mouse
fed a high fat diet led to the development of atherosclerotic
lesions (25). This suggests that excessive myelopoiesis is not only
a consequence of the inflammatory injury response but when not
properly regulated, can promote/exacerbate disease progression.
Although conflicting results have been gleaned from clinical trials
using anti-inflammatory drugs in ischemic and non-ischemic
heart disease (26), a recent clinical trial demonstrated a beneficial
role for the IL-1β inhibitor Canakinumab, resulting in decreased
cardiovascular events in patients with atherosclerosis (27). This
effect has been attributed to its potential ability to blunt excessive
hematopoiesis and monocyte production; however, macrophages
within advanced atherosclerotic plaque expand numerically
through local proliferation rather than continual monocyte
recruitment (28), thereby suggesting alternative mechanisms
may also be involved.

MACROPHAGE HETEROGENEITY IN
STEADY STATE

Several groups, using a combination of genetic fate mapping
and single cell transcriptomics have defined three populations of
tissue macrophages within the myocardium that are distinct in
origin, monocyte-dependence, and function (29–36) (Figure 1).
TIMD4+LYVE1+MHC-IIloCX3CR1lo macrophages (termed
TIMD4+LYVE1+ macrophages) represent an embryonically-
derived subset that renews almost entirely through in situ
proliferation without significant blood monocyte input in adult
animals, downregulating CX3CR1 as animals age (29, 32). A
portion of TIMD4+LYVE1+ macrophages upregulate MHC-II
and lose expression of TIMD4 and LYVE1 (termed MHC-II+

macrophages); which renew in situ, but also receive measurable,
albeit minimal monocytes in adult animals. Lastly, a numerically

smaller population of CCR2+MHC-IIhi macrophages exists,
which is continuously replaced by monocyte-derived cells. Sex-
mismatched heart transplant recipients confirm the peripheral
blood origin of CCR2+ cardiac macrophages in humans (33).

Both CCR2+ and MHC-II+ macrophages can process and
present antigen to T-cells, however their definitive role during
homeostasis is unclear. Analogous populations have been
reported to be associated with nerve bundles (34) and it is
possible that they suppress inflammation at these sites. Resident
macrophages are found in the atrioventricular node of the
myocardium, and when depleted, conduction abnormalities can
be detected–which suggests they may also reinforce efficient
electrical conduction (37). LYVE1+ macrophages are found
closely associated with the vasculature, promote endothelial cell
activation, patterning of coronary vasculature and are efficient
in the uptake of apoptotic cell material (29–31, 34). Depletion
of resident macrophages in steady state induced development of
cardiac fibrosis (34), which together suggest multiple important
homeostatic functions.

A fourth population of tissue cardiac macrophages has
now been identified through scRNA-seq in the uninjured
myocardium, increasing in number after injury (32, 38, 39). This
population is characterized by a strong interferon stimulated
gene signature (termed ISG MFs). Whether ISG macrophages
represent a unique tissue macrophage subset or are part of a
spectrum of activation states is unclear. Moreover, their role
in homeostasis is also unknown, which highlights the need
to develop tools to isolate and study this novel population.
Importantly, in the setting of myocardial infarction, blockade
of the type I interferon response enhanced infarct recovery
suggesting a critical role for this pathway (and possibly this
subset) in adverse LV remodeling (38).

A variety of approaches have been used to study monocytes
and macrophages within blood vessels, with a focus on the
aorta as a surrogate of coronary vasculature. Both embryonic-
derived macrophages, and neonatal macrophages, contribute
to aortic macrophage composition. ScRNA-seq has been used
to examine macrophage heterogeneity within the aorta, with
a focus on the atherosclerotic environment (see below). A
resident macrophage signature was seen within a single cluster
in naïve mice that expressed Lyve1, with gene expression
similarities to Lyve1/Timd4 expressing cardiac macrophages,
however additional heterogeneity within the total macrophage
population was not assessed (40, 41). This population of arterial
LYVE1+ macrophages resides in the arterial adventitia and is
maintained locally via self-renewal though interaction with the
vasculature smooth muscle cells (42).

DIVERSIFICATION OF CARDIAC
MACROPHAGE POPULATIONS IN
ISCHEMIC INJURY

In the setting of ischemic injury, the injured myocardium
recruits Ly6Chi monocytes in large numbers—an observation
established by numerous groups. The parallel fates of resident
macrophages and recruited monocytes at single cell resolution
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FIGURE 1 | Monocyte and macrophage heterogeneity in steady state and cardiovascular disease. During homeostasis, Ly6Chi monocytes circulate through blood

vessels and infiltrate tissue, where they give rise to CCR2+ M8s, while Ly6Clo monocytes patrol the vasculature. Cardiac M8s are further composed of

monocyte-independent self-renewing TIMD4+LYVE1+ and MHC-II+ resident M8s, which localize preferentially near blood vessels and nerve bundles, respectively.

During myocardial infarction, there is increased monopoiesis and release of Ly6Chi monocytes from the spleen and bone marrow, which are recruited to the injured

heart and give rise to diverse M8 subsets. Whether these M8 subsets are a spectrum of activation states or arise via pre-defined monocyte fates, such as Ym1+ or

CXCR6hi/Slanhi Ly6Clo monocytes as identified in other disease models, is not known. Conversely, there is a loss of TIMD4+LYVE1+ and MHC-II+ resident M8s. In

the vessels, the intima is lined with CD11c+ M8s and the adventitia contain TIMD4+LYVE1+ M8s and other undefined resident M8 populations. In atherosclerosis,

TREM2hi M8s and inflammatory monocyte-derived M8s accumulate in the intima, expand via self-renewal and participate in plaque growth. How this fate is defined

and the contribution of CXCR6hi/Slanhi Ly6Clo monocytes, found in the circulation of patients correlating with disease severity, is unknown. Mφ, macrophage.
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is less clear. Genetic fate mapping and scRNA-seq reveal that
resident TIMD4+LYVE1+ and MHC-IIhi macrophages are lost
within the ischemic zone, presumably due to cell death. Recruited
monocytes appear to have two principle paths after tissue entry.
The first, observed both in acute, and sub-acutely after infarct
involves a unique trajectory relative to the resident macrophage
population, characterized by multiple unique transcriptional
states (32, 39). The transition from Ly6Chi monocytes to early
macrophages tightly correlates with upregulation of hypoxia-
inducible genes (Hif1a, Vegfa, etc), upregulation of mature
macrophage genes (Mertk) and downregulation of monocyte
genes (Ly6c2). ScRNA-seq has been performed at day 3, 4, 7,
and 11 post-infarct by different groups, demonstrating unique
transcriptional identities that become more clear over time (32,
36, 39). Importantly, key findings from different studies support
the loss of the resident cardiac macrophage subpopulations, and
in parallel–recruitment of monocytes that begin to specify as
early as day 3-4, and subsequently their differentiation into a
variety of transcriptionally unique populations, including those
with more reparative properties.

Secondly, a subset of recruited monocyte-derived
macrophages developed overlapping transcriptional identities
that were nearly identical to resident macrophages (32).
Interestingly, these recruited macrophages did not upregulate
a handful of lineage-specifying genes such as Lyve1 and Timd4,
which proved useful as cell surface markers to reliably track the
original resident macrophage populations without the need for
genetic fate mapping. Despite the near transcriptional identity
between these recruited macrophage populations, depletion of
only resident macrophages resulted in decreased cardiac function
and adverse remodeling, suggesting either a functionally (or
temporally) non-redundant role. While precise functioning of
resident macrophages in this context is unclear, it may be due
to their ability to modulate the fate of recruited monocytes.
Depletion of tissue resident macrophages increased the number
of two recruited monocyte-derived macrophage fates (termed
ARG1+ and CCRL2+ macrophages) (33). This sheds new light
on the diversity of monocyte-derived macrophages within the
injured heart and highlights tissue resident macrophages as
important orchestrators of monocyte fate specification.

Not all resident macrophage populations behave similarly
post-ischemic injury. For example, the depletion of CCR2+

cardiac macrophages prior to ischemic injury (43) reduced
the number of pathologic ISG macrophages (IFIT3+) and
increased the number of ITGB7+ macrophages. We do not yet
know what the function is of ITGB7+ cardiac macrophages,
however their gene expression profile suggests they could
be reparative. It is also unclear whether individual resident
tissue macrophage subpopulations (TIMD4+ vs. CCR2+)
directly influence recruited monocytes, or have the capacity
to recruit monocytes that have been shown to have a direct
reparative role in other models [Ym1+Ly6Chi monocytes (22)].
It is equally likely that the depletion of individual resident
macrophage populations changes the microenvironment rather
than acting directly on recruited monocytes, and thus the
altered microenvironment directs monocyte fate decisions after
monocytes enter tissue.

DIVERSIFICATION OF AORTIC
MACROPHAGE POPULATIONS IN
ATHEROSCLEROSIS

Although much is known about the role of monocytes
in the formation of atherosclerosis [as reviewed in (44)],
two recent reports have now shown via scRNA-seq the
heterogeneity that exists within the immune cell compartment
of atherosclerotic lesions in two independent mouse models
fed a high fat diet (Apoe−/− and Ldlr−/−) (40, 41). Consistent
with both studies, is the identification of monocytes within
atherosclerotic aortas (Ly6c2, Ccr2). Beyond the resident
macrophage population seen in control and atherosclerotic
mice (Lyve1, Pf4), inflammatory macrophages and TREM2hi

macrophages were also demonstrated, the latter being enriched
in pathways linked to lipid metabolism and calcification (41)
(Figure 1). Although macrophage populations were consistent
between healthy and diseased aortas, the number of macrophages
were increased, as well as the expression of a number of
genes implicated in lipid and cholesterol metabolism and
oxidative stress. In one study, the authors evaluated earlier (11
weeks) vs. more advanced atherosclerosis (20 weeks) with little
difference in macrophage heterogeneity. This is consistent with
the observation that lesional macrophages accumulate through
local proliferation (28). These initial experiments proved to
be informative, however it was not possible to differentiate
macrophages isolated from within the artery wall itself (intimal)
vs. those that accumulate outside the wall in the surrounding
adventitia. Given the very different microenvironments in
these two regions, it will be important for future studies to
separately investigate each region. Moreover, atherosclerosis
tends to develop regionally in the aorta (near the aortic
root, lesser curvature of the aortic arch), thus understanding
the differences between regions at the single cell level could
provide clues to the regional nature of atherosclerosis initiation
and progression.

OUTSTANDING QUESTIONS AND
CONCLUSIONS

One key outstanding question which remains is how to interpret
heterogeneity revealed by single cell data and move forward
with functional studies. Retrospectively identifying population
clusters bioinformatically is only the first step. Building a
differentiation map of infiltrating monocytes and prospectively
sorting populations based on robust combinations of surface
markers will be an important approach to characterize individual
populations. As technology and computational approaches
improve, it will be important to integrate single cell mapping
with tissue localization. For example, it is possible to perform
single cell transcriptomics using methods that preserve tissue
localization [MERFSIH, SlideSeq (45, 46)], whereby monocyte
fate can be mapped from the blood vessel lumen to varied
anatomical niches found within ischemic or atherosclerotic
tissue by tracking individual or groups of RNAs. Linking
single cell transcriptomic advancements to single cell epigenetics
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and proteomics will further enhance resolution (47, 48). The
analysis of the comprehensive landscape of cells within tissues
has led to the generation of whole mouse and human cell
atlas projects which take a relatively broad approach to cell
characterization, but highlights the strength of this technology
to be able to compare cells across tissues and species (49,
50). These multi-disciplinary approaches require collaboration,
given the wide breadth of skills required to integrate different
technologies. The use of single cell technologies to assess
immune cells come with limitations, such as differential
extraction of individual subsets and reduced read depth
compared to bulk techniques, which are caveats that must be
acknowledged. In addition, most of the initial studies utilized
single replicates, thus the reproducibility of individual data
sets is still a major question in the field. The identification of
new subsets of monocytes and monocyte-derived cells within

tissues at steady state and inflammation already highlights
the profound role single cell technologies have had revealing
previously unknown heterogeneity. Future insights into their
function could allow for better therapeutic targets that aim
to hinder chronic inflammation while promoting tissue repair
and regeneration.
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