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Novel adjuvant technologies have a key role in the development of next-generation

vaccines, due to their capacity to modulate the duration, strength and quality of the

immune response. The AS01 adjuvant is used in the malaria vaccine RTS,S/AS01 and

in the licensed herpes-zoster vaccine (Shingrix) where the vaccine has proven its ability

to generate protective responses with both robust humoral and T-cell responses. For

many years, animal models have provided insights into adjuvant mode-of-action (MoA),

generally through investigating individual genes or proteins. Furthermore, modeling and

simulation techniques can be utilized to integrate a variety of different data types;

ranging from serum biomarkers to large scale “omics” datasets. In this perspective

we present a framework to create a holistic integration of pre-clinical datasets and

immunological literature in order to develop an evidence-based hypothesis of AS01

adjuvant MoA, creating a unified view of multiple experiments. Furthermore, we highlight

how holistic systems-knowledge can serve as a basis for the construction of models and

simulations supporting exploration of key questions surrounding adjuvant MoA. Using

the Systems-Biology-Graphical-Notation, a tool for graphical representation of biological

processes, we have captured high-level cellular behaviors and interactions, and cytokine

dynamics during the early immune response, which are substantiated by a series of

diagrams detailing cellular dynamics. Through explicitly describing AS01 MoA we have

built a consensus of understanding across multiple experiments, and so we present a

framework to integrate modeling approaches into exploring adjuvant MoA, in order to

guide experimental design, interpret results and inform rational design of vaccines.

Keywords: vaccines, adjuvants, mathematical modeling, computational biology, systems biology, mechanistic

modeling, AS01

INTRODUCTION

Adjuvants are immunostimulants that shape and enhance the immune response to
antigens through mimicking key aspects of innate pathogen recognition, leading to
robust long-term memory recall responses (1, 2). Many modern vaccine adjuvants
activate pattern-recognition-receptors (PRRs) expressed on innate immune cells, including
toll-like-receptors (TLRs) and NOD-like-receptors (NLRs) (3–5) although there are a breadth
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of potential innate activation mechanisms (1, 3–6). This capacity
to enhance responses not only increases efficacy but can
reduce the required quantity of antigen in vaccine formulations,
enhancing supply in the case of pandemic infections (3). Thus,
understanding how adjuvants modulate the immune response is
key to providing amechanism-based approach to rationally tailor
vaccines. While non-adjuvanted vaccines are usually capable of
inducing sufficient antibody responses, it is widely characterized
that adjuvants are capable of enhancing and altering the quality
of humoral responses (7). Furthermore, for some diseases,
including malaria, HIV, and TB, antibody responses alone are
not considered to be sufficient to eliminate the pathogen (8).
Thus, adjuvants which can generate both robust CD4+ T cell and
strong neutralizing antibody responses are required (9).

AS01 is a liposome-based vaccine-adjuvant containing two
immunostimulants: monophosphoryl lipid A (MPL) and QS-
21 (Antigenics LLC, a wholly owned subsidiary of Agenus Inc.,
a Delaware, USA corporation). MPL is a TLR4 agonist, and
QS-21 is a saponin, derived from the Quillaja saponaria soap
bark tree. This formulation has been shown to enhance both
antibody and T helper 1 (Th1) responses to antigens (8, 10). It is
currently employed in two approved vaccines against malaria and
herpes-zoster virus (9). AS01-adjuvanted vaccines have shown
high efficacy results in herpes-zoster phase III trials, where two
doses result in >90% efficacy against herpes-zoster, regardless
of age, including in >70 year old patients (11, 12), showcasing
an ability to overcome the age-related defect associated with
vaccination. Furthermore, in a phase 2b clinical trial, AS01-
adjuvanted vaccines provided 54% protection against active
TB (13). TLR agonists like MPL are often utilized in modern
adjuvants, as they modulate the type and duration of the immune
response (14–17). However, adjuvants can be greatly improved
by the inclusion of additional immunostimulants, as observed
with AS01, where, QS-21 is found to synergise with MPL. While
MPL’s mode-of-action (MoA) is widely characterized, QS21’s
MoA is not well-understood, although it has been shown to co-
localize with subcapsular-sinus macrophages (SCS-M) leading
to inflammasome activation in a caspase-1 dependent manner
(18–21). Caspase-1 activation can trigger pyroptosis, activation
of damage-associated-molecular patterns (22) and cleave pro-
IL-1β and pro-IL-18 into bioactive pro-inflammatory IL-1β and
IL-18 (23, 24). IL-1β is pleiotropic in function, rather IL-18
has a specific role in innate IFNγ production (25). AS01-
adjuvanted vaccines induce an inflammatory response associated
with transient production of innate IFNγ in the draining lymph
nodes of mice, peaking at approximately 6 h post-injection (PI),
and subsiding to baseline levels by 48 h PI (8). It has been
shown that this early IFNγ production is required to promote
a functional CD4+ T-cell response in mouse models (10).
Furthermore, in humans, serum IFNγ is associated with clinical
protection (22). However, some key questions remain regarding
the MoA of AS01, such as the role of key early events in the
adaptive response.

Genetically modified animal models have provided vital
insight into the mechanistic processes underpinning vaccine
efficacy. Over the past two decades, these models have been
utilized to determine AS01 MoA. These pre-clinical models have

permitted investigation of individual genes and proteins, in a
reductionist manner (26), however not all mechanistic questions
can be addressed in this way. Systems biology methodologies
including machine learning, statistical, mathematical, and agent-
basedmodels can provide a holistic perspective onMoAs through
data and knowledge integration (27–30). This can permit
exploration of the relationships between different components
in the biological system through simulation, where systems are
not viewed purely as a sum of parts, but where additional
phenomena can emerge as a result of integration. These methods
can capture the complexity of the biological system allowing
exploration of individual or population dynamics, the role of
localized microenvironments, vaccination dose and time (31),
and can be used to guide and optimize experimental design (27,
30, 32–36). This permits exploring dose modulation, prioritizing
research avenues and determining experimental endpoints that
maximize the value of individual animal experiments. Different
systems-based approaches are increasingly being applied to
biomedical research problems; permitting development of novel
mechanistic hypotheses, spatio-temporal analysis of function of
cytokines, chemokines, growth-factors, and cell-cell interactions
that currently cannot be achieved in vivo (34–38).

Yet if systems-based modeling approaches are to add value to
our understanding of the biological system, it is critical that the
relationship between the biological understanding and how this
knowledge is captured in-silico is understood. In the realms of
immunology, our previous work has shown the adoption of a
principled approach to the development of such tools, focusing
on developing confidence that the model is fit for its purpose
as providing a platform for exploring and contributing to our
understanding of real-world biological systems (30, 35, 39–43).

These concepts, however, have rarely been applied to
exploring adjuvant MoAs, which are highly complex systems,
spanning multiple organs, and levels of biological hierarchy.
Thus, we present a framework in which we follow a principled
modeling process (44) and collate knowledge surrounding
AS01 MoA, which will then be used to construct simulations
to explore key mechanisms of interest. We have captured
our current consensus of AS01 MoA (see Figure 1) through
interdisciplinary teamwork detailing the functionality of
components underpinning how AS01 works, with focus on how
the production of innate-IFNγ drives an adaptive response.
This work, where a system of interest is identified, modeled,
and scientific questions are elucidated, collectively comprises
the “Discovery Phase” of the modeling process (44). The result
is a “Domain Model” which is a model (i.e., an abstraction)
of the key biological detail (44), which serves as a biological
basis for simulation construction (Figure 1E). Domain models
describe only the relevant biology, and do not describe concepts
related to simulation construction, or how computer code is
developed (44). Decisions on which modeling methods are
utilized are taken subsequently during development of a separate
model, named a “Platform Model,” where mathematical and
computational concepts are introduced, detailing how the
Domain Model is to be implemented as a simulation (44). In
this perspective, we focus on the presentation of a framework
for creating a non-executable Domain Model that captures and
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FIGURE 1 | Development of the Domain Model: in this context, development of the domain model began with (A) the collection of experimental data from Graphpad

Prism and Excel files, and the corresponding experiment metadata. Following this, an automated pipeline was developed to clean, structure, and integrate the

experimental results and the corresponding metadata, resulting in machine-readable data. Next, human abstraction, the AS01 data and immunological literature were

appropriately integrated (B). The AS01 data informed the development of the model 2-fold, firstly by constituting the available evidence behind the captured

processes, but also by informing the rationale underpinning any human abstraction required to inform gaps in understanding. The core MoA model (C) was utilized to

scope the requirements of the lower-level models describing component function, and so from the core MoA model, state-machine and activity diagrams were

developed (D). Furthermore, Domain Model development can inform data collection by permitting the understanding of what data is required to ask the scientific

question. (E) An overview of the CoSMoS process. The system of interest, in this context a biological system, is known as the domain. From this, the current scientific

understanding of the system is modeled with respect to the research context, and encapsulated in the “Domain Model”. From this, and often after a process of

refinement driven by the scientific question, a software blueprint called a Platform Model is developed. At this stage, further abstractions may be necessitated, based

on available computational resources or model simplifications, which are decisions that should be documented as part of the Platform Model. Following this rigorous

process builds confidence in the model and simulation, improving the likelihood that the simulation is a “fit for purpose” representation of the biological system

(43–45). The simulation platform is an executable piece of software written in computer code, that implements the Platform Model, while the results model

encapsulates the understanding that is generated from the simulation.

brings together understanding of AS01 biology, and present
specific exemplars describing key component functions. To
embrace simplicity, focus was placed on capturing essential
components and entities where ample evidence of involvement
in AS01 MoA is available. We believe that the application of this
framework will complement work to explore AS01 MoA, and
that these concepts should be utilized more generally to further
understand adjuvant MoAs and thus enhance vaccine efficacy.

CAPTURING THE HIGH-LEVEL
CONSENSUS OF AS01 MOA IN A
CELLDESIGNER MODEL

Based on murine experimental data and a consensus
understanding of AS01 knowledge we have developed a

hypothesis of AS01’s MoA. This was initiated with a focus on
key questions in AS01 biology: “In preclinical models, after
intramuscular injection of a vaccine adjuvanted with AS01,
how does AS01 initiate an immune response? What are the
key interactions that give rise to the generation of an antigen-
specific CD4+ T helper cell responses and subsequent antibody
production? How does IFNγ regulate these different processes?”
To address these questions, we identified and captured key cells
and processes in the model. The highly visual characteristics
of the Systems Biology Graphical Notation (SBGN) (46)
applied in CellDesigner (47) (www.celldesigner.org) allows for
improved communications which is crucial when working in
cross-disciplinary teams; permitting transparency, knowledge
retention, and future reusability through linking AS01 data
and wider immunological literature via diagrams of biological
processes. The development process, which is described below,
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evolved a joint understanding between research teams, resulting
in one shared model (Figure S1). This process permitted the
confirmation of knowledge gaps, and the resulting consensus
of AS01 MoA will inform the remaining development of the
Domain Model. The following four step process (Figure 1A–C)
was used to capture AS01 MoA in a process diagram: (1)

Development of a biological “cartoon” incorporating current
knowledge of how the adjuvant generates an adaptive immune
response in a specific host; (2) The “cartoon” was used to
generate a formal CellDesigner model; (3) An iterative process of
CellDesigner model development was followed, to incorporate
key team ideas, capturing, refining, and extending key aspects
of the biology; (4) The final model was scrutinized, based on
team discussions, resulting in a collective understanding agreed
by all parties, to generate a single combined model of the
adjuvant’s MoA.

A DESCRIPTION OF THE AS01
CELLDESIGNER MODEL

While the CellDesigner model does describe some detail (these
differences are depicted in yellow) of the response after a
booster dose of an AS01-adjuvanted vaccine, it’s main focus
is the primary response. Thus, the following section describes
the generation of a primary murine response to an antigen
adjuvanted with AS01. As observed in vivo, in the CellDesigner
model, after intramuscular injection of an AS01-adjuvanted-
vaccine (Figure S1A) the adjuvant components both activate
local cells and drain into the dLN (Figures S1C–E) initiating the
immune response (8). In the muscle (Figure S1A), the model
captures the abstracted hypothesis that MPL and QS-21 activate
a ‘muscle-resident immune cell’, which through chemokine
secretion, recruits CCR2+ LY6Chi Monocytes from the blood,
into the injection site. These monocytes are capable of activation
induced by MPL (48), antigen capture and migration into
the dLN. This mechanism has been observed using lymphatic
cannulation in an ovine (sheep) vaccinationmodel with an AS01-
adjuvanted vaccine (49). The potential for Monocytes to infiltrate
via HEVs is not captured. Muscle-resident DCs (Figure S1A)
are also capable of activation by MPL, capturing antigen, and
undergoing a maturation process. To capture an abstraction of
DC maturation, the key stages are distinguished in the model
by an “immature DC”, a “maturing DC,” and a “mature DC.”
Immature DCs in the model express TLR4 and IFNγ receptor.
Maturing DCs also express CCR7 (50) which mediates migration
from tissue to the LN paracortex (51), co-stimulatory molecules
(CD80/86), IL-12 receptor and vaccine peptide antigen-MHCII
(pMHC) complexes. In addition to the migration of DCs and
monocytes into the LN, adjuvant and antigen free-flow from the
injection site through the afferent lymphatics (AL) (Figure S1B)
into the dLN (8). After arrival in the dLN, QS-21 co-localizes with
CD169+ SCS-M, (Figure S1D) and can induce IL-18 secretion
from these cells (18). In the paracortex (Figure S1C), secreted
IL-18 delivers an activation signal to “innate IFNγ secretor
cells” (ISC) (10, 25). This cell type is an abstraction to promote

simplicity, encompassing Natural Killer cells, Natural Killer T-
cells, innate-like CD8+ T-cells, ILC1s, and gamma-delta T-
cells, which have all been shown to contribute to the early,
innate production of IFNγ after AS01 stimulation (10). IL-18
stimulation of ISCs is capable of promoting the production of
IFNγ, augmented by IL-12 (10). During a secondary response,
IFNγ levels are further augmented by IL-2 derived from antigen-
specific CD4+ T cells, further promoting synergistic production
of IFNγ. Furthermore, SCS-M (along with follicular dendritic
cells) can capture free-flowing antigen, and transfer it to B-
cells in the follicle (52), contributing to their priming. The
capacity of activated monocytes to differentiate into DCs (8).
IL-12 in the model is hypothesized to be secreted by a pool
of DCs, [including monocyte-derived-dendritic-cells (MoDCs)]
and activated monocytes. At early time points, consistent with
literature, IFNγ and IL-12 production is thought to promote
differentiation of naïve cognate CD4+ T-cells toward a T
Helper 1 (Th1) polarization (53). T helper cells are captured
in the model, although there is an abstraction at this level
for diagrammatic simplicity—the cell is a single entity, where
no distinction is made between Th subsets. In the lower-
level models, the appropriate distinctions between phenotype of
these cells are captured. Here, the Th cell provides expansion,
immunoglobulin switching and survival signal to B-cells, or
secretes Th1-associated cytokines (TNF-α, IL-2, IFNγ). The
model also captures the key stages of antigen-specific B cell
priming, activation, and differentiation into “antibody-secreting-
cells” or memory B cells, and the formation of germinal centers
(Figure S1E). The blood compartment of themodel (Figure S1F)
captures the circulation of Th subsets after lymph node egress,
and antibody circulation. The remit of the modeling exercise
only requires the capture of the generation of T cell and
antibody responses, and not the quality or functionality of the
antibody response, nor the characteristics of the T-cell response
in peripheral tissues, so these are not modeled (for inclusion
and exclusion criteria, see Datasheet 2). Other inflammatory
cytokines such as IL6, IL-1β etc. are produced during a response
to AS01 however it is unclear how they contribute to early
immune response to AS01.

AN EXEMPLAR CAPTURING AND
DESCRIBING KEY COMPONENTS OF AS01
MOA

To construct a simulation, lower-level behaviors, function, and
interactions of components (cells and cytokines) must also
be captured, thus substantiating the model. With respect to
the research questions, we aim to capture an appropriately
detailed description of the biology, building on, and informed
by the scope of the CellDesigner model. An adapted version
of the unified modeling language (UML) was employed to
develop “state-machine” and “activity” diagrams (Figures 2A,B)
(34, 35). Thus, the Domain Model comprises the CellDesigner
visualization and state and activity diagrams. State-machine
diagrams describe the different states a component (entity)
can exist in, and requirements that govern transitions between
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FIGURE 2 | Modeling Dendritic Cell Function. (A) A Dendritic Cell State-Machine Diagram: states are represented by rectangular boxes, which may encompass

smaller rectangular boxes, indicating parent and sub-states, respectively. A black circle indicates the initial state of the object, and the “double” circle indicates the final

state. Arrows indicate transitions between the states, and information surrounded by square brackets describe a condition that must be satisfied for the transition to

proceed. An expression preceded by a forward slash, indicates further information with respect to a state transition or a state. Finally, dashed lines represent

concurrent states and a diamond indicates a decision is to be made, determined by a condition being satisfied. (B) A Dendritic Cell Activity Diagram: in this diagram, a

black circle indicates the start of processes, and a double circle indicates the end of activities. The rectangles indicate activities and diamonds represent decisions.

Horizontal black lines, are forks and joins, which indicate, respectively, the start and end of activities that occur concurrently.
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these states. Activity diagrams in this context describe activities
and events in the system that emerge from interactions
between cellular components. Care must be taken to capture
the relevant biology, and where abstractions are made, these
should be appropriate, and decisions behind inclusion and
exclusion of functionality and rationale for abstractions should
be clearly documented to maintain a trail of the considerations
involved, providing transparency of the decisions behind model
development in order to permit scrutiny. Our laboratories have
developed a tool for this purpose and the reader is directed to
Alden et al. (42) for a detailed explanation.

Figure 2A is a state-machine diagram for a murine DC.
This captures an abstraction of a cell type, encompassing the
different DC subsets in the model (including MoDCs). This
diagram captures the key functionality, at the required level
of complexity of the DC for our research context. This begins
with the cell entering the system, resident in either the injection
site or in the dLN. Initially, the cell is immature, and whilst
immature, it is phagocytic, and doesn’t retain antigen (54). If
it captures antigen and/or is stimulated by a TLR4 agonist, it
enters the “maturing” state, where the DC has varying phagocytic
capacity dependent on levels of antigen it has acquired, increases
expression of pMHCII complexes, CCR7, CD80/86, and secretes
IL-12. The increased expression of CCR7 allows the cell to
chemotactically migrate toward CCL19/21 gradients in both
draining lymphatics and in the dLN paracortex. After the
time required to undergo full maturation, and if there is
sufficient upregulation of CCR7 and CD80/86, the cell can
become fully mature. When a DC is fully mature, it is not
phagocytic, expresses high levels of pMHCII complexes, CCR7,
CD80/86, and can secrete IL-12. During all life stages, this
cell dynamically expresses CD11c, and TLR4. Mature DCs can
also present antigen to T cells, as the diagram also captures
the ability for a DC to be isolated or in a complex with
another cell (i.e., when presenting antigen), and to be undergoing
random or chemotactic migration. The cell exits the system if it
undergoes apoptosis.

Activity diagrams are developed to describe actions and
interactions of cellular components. In Figure 2B an activity
diagram is shown for a murine DC. Initially, the cell is
either muscle or dLN resident, surveying the environment,
and either undergoing random or chemotactic migration.
Following exposure to antigen, and/or stimulation by a TLR-
4 agonist, the DC can begin maturing, as described in the
state-diagrams, and can eventually become fully mature. If a
cell is resident in the muscle site, due to the upregulation of
CCR7, it can begin migration into the lymphatics, toward the
dLN. If the cell is resident in the dLN, the upregulation of
CCR7 would direct it toward the CCL19/21 gradients (which
functionally, would direct it to the T cell area) (50). If the
DC comes into contact with a T cell, and it undergoes a
cognate interaction, the cell can deliver co-stimulatory molecules
promoting activation, and either undergo apoptosis or return to
migration. Not shown in this perspective, this same approach
has been applied to all cell types and processes captured in
the AS01 MoA CellDesigner model (see Datasheet 1 for a list
of diagrams).

MODELING AND SIMULATION AS A BASIS
FOR EXPLORING ADJUVANT MOA

Following the process outlined in this perspective, simulation
can be utilized to integrate knowledge and explore hypotheses
underpinning biological systems. The development of Domain
Model diagrams can undergo iterative refinement driven
by specific scientific questions, resulting in a domain
model appropriate to address a specific question. Following
this, a Platform Model is developed, and subsequently,
a simulation can be constructed written in computer
code (44). Simulations are then calibrated to real-world
data, and usually undergo a process of validation. After
construction, simulations can be inspected by a variety
of analysis techniques, such as sensitivity and robustness
analysis, permitting an exploration of the effects of stipulated
immunological behaviors on the system (41, 45). This
can elucidate important MoAs, which can be explored
and validated in vivo (29, 35), thus guiding experimental
design. Furthermore, systems-based techniques that explore
optimization could be used to elucidate more efficient
dosing schedules. For detailed reading on the entire
modeling process described here, the reader is directed to
Andrews et al. (44).

CONCLUSION

We have presented a framework to capture and collate MoA
knowledge and applied it to integrating and exploring AS01
MoA. This framework has informed the development of
a Domain Model, capturing high-level AS01 MoA using
CellDesigner, which was further substantiated through
UML diagrams describing lower-level functionality. The
CellDesigner visualization is an explicit description of the
key, higher-level biology, resulting in a visualization with
which researchers can illustrate and share their ideas and
communicate knowledge and knowledge gaps. Building upon
this, the UML-like diagrams captures detailed knowledge
and hypotheses underpinning the system, bringing together
AS01 understanding, immunological literature, and rational
assumption to describe lower-level component behaviors. The
resulting Domain Model not only brings together understanding
about the biological system, but after appropriate refinement
driven by a specific scientific question, can serve as a biological
basis to construct simulations, permitting exploration of
key research questions. We believe that these concepts will
complement work on AS01 MoA and envision that these
3Rs-based approaches (https://www.nc3rs.org.uk/the-3rs),
through viewing data holistically and complementing in vivo
experimentation, can be applied more generally to improve
the understanding of other adjuvant MoA, thus enhancing
vaccine efficacy.
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Figure S1 | The CellDesigner Model captures the following key compartments:

the muscle injection site (A), the lymphatic vessels (B), the draining lymph node

(dLN) [including paracortex (C), B cell follicles (D), germinal center (E)], the blood

(F), and the bone marrow (G). This model captures high-level mechanisms that

are hypothesized to give rise to the phenomena observed by experimentation in

mice. This begins with the intramuscular injection (34) of the vaccine at time zero

(A) and captures the events leading to the secretion and circulation of antibodies

(E,F), and lymph node egression of effector memory T cells (9).

Datasheet 1 | Full list of Domain Model Diagrams: the full list of diagrams that

were created for the AS01 MoA Domain Model.

Datasheet 2 | A list of the entire Core AS01 MoA Domain Model Diagrams.
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