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Extracellular host-derived DNA, as one of damage associated molecular patterns

(DAMPs), is associated with allergic type 2 immune responses. Immune recognition of

such DNA generates the second messenger cyclic GMP-AMP (cGAMP) and induces

type-2 immune responses; however, its role in allergic diseases, such as asthma, has

not been fully elucidated. This study aimed to determine whether cGAMP could induce

asthma when used as an adjuvant. We intranasally sensitized mice with cGAMP together

with house dust mite antigen (HDM), followed by airway challenge with HDM. We then

assessed the levels of eosinophils in the broncho-alveolar lavage fluid (BALF) and serum

HDM-specific antibodies. cGAMP promoted HDM specific allergic asthma, characterized

by significantly increased HDM specific IgG1 and total IgE in the serum and infiltration

of eosinophils in the BALF. cGAMP stimulated lung fibroblast cells to produce IL-33

in vitro, and mice deficient for IL-33 or IL-33 receptor (ST2) failed to develop asthma

enhancement by cGAMP. Not only Il-33−/− mice, but also Sting−/−, Tbk1−/−, and

Irf3−/−Irf7−/− mice which lack the cGAMP-mediated innate immune activation failed to

increase eosinophils in the BALF than that from wild type mice. Consistently, intranasal

and oral administration of amlexanox, a TBK1 inhibitor, decreased cGAMP-induced

lung allergic inflammation. Thus, cGAMP functions as a type 2 adjuvant in the lung

and can promote allergic asthma in manners that dependent on the intracellular

STING/TBK1/IRF3/7 signaling pathway and the resultant intercellular signaling pathway

via IL-33 and ST2 might be a novel therapeutic target for allergic asthma.
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INTRODUCTION

Asthma is a common chronic respiratory illness with an
increasing prevalence especially in developed countries (1, 2).
Asthma may consist of many phenotypes based on the onset of
disease (3, 4). Of these phenotypes, early-onset asthma during
childhood is mainly associated with type 2 immune responses.
Although many factors, such as infection, environmental factors,
and genetic factors, contribute to the onset of asthma (5), the
mechanism by which type 2 immune responses are activated
remains elusive.

We previously reported that alum induced cell death
and that the host DNA released from dying cells has an
important role in the production of IgE (6). Additionally, other
work demonstrated that host-derived DNA is recognized as
a damage-associated molecular pattern (DAMP) and induces
type 2 immune responses and allergic inflammation (7).
Moreover, it was reported that host DNA released by NETosis
promote type-2 allergic asthma exacerbation (8). However,
the mechanisms responsible for the recognition of this DNA
and the subsequent induction of immune responses are not
fully understood.

Cyclic GMP-AMP (cGAMP) has received much attention as
a second messenger following recognition of intracellular DNA
and virus infection (9). DNA from pathogens is recognized by
cyclic GMP-AMP synthase (cGAS), and the resulting enzymatic
activity of cGAS generates cGAMP using ATP and GTP as
substrates. Several studies have shown that host DNA release
is observed at the site of inflammation (10). Interestingly,
the released DNA seems to be derived not only from dying
or stressed cells but also from neutrophils and eosinophils
as a result of their activation. Some studies have suggested
that this DNA can be recognized by cytosolic cGAS and
recruit stimulator of interferon (IFN) genes (STING) at plasma
membrane, which in turn activate, and is phosphorylated by,
Tank binding kinase 1 (TBK1), a non-canonical IKK, followed
by the transcription factor of IRF3 and IRF7, turning on many
IFN-inducible genes (11). Furthermore, we previously found
that cGAMP and other STING ligands are strong inducers
of antigen-specific type 2 immune response via a type-I IFN-
dependent pathway (12, 13). These findings suggest that DNA
release at the site of inflammation, such as during infection,
is associated with the activation of type 2 immune responses
and, additionally, that cGAMP is associated with this activation
as a mediator.

Here, we assessed the possibility that cGAMP can
act as an allergic adjuvant by coadministration of intra-
nasal cGAMP with house dust mite antigen (HDM).
We used cGAMP as an alternative stimulus for DNA,
because cGAS binds dsDNA and generates the second
messenger cGAMP.

Abbreviations: BALF, Broncho-alveolar lavage fluid; cGAMP, Cyclic GMP-AMP;

DAMPs, Damage-associated molecular patterns; HDM, House dust mite antigen;

ILC2, Group 2 innate lymphoid cell; IRF, Interferon regulatory factor; STING,

Stimulator of IFN genes; TBK-1, TANK-binding kinase 1; TSLP, Thymic stromal

lymphopoietin; DEX, Dexamethasone.

MATERIALS AND METHODS

Reagents
The 2′-3′ and 3′-3′ cGAMP were purchased from InvivoGen
(San Diego, CA, USA). HDM extracts (Mite Extrac-Df; LG5339,
extract from house dust mites, Dermatophagoides farinae,
1.7 µg endotoxin/mg) were purchased from LSL (Osaka,
JAPAN). Amlexanox was purchased from the Tokyo Chemical
Industry and Takeda Pharmaceutical Company (Osaka,
Japan). Dexamethasone was purchased from Sigma Aldrich
(St. Louis, MO, USA).

Mice
Six-week-old female C57BL/6J mice were purchased from CLEA
Japan Inc. (Osaka, Japan). Sting−/− mice were purchased from
Phoenix Bio (Hiroshima, Japan). Il-33−/−, Rag2−/−, and St-
2−/− mice were obtained as previously described (14–16).
Tslp−/− mice were kindly provided by Dr. Ziegler (Immunology
Program, Benaroya Research Institute, Seattle, WA, USA).
Irf7−/− mice were provided by the RIKEN BioResource Center
through the National Bio-Resource Project of the Ministry of
Education, Culture, Sports, Science and Technology (Ibaraki,
Japan) (17). Irf3−/−Irf7−/− mice were generated by cross-
breeding Irf3−/− mice with Irf7−/− mice, and Tnf−/−Tbk1−/−

mice were obtained as previously described (18). All animal
experiments were conducted in accordance with the institutional
guidelines and with the approval of the ethics committee for
the National Institute of Biomedical Innovation, Health and
Nutrition (NIBIOHN, Approval ID: DNA301).

Mouse Model of cGAMP-Adjuvanted,
HDM-Induced Airway Inflammation
Mice were anesthetized by ketamine and xylazine followed by the
intranasal administration of 1 µg HDM, 1 µg cGAMP, or HDM
+ cGAMP in 30 µl of PBS at day 0, and then challenged with 1
µg HDM four times (at days 7, 9, 11, and 13). Samples [serum,
broncho-alveolar lavage fluid (BALF), lymph nodes, and lungs]
were collected 24 h after the last HDM challenge.

Viruses and Infection
Stocks of influenza virus (A/PR8/34) were grown in Madin-
Darby canine kidney cells. Mice were infected intranasally
with 140 plaque-forming units of influenza virus. Stocks of
purified RSV (strain A2, ATCC) were grown in HEp-2 cells.
Inactivation was performed by heating the virus to 56◦C
for 30min. For infection, mice were anesthetized, and an
intratracheal instillation with 2.5 × 105 plaque-forming units of
RSV was performed.

In vitro Stimulation of Lung Fibroblast Cells
To obtain suspensions of single lung cells, mouse lungs
were removed, minced, and digested in RPMI 1640 with
200µg/ml DNase (Roche, Penzberg, Germany) and 200 units/ml
collagenase (Wako, Osaka, Japan) and then incubated at 37◦C

for 1 h. The lungs were homogenized with the gentleMACS
TM

Dissociator (Miltenyi Biotech, Gladbach, Germany), and debris
was removed by using a 70-µm separation filter. The cells were

Frontiers in Immunology | www.frontiersin.org 2 September 2019 | Volume 10 | Article 2212

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Ozasa et al. STING-TBK1-IL-33 Axis Triggers Asthma

washed twice with phosphate-buffered saline (PBS) and then
resuspended in Dulbecco’s modified Eagle’s medium with 10%
fetal calf serum and 5µg/ml of insulin and seeded into 75
cm2 culture flasks (Corning, Corning, NY, USA). Medium was
replaced after 24 h, and then every 2 days. Adherent cells were
used as lung fibroblast cells. These cells were incubated with
cGAMP (1µg/ml or 10µg/ml) for 6, 24, 48 h, after the cytokine
content of the resulting cell lysates were measured. Cell lysates
were prepared with three freeze-thaw cycles.

BALF Collection and Cell Population
Assessment
Broncho-alveolar lavage fluid was collected by two lung lavages
with 0.7ml of PBS each via a tracheal cannula. The collected
BALF was centrifuged (2,000 × g, 5min, 4◦C) to separate
the cells and fluids, and then the cells were counted in a
hemocytometer. Next, the cells were incubated with anti-mouse
CD16/32 antibody, and then stained with anti-CD11c, anti-
CD11b, anti-Siglec F, anti-F4/80, anti-Ly6G, anti-CD3, and anti-
B220 antibodies. All labeled antibodies were purchased from BD
Biosciences or BioLegend. The samples were analyzed by flow
cytometry (LSRII, BD Biosciences, Franklin Lake, NJ, USA). The
resulting data were analyzed using FlowJo software.

Lymph Node Assays
Single-cell suspensions of bronchial lymph nodes (2× 105 cells in
a 96-well plate) were cultured in RPMI (containing 10% fetal calf
serum and 1% penicillin/streptomycin) with or without HDM
(10µg/ml) for 5 days. Enzyme-linked immunosorbent assays
(ELISAs) (described below) were used to assess the IL-5 and IL-13
levels in the supernatants.

Measurement of Antibodies and Cytokines
To measure the HDM-specific IgG1 levels, serial dilutions of
sera were prepared in 96-well plates coated with 10µg/ml
of HDM. Horseradish peroxidase-conjugated anti-mouse IgG1
(Southern Biotech, Birmingham, AL, USA) was used as
the secondary antibody. The total IgE was measured by
a mouse IgE ELISA Quantitation kit (Bethyl Laboratories
Inc., Montgomery, TX, USA) according to the manufacturer’s
protocol. Cytokines (IL-5 and IL-13) were quantified by ELISA
kits (R&D Systems, Minneapolis, MN, USA) according to the
manufacturer’s protocols.

Measurement of Double-Stranded (ds)DNA
The double-stranded (ds)DNA concentrations were measured by
using Qbit dsDNA HS Assay kits (InvitroGen, Carlsbad, CA)
according to the manufacturer’s protocol.

Histological Analyses
Lung tissues were dissected and fixed in 4% paraformaldehyde
overnight. To prepare the paraffin sections, tissues were gradually
dehydrated and embedded in paraffin. The sections (5µm
thick) were prepared and stained with hematoxylin and eosin
(H&E) or periodic acid-Schiff (PAS) using a Periodic Acid-Schiff
kit (Sigma Aldrich) according to the manufacturer’s protocol.

Representative images were acquired with a ScanScope R© AT slide
scanner (Leica, Wetzlar, Germany).

Measurement of Airway
Hyper-responsiveness
Airway hyper-responsiveness was measured by whole body
plethysmography (Data Sciences International, New Brighton,
MN, USA) (19). Mice received nebulized PBS, followed by
increasing concentrations of methacholine (3.125, 6.25, 12.5, 25,
and 50 mg/ml) to induce bronchoconstriction.

Statistical Analyses
Data are presented as means alone or means ± SD. Two group
comparisons were performed using Mann–Whitney U-tests.
One-way analysis of variance with Tukey’s multiple comparison
tests was used to compare multiple groups. Statistical analyses
were performed using Prism6 (Graph-Pad Software), and
differences were considered statistically significant when p< 0.05
(indicated in figures as ∗p < 0.05 and ∗∗p < 0.01).

RESULTS

RNA Virus Infections Induce dsDNA
Release in the Lung
Viral infections impact the host immune system not only by
releasing viral pathogen-associated molecular patterns but also
by leading host cells to release DAMPs, both of which have
been shown to be involved in the induction and exacerbation of
asthma (20). To examine viral infection induce host DNA as a
part of DAMPs in infected lung tissue, mice were intratracheally
inoculated with RSV, followed by BALF collection. Although
RS virus is a RNA virus, dsDNA was detected in the BALF
(Figure 1A). In addition, influenza virus infection also induced
dsDNA in the BALF (Figure 1B). These results suggest that
host dsDNA as DAMPs can be induced by RNA virus airway
infections and might be associated with infection-induced
lung inflammation and cell death, as well as the severity of
these conditions.

cGAMP Enhances Type-2 Immune
Responses to Co-administered Antigen
and the Allergic Inflammation
Because cGAS binds dsDNA and generates the second messenger
cGAMP (9), we utilized cGAMP as an alternative stimulus for
DNA. To assess the impact of cGAMP in allergic inflammation
in mice, we intranasally sensitized mice with HDM alone,
cGAMP alone, or a combination of HDM and cGAMP (HDM
+ cGAMP), and 7 days later, we challenged the mice with
HDM four times every other day (Figure 2A). On day 14,
the mice sensitized with HDM + cGAMP had significantly
higher serum levels of HDM-specific IgG1 and total IgE
(Figure 2B), and HDM-specific Th2 cytokines in the lymph
nodes (Figure 2C), than those sensitized with HDM alone
or with cGAMP alone. When we examined the numbers of
total cells, eosinophils, alveolar macrophages, neutrophil, B
cells, and T cells in BALF, significantly higher numbers were
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FIGURE 1 | Host-derived dsDNA following infection with RNA viruses. Mice were intratracheally inoculated with RSV (A2) (A) or influenza virus (H1N1, A/PR8/34) (B).

Double-stranded DNA in the BALF was measured at various hours and days after infection. Three to nine mice were used per group. Data are presented as means ±

SD. *p < 0.05, **p < 0.01.

FIGURE 2 | Type 2 immune responses and lung inflammation following cGAMP-induced allergic inflammation. (A) Experimental procedure for creating our

cGAMP-induced allergic inflammation model. (B) Serum HDM-specific IgG1 and total IgE responses in mice sensitized with HDM, cGAMP, or HDM + cGAMP.

(C) IL-5 and IL-13 production from lymph node cells in response to HDM. (D) The number of various immune cell populations found in the BALF after HDM challenge.

*p < 0.05, **p < 0.01 are shown as comparison to both HDM and cGAMP (E) H&E and PAS staining of the lung sections. (F) Airway hyperactivity response as

measured by enhanced pause (PenH) to methacholine (Mch). Six mice were used per group, and data represent one of two independent experiments with similar

results. Data are presented as means ± SD. *p < 0.05, **p < 0.01.

observed in the mice sensitized with HDM + cGAMP than
in the control mice (Figure 2D). The number of eosinophils
recruited into the lung was dependent on the dose of
cGAMP, suggesting that these responses were directly associated
with the dose of cGAMP during the sensitization phase
(Supplementary Figure 1A). Notably, there are two types of
cGAMP, based on their structure. Mammalian cGAS produces

2′-3′ cGAMP, while bacterial cGAS produces 3′-3′ cGAMP.
However, we obtained similar results using both types of
cGAMPs (Supplementary Figure 2).

Histological analyses revealed severe inflammatory cell
infiltration and goblet cell hyperplasia in the lungs of mice
sensitized with HDM + cGAMP (Figure 2E). In addition,
mice sensitized with HDM and cGAMP significantly increased
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the airway hyper-responsiveness to methacholine in vivo
compared to the mice sensitized with HDM alone or treated
with cGAMP alone (Figure 2F). Of note, we chose a relatively
low dose (1 µg) of HDM for the sensitization because a
higher dose of HDM induced inflammatory responses in
the absence of cGAMP, while a singular administration
of 1 µg of HDM failed to induce inflammatory responses
in the absence of cGAMP (Supplementary Figure 1B).
The allergic inflammation in the lung induced by repeated
intranasal administration of high dose of HDM is known
to be dependent on TLR4 (21), but our model likely differs
from the conventional HDM-induced allergy model, as
the allergic inflammation in our model was independent
of TLR4 (Supplementary Figure 3). These results suggest
that cGAMP can be one of the aggravating factors for
HDM-induced allergic responses in the airway, especially
under certain conditions in which DNA and cGAMP are
physiologically relevant.

IL-33 Is Required for cGAMP-Induced
Allergic Inflammation in the Lung
IL-33, IL-25, and TSLP are known to be pro-allergic cytokines,
and they are released from various cells, including epithelial
cells (22). Notably, IL-33 and ST2/IL1RL1 (IL-33 receptor)
genes are considered to be asthma disease susceptibility genes

and have been identified in genome-wide association studies
(23). During lung inflammation, IL-33 is mainly released from
pulmonary epithelial cells to elicit the recruitment and activation
of immune cells that induce Th2 cytokines. These responses
seem to be associated with the onset and disease pathologies
of allergy (24). When we stimulated mouse lung fibroblast
cells in vitro with cGAMP, the cell-associated IL-33, but not
the IL-33 in the supernatant (data not shown), was highly
upregulated within 6 h (Figure 3A). Given that cGAMP induces
IL-33, we next investigated the role of IL-33 in cGAMP-
adjuvanted, HDM-induced allergic inflammation using Il-33−/−

mice. Antibody responses and eosinophil recruitment into the
lung were significantly decreased in Il-33−/− mice compared
with those in Il-33+/− mice (Figures 3B,C). To further confirm
the importance of IL-33, we carried out similar experiments
using St2−/− mice, which lack the IL-33 receptor, and found
that, similar to Il-33−/− mice, the antibody responses and
eosinophil infiltration were significantly lower in St2−/− mice
than those in St2+/− mice (Figures 3D,E). Although TSLP is
known to be an important molecule in allergic inflammation,
it is not involved in the antibody responses and inflammatory
cell recruitment into the lung (Figures 3F,G). These results
suggest that IL-33 and its receptor, ST2, are required for
cGAMP-adjuvanted, HDM-induced allergic inflammation in
mouse lungs.

FIGURE 3 | Assessment of IL-33 and acquired immunity during cGAMP-induced allergic inflammation in mouse lungs. (A) Intracellular IL-33 levels in cGAMP-treated

(0, 1, 10µg/ml) lung fibroblast cells. (B–G) Serum IgE levels and the numbers of cells in the BALF of wildtype or heterozygous mice compared with Il-33−/− (B,C),

St-2−/− (D,E), or Tslp−/− (F,G) mice that had been treated with HDM + cGAMP. Five to seven mice were used per group, and the data represent one of two

independent experiments with similar results. Data are presented as means ± SD. *p < 0.05, **p < 0.01.
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Acquired Immunity Is Required for
cGAMP-Induced Allergic Inflammation in
the Lung
IL-33 is a potent activator of group 2 innate lymphoid cells
(ILC2) in the lung (25). Allergic inflammation induced by
intranasal IL-33 administration is dependent on the activation
of ILC2s but not on that of T or B cells, and IL-33 induced by
papain stimulates strong airway eosinophilia in Rag2−/− mice
(26, 27). However, in our experimental system, the numbers
of total cells and eosinophils in the BALF were significantly
reduced in Rag2−/− mice compared with those in Rag2+/− mice
(Figure 4A). This suggests that, unlike allergic inflammation
induced by papain exposure, cGAMP-adjuvanted, HDM-induced
allergic inflammation is mediated by adaptive T and/or B cells.
To further confirm the role of IL-33 in acquired immunity in
this allergic inflammation model, we next examined the HDM-
specific cytokine production from the draining lymph nodes. As
expected, cells from Il-33−/− mice displayed lower levels of Th2
cytokines in response to HDM than cells from Il-33+/− mice
(Figure 4B), suggesting that acquired immune cells are necessary
for cGAMP-adjuvanted, HDM-induced allergic inflammation in
the lung.

A TBK1 Inhibitor Improves cGAMP-Induced
Allergic Inflammation in the Lung
Because cGAMP is a ligand for STING and induces type-I
interferon through TBK1 and IRF3 activation, we examined the
importance of this signaling pathway for cGAMP-adjuvanted,
HDM-induced allergic responses using Sting−/−, Tbk1−/−, and
Irf3−/−Irf7−/− mice. As expected, we observed that the amount
of eosinophil recruitment into the lungs was significantly lower
in all of the tested gene-deficient mice than that in the control
mice (Figures 5A–C). Moreover, the intracellular IL-33 level in
lung fibroblast cells stimulated by cGAMP was not induced in
cells from Irf3−/−Irf7−/− mice (Figure 5D).

Corticosteroids are key drugs for clinical asthma treatment
(28), so we tested if corticosteroids were effective in our

cGAMP-adjuvanted, HDM-induced allergic inflammation
model. Dexamethasone (DEX) treatment during the elicitation
phase decreased the number of eosinophils in the BALF
compared with PBS treatment. Furthermore, histological
analyses showed reduced goblet cell hyperplasia in the lung
after DEX treatment compared with that after PBS treatment
(Supplementary Figures 4A–C). Molecular-targeted therapy,
such as anti-cytokine antibodies and anti-IgE antibodies, have
recently been proposed for the treatment of allergic diseases
(29, 30). Our results suggest that the STING-TBK1-IRF3 axis
might be an important therapeutic target for cGAMP-induced
allergic inflammation. Amlexanox is a small molecule and
an active pharmaceutical ingredient of a drug used to treat
asthma and allergic rhinitis in Japan. This drug functions as
a TBK1 inhibitor (31). Therefore, we tested amlexanox as
a molecular-targeted therapy drug in our model. Intranasal
amlexanox administration during both the sensitization and
elicitation phases significantly decreased inflammatory cell
recruitment into the lung as well as the serum total IgE
and HDM-specific IgG1 responses (Figures 5E–G). Similar
results were observed in mice treated with amlexanox by
daily gavage (Supplementary Figure 5). These results suggest
that a TBK1 inhibitor can improve cGAMP-adjuvanted,
HDM-induced asthma.

DISCUSSION

We used cGAMP as an endogenous adjuvant for the sensitization
of allergic responses. This molecule was recently identified as a
second messenger for DNA sensing. We previously reported that
cGAMP and other STING ligands function as type 2 adjuvants,
characterized by the induction of serum IgE levels, suggesting
that cGAMP may be one of the endogenous factors (adjuvants)
for the promotion of type 2 immune responses and allergic
asthma. STING-mediated-type-2 immune response by B cells
to the immunized Ag is dependent on both IRF3 and IFNαβR
(12), but the Th2 response to the immunized Ag was not

FIGURE 4 | Acquired immunity during cGAMP-induced allergic inflammation in mouse lungs. (A) Numbers of total cells and eosinophils in BALF from Rag2−/− mice.

(B) IL-5 and IL-13 production in lymph node cells from Il-33−/− mice. N.D. indicates that the level was below the limit of detection. Five to six mice were used per

group, and the data represent one of two independent experiments with similar results. Data are presented as means ± SD. *p < 0.05, **p < 0.01.
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FIGURE 5 | Effect of a TBK1 inhibitor on cGAMP-induced allergic inflammation in mouse lungs. (A–C) The numbers of total cells and eosinophils in BALF from

Sting−/− (A), Tnf−/−Tbk1−/− (B), and Irf3−/− Irf7−/− (C) mice. (D) Intracellular IL-33 levels at 6 h after stimulation in cGAMP-treated (0, 1, 10µg/ml) lung fibroblast

cells from wildtype and Irf3−/− Irf7−/− mice. (E) Experimental procedure: mice were intranasally administered amlexanox (75 µg/dose, 25 mg/ml) or PBS applied

together with HDM+ cGAMP at the exact time (F,G) Antibody responses (F) and inflammatory cells in BALF (G) of mice treated as shown in (E). Five to six mice were

used per group, and the data represent one of two independent experiments with similar results. Data are presented as means ± SD. *p < 0.05, **p < 0.01.

dependent on IFNαβR, while it was dependent on IRF3/7, STING
and MyD88 (13), suggesting that there is IFNαβR-independent,
MyD88-dependent activation pathway toward STING-mediated
Th2 responses and consequent the lung asthmatic inflammation.
Now in this study, we found that cGAMP functions as an allergy-
prone adjuvant inducing strong type-2 immune responses to
co-inhaled allergen in the airway which was dependent on
IL-33 and its receptor ST2, which utilize MyD88-dependent
signaling pathway.

A large number of previous studies have used mouse models
to demonstrate causative factors that are involved in allergic
asthma, and themodel mice inmany of these cases were prepared
by intraperitoneal immunization with allergens in combination
with alum. However, although this type of model mimics some

of the pathological features seen in humans, such as eosinophil
infiltration and serum IgE elevation, it does not reflect the
physiological setting of allergic asthma because sensitization by
intraperitoneal injection is an artificial route of immunization.
In general, sensitizations to allergens occur in the airway or
through the skin (32). Although, some studies have demonstrated
pathogenesis in murine mouse models asthma model mice
induced by the direct sensitization of allergens to the airway,
frequent and large amounts of allergen administration to the
airway are required for the preparation of this type of allergic
asthma model (33). Furthermore, several studies concerning
the direct sensitization of HDM have indicated that various
factors, such as IL-21 from CD4+ T cells (34), IL-33 from
inflammatory monocytes (35), TLR4-dependent inflammation,
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and IRF3 signals (21, 36), participate in mouse models of allergic
asthma. In most cases, 10–100 µg of HDM were used for the
induction of allergic inflammation; this differs from our model
in which the mice received 1 µg of HDM. HDM also has
proteolytic activity and induces a disruption of epithelial cell
barrier function (37), indicating that high doses of HDM may
cause host cell damage and/or death, which release DAMPs,
including DNA. Indeed, we observed that sensitization with 5 µg
of HDM induced allergic inflammation even in the absence of
any adjuvant (cGAMP). Although, this low dose (1 µg) of HDM
had no effect on the eosinophil activation and IgE responses,
we found that cGAMP promoted allergic responses when
administered with a low dose of HDM, suggesting that cGAMP
might be an endogenous exacerbation factor for allergic asthma.

Interestingly, recent reports have shown that factors from
dying cells, specifically DAMPs such as uric acid and ATP,
function as adjuvants and exacerbate allergic inflammation (38,
39). These results suggest that endogenous factors with adjuvant
activity might be involved in the sensitization of allergic diseases.
In this study, we focused on an endogenous adjuvant for the
induction of allergic asthma.

One recent report indicated that, in addition to being activated
by infection with DNA viruses, the cGAS-cGAMP-STING axis is
also activated by infection with RNA viruses (40). In fact, our
results indicated that RNA virus infection leads to the release
significant amount of DNA in the lung (Figure 1). This result
suggests that the adjuvant activity of cGAMP might be involved
in allergic asthma induced by an RNA virus, such as respiratory
syncytial virus although we could not detect cGAMP in RSV
infected lung homogenates (data not shown).

IL-33, a well-known DAMP (alarmin), is one of the
key molecules for the pathogenesis of allergic asthma. It
activates ILC2 cells to induce IL-5 and IL-13, and, in turn,
these cells promote the recruitment of eosinophils and the
induction of airway hypersensitivity (41, 42). Some allergens
bearing protease activity, such as papain, mainly activate ILC2
cells through their enzymatic activity and induce eosinophilic
inflammation. This type of inflammation is known to be
stimulated by innate responses and is not mediated by acquired
immunity (26, 27). In contrast, our model was completely
dependent on acquired immune responses, as demonstrated
by our finding that HDM + cGAMP-induced eosinophilic
inflammation was abrogated in RAG2-deficient mice. We
cannot rule out the role of ILC2 cells in our cGAMP-induced
asthma model because ILC2 cells can participate in acquired
immune responses in addition to their role in innate immune
responses (43). Future experiments should investigate whether
or not ILC2 cells are involved in the cGAMP-induced allergic
asthma model.

Several drugs are used clinically in an effort to alleviate
allergic inflammation, such as corticosteroids and leukotriene
antagonists (44). These drugs are able to improve asthmatic
symptoms in early childhood but do not alter asthma
development (45). Amlexanox is a molecular-targeted drug
with mechanism(s) of action is clearly different from those
of corticosteroids and leukotriene antagonists. Specifically,

amlexanox acts as a TBK1 inhibitor (31), and that TBK1
is a crucial factor for the induction of IL-33 (46). We
also found that IRF3/7, which are signal transducers
downstream of TBK1, are required for IL-33 release from
lung fibroblasts in response to cGAMP. Together, these findings
suggest that TBK1 inhibitors could be a promising class of
anti-asthma drugs.

In conclusion, cGAMP functions as a type 2 adjuvant
in the lung and contributes to exacerbation of asthma.
STING/TBK1/IRF3 axis and IL-33 signaling, required for
cGAMP-induced allergic inflammation, may be novel therapeutic
targets for allergic asthma.
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