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Inflammatory arthritis including rheumatoid arthritis (RA) and juvenile idiopathic arthritis

(JIA) exhibit the shared feature of changes in activation and polarization of circulating

monocytes and tissue macrophages. Numerous microRNAs (miRs) have been found

to have key functions in regulating inflammation and macrophage polarization. Although

there is increasing interest in the roles of miRs in both RA and JIA, less is known regarding

how miRs relate to functional properties of immune cells, including monocytes and

macrophages. Interestingly, miRs can function both to promote inflammatory phenotypes

and pro-inflammatory polarization, as well as through negative-feedback loops to limit

inflammation. Here, we review the functional roles of several miRs in macrophages

in inflammatory arthritis, with a particular focus on vivo effects of miR alteration in

experimental arthritis. We also consider how current efforts to target miRs clinically could

modify functional monocyte and macrophage polarization in vivo, and serve as novel

therapies for diseases such as RA and JIA.

Keywords: macrophage polarization, rheumatic arthritis, juvenile idiopathic arthritis, systemic juvenile idiopathic

arthritis, microRNA mimics, microRNA inhibitors

INTRODUCTION

Rheumatoid arthritis (RA) is a systemic autoimmune disease with risk of functional disability
due to articular damage as a consequence of ongoing inflammation. Patients with RA exhibit an
inflammatory environment that favors the activation of neutrophils, T cells, B cells, macrophages,
osteoclasts, and synovial fibroblasts (1). Juvenile idiopathic arthritis (JIA) is the most common
rheumatologic condition in children, and encompasses a group of disorders with the shared feature
of chronic arthritis with or without other symptoms. According to the current classification by the
International League of Associations for Rheumatology (ILAR), JIA consists of 7 categories (2),
several subtypes of which have strong phenotypic and pathologic similarity to forms of arthritis
including RA, while others represent distinct entities (3). Systemic JIA (sJIA) is a distinct auto-
inflammatory disease, characterized by systemic inflammation, with risk for severe complications
including macrophage activation syndrome (MAS) (4). MAS results from over-activation of T
lymphocytes and macrophages leading to a life-threatening “cytokine storm” (5). While these
various forms of inflammatory arthritis have key genetic and pathologic differences, they exhibit
the shared feature of changes in activation and polarization of monocytes and macrophages.

Macrophages display distinct functional differences dependent on their micro-environments
through a process referred to as polarization. Historically, activated macrophages have been
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considered to have two broad phenotypes: M1 (classically
activated) macrophages and M2 (alternatively activated)
macrophages. M1 macrophages are induced by bacterial
products such as lipopolysaccharide (LPS), tumor necrosis
factor (TNF), and interferon (IFN)-γ secreted by Th1 cells, and
can phagocytose directly and kill pathogenic microorganism
and tumor cells. M2 macrophages are induced by steroids,
IL-4, IL-13, IL-10 and transforming growth factor (TGF)-β
secreted by Th2 cells. These generally limit immune response
by secreting suppressive cytokines, reducing pro-inflammatory
factors, and increasing expression of scavenger receptors which
participates in fibrosis (6, 7). M2 macrophages also mediate
humoral immunity, tissue repair, vascularization, and tumor
promotion/invasion (6, 8).

Macrophages are famous for their phenotypic heterogeneity
and the diverse activities. Indeed, recent work has shown
that M1 vs. M2 model of macrophage polarization is a
marked oversimplification, and these cells rather have a
plastic gene expression signature that is influenced by the
type, concentration, and duration of exposure to different
activating stimuli (9). That diversity allows monocytes and
macrophages to serve important roles in the development of
several autoimmune and auto-inflammatory diseases including
inflammatory arthritis. Transcription factors are key molecules
for determining the functional polarization in macrophages
(10–12). These transcription factors are regulated themselves
transcriptionally, post-transcriptionally, and at the protein level,
and increasingly microRNAs (miRs) are included in that which
can regulate transcription factors.

MiRs are endogenous small non-coding RNAs that induce
inhibition of target gene expression by binding to direct
complementary sequences in the 3′ untranslated region of
mRNAs (13). MiRs are regulatory molecules involved in many
physiological processes, including cellular differentiation and
immune cell activation. MiRs regulation is characterized by its
active participation in and strict control of the negative feedback
loop to “fine tune” gene expression programs (14).

Over the past decade, there are many studies of miRs in
patients with RA and JIA. This work has identified altered miR
expression levels, particularly in peripheral blood. But less is
known regarding how miR relate to functional properties of
immune cells in arthritis, such as monocytes and macrophages.
Here, we will review the functional roles of miRs in macrophages
in RA and JIA, with a particular focus on in vivo effect of miR
alternation in experimental arthritis.

MICRORNA-155

MicroRNA-155 is a multifunctional miR enriched in cells of the
immune lineage. MiR-155 is encoded within a B cell integration
cluster gene, and can be induced by pro-inflammatory ligands
such as LPS and TNF (15–17). It plays important roles in
arthritis by regulating the polarization of macrophages, cytokine
and chemokine production, and resistance to apoptosis. MiR-
155 was significantly higher in blood monocytes from RA
patients, and levels correlated with disease activity measures

including the disease activity score (DAS)-28 and erythrocyte
sedimentation rate (ESR) (18, 19). It was also increased
in fibroblast-like synoviocytes in RA patients compared to
healthy controls and patients with osteoarthritis (OA) (20).
MiR-155 was also increased in plasma of JIA patients, but
cellular levels were not determined (21). Recent work has
found that miR-155 is increased in monocytes from children
with active sJIA compared to controls or clinically inactive
sJIA (22).

Functionally, key target genes of miR-155 include suppressor
of cytokine signaling 1 (SOCS1), interleukin 13 receptor α1
(IL-13Rα1) and CCAAT-enhancer-binding proteins (C/EBP)-β
(Figure 1A) (23). MiR-155-deficient murine RAW264.7
macrophages and human macrophages gene-silenced for miR-
155 express decreased levels of pro-inflammatory cytokines
(24, 25). Elmesmari et al. found that miR-155 also regulated
chemokine production and pro-inflammatory chemokine
receptor expression (18). MiR-155 can broadly promote
macrophage M1 polarization and suppress M2 features. SOCS1
is a negative regulator of signal transducers and activators
of transcription-1 (STAT1), which mediates signaling from
pro-inflammatory cytokines including type I and II IFN
(26). MiR-155 decreased SOCS1 transcription by directly
targeting its 3′UTR region, thereby increasing pro-inflammatory
cytokine and surface molecule expression (27). Besides miR-
155 promoting M1 macrophages by targeting SOCS1, it can
also suppress M2 macrophages to promote inflammatory
responses. Classically, M2 macrophages can be induced by
IL-4 and IL-13. Martinez-Nunez et al. demonstrated that
miR-155 directly targets IL-13Rα1 and decreases the levels
of IL-13R a protein, resulting in decreased activation of the
M2-inducing STAT6 in human macrophages from healthy
donors (28). Through these mechanisms, miR-155 was also
found as a pivotal regulator of M1 inflammatory macrophage
signature (29).

Monocytes from peripheral blood of RA and JIA patients
are resistant to spontaneous apoptosis, which may lead to
persistence of inflammatory monocytes and/or macrophages
thereby perpetuating joint inflammation (30). Rajasekhar
et al. found that increased mature miR-155 in CD14+
monocytes was associated with decreased expression of two
predicted miRs targets that mediate apoptosis: caspase 10
(CASP10) and apoptotic protease activating factor-1 (APAF1).
Similarity, overexpression of miR-155 in monocytes from
RA patients conferred enhanced resistance to spontaneous
apoptosis (30).

Several studies of experimental arthritis in mice have
examined the in vivo function of monocyte and macrophage
miR-155 expression. MiR-155 deficient mice have significantly
reduced signs of arthritis in the collagen-induced arthritis (CIA)
model (24). In support of this, miR-155 deficient mice are
also protected from experimental colitis. In this system, miR-
155 knock-out macrophages exhibit an M2 phenotype, and
depletion of these macrophages reconstitutes colitis (31). On
the other hand, miR-155 was recently found to be dispensable
for urate-induced arthritis, suggesting its effect may be context-
specific (32).
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FIGURE 1 | (A) MiR-155 is expressed in plasma (P), monocytes, fibroblast-like synoviocytes (RASF) and synovial fluid monocytes (SFCD14*C) of patients with RA/JIA.

It is induced by cytokines and LPS, and overexpression increases chemokine production. SOCS1, IL-13Rα1, and C/EBP-β are key target genes of miR-155. SOCS1

is a negative regulator of STAT1. MiR-155 decreased SOCS1 expression, increasing signaling through STAT1 to promote M1 macrophages and suppress M2

macrophages to promote inflammatory responses. MiR-155 could also directly target C/EBP-β to suppress M2 macrophages. MiR-155 directly targets IL-13Rα1 and

decreases the levels of IL-13Ra protein, resulting in decreased activation of the M2-promiting STAT6. MiR-155 is also associated with decreased expression of two

predicated miR targets that mediate apoptosis: CASP10 and APAF1. (B) MiR-146a was expressed in PMBCs, monocytes, synovial fibroblasts, and synovial fluid

monocytes (SFCD14*C) of patients in RA/JIA. It is induced by cytokines and LPS through the NF-κB pathway. It controls TLR4 signaling through a regulatory loop: the

upregulation of miR-146a by caused by activated NF-κB; miR-146a reduces the expression of its targets including TRAF6, IRAK1, IRAK2, and IRF3; which limits

activity of both NF-κB and IRF3 pathways.

MICRORNA-146A

MicroRNA-146a plays a critical role as a regulator of innate

immune responses. It is located in the second exon of the

LOC285628 gene on chromosome 5 and is generated in
response to inflammatory stimuli such as LPS, TNF, IL-

1β, or toll-like receptor (TLR) ligands in various cells,
particularly in monocytes/macrophages (33). MiR-146a
was increased in the peripheral blood mononuclear cell
(PBMC), synovial fibroblasts and synovial fluid in RA
patients as well as monocytes from children with sJIA
(19, 22). Recently, miR-146a-5p was found to be expressed

in peripheral monocytes from patients with psoriatic arthritis
(PsA) (34).

It has been found that miR-146a expression was an
important player in “fine-tuning” the NF-κB signaling pathway
in monocytes, as it downregulates key pathway components
inducing IL-1 receptor-kinase 1 (IRAK1), IRAK2 and tumor-
necrosis-factor receptor associated factor (TRAF)-6 (Figure 1B)
(35). MiR-146a was found also to target interferon regulatory
factor (IRF)-3, which is another component of the TLR4 pathway.
MiR-146a thus controls TLR4 signaling through a regulatory
loop: upregulation of miR-146a by activated NF-κB; miR-146a
reducing expression of TRAF6, IRAK1, IRAK2, and IRF3 and
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a resulting reduced activity of both NF-κB and IRF3. However,
there is conflicting information regarding the role of miR-146a in
monocyte and macrophage polarization. Increased expression of
miR-146a was reported in M1 polarized macrophages stimulated
by IFN-γ and TNF (36). On the other hand, other studies
found miR-146a being higher in M2 polarized human and mouse
macrophages, and promoting M2 polarization by targeting
inhibin beta A (INHBA) (37, 38). Similarly, Huang et al.
found miR-146a could promote M2 macrophage polarization by
enhancing the activation of PPAR-γ in RAW264.7 cells (39).

Several models of experimental arthritis has shown that
miR-146a expression has key roles in modulating disease in
vivo. Expression of miR-146a inhibits osteoclastogenesis and
administration of double-stranded miR-146a prevents joint
destruction in CIA mice (40). Similarly, mice with miR-146a
deficiency develop more severe gouty arthritis (41) and show
increased articular inflammation in lyme arthritis (42). Some
recent work suggests that these effect of miR-146a may be
monocyte-mediated. Specific miR-146a overexpression in Ly6Chi

monocytes decreased signs of bone damage in CIA mice (43).
Together, this suggests miR-146a as a novel therapeutic target for
bone destruction in inflammatory arthritis.

MICRORNA-LET7A

MicroRNA-let7a belongs to let-7 family and known to be
involved in inflammation and cellular apoptosis. MiR-let7a is
highly expressed in human macrophages and it can directly
target Ras expression (44). Several studies have examined the
role of miR-let7a in RA, demonstrating that miR-let7a was
decreased in monocytes and synovial fluid macrophages from
anti-citrullinated protein antibody (ACPA)-positive RA patients
(45, 46). Indeed, Lai et al. found ACPAs suppressed miR-
let7a expression levels in monocytes from ACPA-positive RA
patients, and contributed to the pathogenesis of RA. ACPAs
could induce phosphorylation of extracellular signal-regulated
kinase1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK), which
were downstream mediators of the Ras signaling pathway.
However, after transfection with miR-let7a, ACPAs failed to
do that. They also found that transfection of miR-let7a could
suppress the mRNA and protein expression of IL-1β (45). There
are no reports about the miR-let7a in macrophage function and
polarization in JIA. In this regard it is notable that children with
JIA rarely have ACPA present.

Despite these findings, there is less evidence that macrophage
miR-let7a expression alone is sufficient to drive experimental
arthritis Although Zhang et al. found that miR-let7a
overexpression decreased macrophage infiltration into tumors
(47), Zhu et al. demonstrated that miR-let7a agomir could not
mitigate the development of CIA in mice (46). More research
in experimental arthritis models are needed to clarify whether
miR-let7a represents an attractive therapeutic target.

MICRORNA-33

MicroRNA-33 is located in introns of the sterol regulatory
element-binding protein (SREBP)-encoding genes and controls

cholesterol/lipid homeostasis in concert with their host gene
products. It plays a key role in atherosclerosis and mediates
regulation in the metabolic pathways, inflammatory response,
insulin signaling and glucose homeosstasis (48). Recent work
has found that both miR-33 and nucleotide binding domain
and leucine-rich repeat pyrin 3 domain (NLRP3) inflammasome
activity were increased in monocytes from RA patients (49).
This miR was reported to regulate macrophage cholesterol by
targeting the lipid efflux transporters ATP binding cassette (ABC)
A1 and ABCG1 (50–52). MiR-33 also impaired mitochondrial
oxygen consumption rates, resulting in the accumulation of
cellular ROS, which stimulated NLRP3 expression, CASP1
activity and IL-1β secretion (49). It was also found that miR-
33 regulated macrophage inflammation and reduced plaque
inflammation by promoting M2 macrophage polarization and
Treg induction (53).

As such, the role of miR-33 in vivo requires further
exploration but many represent an intriguing target. MiR-33 was
found to suppress CCL2 levels in the supernatant of cultured
primary mouse chondrocytes and miR-33 deficient chondrocytes
potentiated monocyte chemotaxis in a CCL2 dependent manner,
providing a potential mechanism of macrophage infiltration in
OA (54). Macrophages treated with anti-miR-33 also showed
increased efferocytosis, lysosomal biogenesis, and degradation
of apoptotic material; and treating atherosclerotic Ldlr-/- mice
with anti-miR-33 restores defective autophagy in foam cells and
plaques (55).

MICRORNA-125A

MicroRNA-125a is a homolog of C. elegans lin-4, is encoded
as part of the miR-99b/let-7e/125a miRs cluster and shares
high homolog to miR-125b. It contributes to the control of
phase transitions in development and/or cell differentiation,
regulates the expression of several target proteins that involved
in cell proliferation, apoptosis and migration, counteracting viral
replication (56) and has key roles in macrophage polarization.
This miR has also been examined in both RA and sJIA. The
combination of three specific miRs, including miR-125a-5p, was
proposed to be used as potential biomarkers for the identification
of RA patients (52). In sJIA, miR-125a-5p was highly upregulated
in monocytes from children with active disease, as compared to
those with inactive disease, and correlated with systemic features
of the disease (22).

Expression of miR-125a is induced by TLR signaling through
direct NF-κB activation, and is also increased in several
alternatively activated macrophage subsets (57, 58). These
contradictory finding likely reflect different in species and
macrophage type. In mice, miR-125a targets the transcription
factor Kruppel-like factor (KLF)-13 to suppress classical
macrophage activation and promote anM2 phenotype. But other
studies reported miR-125a targeted IRF4 to promote M1 and
inhibit M2 polarization in tumor associated macrophages (59).
MiR-125a was also upregulated and essential for monocyte to
osteoclast differentiation in vitro (58). In vitro, overexpression
of miR-125a-5p in macrophages altered polarization phenotypes
toward M (LPS+IC) or “M2b,” which closely resembles that seen
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in monocytes from sJIA. Further work found that miR-125a
expression restricts other polarization phenotypes, including
limiting expression of the anti-inflammatory scavenger receptor
CD163 (60). However, to date there is little data regarding.

Whether miR-125a-mediated maintenance of immuno-
regulatory monocytes and macrophages can be an effective
strategy for altering inflammation in vivo.

MICRORNA-223

MicroRNA-223 is located on the X chromosome (61) and is
highly expressed in the myeloid compartment and has effects on
cell differentiation, inflammation, and oncogenesis (62). There
are conflicting reports regarding serum levels of miR-223 in
arthritis, with one study showing reduced levels in patients
with early RA compared to those with established RA (63). On
the other hand, in JIA patients, plasma levels of miR-223 were
significantly higher than controls (64). Substantial work has also
examined functions of miR-223 in the inflammatory synovium.
One report found miR-223 was more highly expressed in RA
synovium than in OA patients due to the increased number of
miR-223-positive cells (65). This may reflect different underlying
causes of arthritis in patients.

Broadly, miR-223 is involved in the polarization and
activation of macrophages. MiR-223 promotes the polarization
of macrophages toward M2 macrophage phenotype by direct
targeting of PBX/Knotted 1 Homeobox 1 (Pknox1) (66). The
expression of miR-223 is reduced in macrophages during
inflammation due to TLR ligand stimulation (66, 67). MiR-
223 can also control macrophage inflammatory responses by
inhibition of NLPR3 inflammasome activity (68).

In support of a key role for miR-223 in arthritis pathogenesis,
prior work has demonstrated miR-223 overexpression in both
RA patients and CIA mice synovium, and that down-regulation
of miR-223 in mice reduced multiple markers of disease
activity (69). Moriya et al. also demonstrated that miR-223
was increased in SKG mouse plasma (70). Finally, recent
work found that microovesicles containing miR-223 (and miR-
142) selectively targeted lung macrophage and reduced tissue
responses (71). Taken together, miR-223 has multiple functions
on the polarization and activation of macrophages with relevance
in vivo or in vitro to RA and JIA.

OTHER MICRORNAS IN INFLAMMATORY
ARTHRITIS

There are several reports of additional functional miRs in
macrophages in RA and JIA. MicroRNA-124 is a critical
modulator of immunity and inflammation (72). MiR-124
was reported to promote M2 polarization and attenuated
inflammatory response by targeting C/EBP-α (73). It also
ameliorated adjuvant-induced arthritis (AIA) in mice by
targeting critical mediators of arthritis development, such as
receptor activator of nuclear factor-kappa B ligand (RANKL)
and nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1)
(74). MicroRNA-26a has important roles in the progression

of bone damage and repair, osteoblast differentiation, lipid
metabolism, and tumor biology (75). It can promote M1
macrophage polarization and suppress M2 by targeting KLF4
and MYC binding protein (MYCBP) (76, 77). MiR-26a is
overexpressed in plasma and PBMCs of RA patients and
upregulated in the differentiation of IL-17 producing CD4+

cells, which are important for RA pathogenesis (78). It also
negatively regulates TLR3 signaling via targeting of TLR3
itself in rat macrophages, and reduced disease severity in
pristine-induced arthritis (79). MicroRNA-19a and microRNA-
20a are members of microRNA-17-92 cluster and involved in
carcinoma, hypoxia, stem cell regulation, and monocyte-to-
macrophage differentiation (80). MiR-20a could regulate ASK1
protein expression and TLR4-dependent cytokine release in
rheumatoid fibroblast-like synoviocytes (81). MiR-19a and miR-
21 showed reduced expression in PBMCs in sJIA, while mRNA
of predicted targets including STAT3, SOCS1, TNF were elevated
suggesting a role in JAK/STAT signaling pathways (82). However,
in purified monocytes several members of the miR-17-92 cluster
were found to be elevated during active sJIA (22), and as
such the role of this cluster remains unclear. In vivo however,
inhibitors of miR-17-92 cluster members reduced thioglycollate-
elicted peritoneal macrophage infiltration and phagocytosis in
mice (83).

CONCLUSION—MIRS AS CENTRAL
REGULATORS OF MACROPHAGE
PHENOTYPES

MiRs are increasingly recognized for their involvement in
autoimmune diseases including RA and JIA. Macrophages
display diverse functional properties in response to different
inflammatory microenvironments. Although this phenotypic
complexity is much more extensive than prior models of
classical M1 vs. alternative M2 polarization (9), the imbalance
of macrophage polarization is a key aspect of RA and JIA
pathophysiology (84). MiRs have key roles in regulating
macrophage polarization, particularly through targeting multiple
transcription factors to both actively suppress certain phenotypes
and function as negative feedback loops. For example, miR-155
utilizes multiple mechanisms to both promote M1 phenotypes
and suppress M2 features (Figure 1A). On the other hand, miR-
146a is induced by pro-inflammatory signals and functions to
limit or “fine-tune” TLR4 signaling, thereby dampining classical
macrophage polarization (Figure 1B). We have examined miRs
associated with inflammatory arthritis and data related to
largely in vitro effects on macrophage biology (Table 1).
Despite sometimes extensive functional data, in general less
is known regarding whether these roles translate in vivo. In
particular, further research regarding cell-type specific effects
of miRs in vivo are needed to validate the functional roles of
these regulators.

Understanding the in vivo functions of miRs including
mechanisms of miR-transcription factors networks in
macrophage polarization helps provide a basis for macrophage-
centered therapeutic strategies. Both miR mimics and
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TABLE 1 | MicroRNAs in macrophages and in RA/JIA.

microRNA Site of expression Targets Functions Arthritis-specific findings in

vivo

miR-155 P, PBMCs, SFCD14*c,

RASF

SOCS1

IL-13Rα1

C/EBP-β

Promote M1 (26, 27)

Suppress M2 (28)

Suppress M2 (23)

In CIA (24)

In urate-induced arthritis (32)

miR-146a PBMCs, SFTc,

SFCD14*c

IRF3, TRAF6, IRAK1/2

INHBA

Regulate polariztion of macrophages (35)

Promote M2 (37, 38)

In CIA (40, 43)

In gouty arthritis (41)

In lyme arthritis (42)

miR-let7a PBMCs, SFCD14*c,

RASF

Ras

HMGA2

Suppress inflammation (45)

Downregulate macrophage activation (46)

In CIA (46)

miR-33 RACD14*c ABCA1, ABCG1 Increase inflammation (50–52) Unknown

miR-125a P, PB KLF13

IRF4

Promote M2 (58)

Promote M1 (59)

Unknown

miR-223 PB, PBMCs, PTc, S,

O/O

Pknox1 Promote M2 (66) In CIA, SKG (69, 70)

miR-124 RASF C/EBP-α

NFATc1

Promote M2 (73)

Suppress osteoclasts (74)

In AIA (74)

miR-26a PBMCs KLF4

MYCBP

Promote M1 (75)

Suppress M2 (76)

In pristine-induced arthritis (79)

miR-20a RAFLS Ask1 Suppress inflammation (81) Unknown

miR-19a

miR-21

RASF STAT3

SOCS1

Increase inflammation (82) Unknown

*P, plasma; S, serum; PB, peripheral blood; PBMCs, peripheral blood mononuclear cells; PRTc, peripheral regulatory T cells; SFCD14*C, synovial fluid CD14+ T cells; RASF, rheumatoid

arthritis synovial fibroblast; SFTc, synovial tissue; RACD14*c, rheumatoid arthritis CD14+ T cells; PTc, peripheral T cells; O/O, osteoblasts and osteoclasts.

molecules targeted at miRs (antimiRs) have shown promise
in preclinical development in many diseases, particularly in
cancers. Several miR-based therapeutics have gone into the
clinical trials (85). A miR-29 mimic may be a therapeutic to
prevent formation of a fibrotic scar or to prevent cutaneous
fibrosis (86). Two clinical trials of a miR-155 inhibitor in
patients with lymphomas and leukemia are undergoing
(NCT02580552, NCT03713320). Given the central roles
of miR-155 in generating pro-inflammatory macrophage
responses, such an inhibitor could have promise in rheumatic
diseases. One clinical trial of a miR-92a inhibitor is also
ongoing in healthy volunteers (NCT03603431). Given the
emerging understanding of miRs in macrophage phenotypes
and inflammation in RA and JIA, further pre-clinical and

animal model work is needed to define how altering monocyte
and macrophage phenotypes through miRs can ameliorate
inflammatory arthritis.
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