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INTRODUCTION

Innate lymphoid cells (ILCs) are rapid producers of both proinflammatory and regulatory
cytokines in response to local injury, inflammation, pathogen infection, or commensal microbiota
perturbation (1). Because most ILCs have been shown to be tissue-resident during homeostasis
(with the exception of circulating NK cells) in almost all organs analyzed, their ability to quickly
respond to tissue stress and inflammation underpins their critical role in regulating tissue
homeostasis and repair during infection or injury (2–4). Recent evidence has suggested that
mature ILCs can be further classified into group 1, 2, and 3 ILCs based on different expression of
transcription factors, cell surface markers, and effector cytokines (1). Mouse group 1 ILCs, which
include natural killer (NK) cells and ILC1, were initially distinguished from other ILCs based on
their constitutive expression of the transcription factor Tbx21 (T-bet), co-expression of activating
receptors NKp46 and NK1.1, and production of interferon (IFN)-γ following activation (5). In
humans, group 1 ILCs are harder to definitively differentiate from other ILCs due to the lack of
lineage defining markers and reported functional plasticity amongst group 2 and group 3 ILCs (6).

ILC1 are recently discovered tissue-resident sentinels that function to protect the host from
bacterial and viral pathogens at initial sites of infection (2, 7, 8). ILC1 rapidly produce IFN-γ
following local dendritic cell activation and interleukin (IL)-12 production to limit viral replication
and promote host survival before the recruitment of circulating lymphocytes into infected tissue
(2). Unlike ILC1, NK cells can be recruited from the circulation into the parenchyma of infected or
cancerous tissues where they display potent perforin-dependent cytotoxicity in addition to rapid
IFN-γ production (9, 10). However, persistent inflammatory signals can also lead to unrestrained
activation of group 1 ILCs during obesity and inflammatory bowel disease (IBD) (3, 11–14). While
these studies suggest important roles for group 1 ILCs during host protection and pathology, gaps
in evidence have inhibited the ability of recent studies to definitively distinguish between the roles
of ILC1 and NK cells in these contexts.

GROUP 1 ILC PHENOTYPIC AND FUNCTIONAL HETEROGENEITY

NK cells, the founding member of ILCs, were initially defined based on the cell surface expression
of NK1.1 in mouse or CD56 in human with the absence of cell surface expression of other
lineage (Lin) defining markers including CD3, CD14, CD19, and TCR proteins (15). In subsequent
mouse studies over the last 30 years, Lin−NK1.1+ cells were found to be heterogeneous for
the expression of activating and inhibitory Ly49 receptors, cell surface integrins [α1β1 (CD49a),
α2β1 (CD49b), αEβ7 (CD103)], cell surface proteins (TRAIL, CD69, CD27, CD11b), transcription
factors (Eomes), chemokine receptors (CXCR6), and cytokine receptors (IL-7Rα) in various organs
(1, 16). Similarly, human Lin−CD56+ cells have been reported to be heterogeneous for the
expression of transcriptions factors (EOMES and T-BET), cell surface markers (CD49a, CD56,
CD16, NKp80, CXCR6, IL-7Rα, CD94, CD69, NKp44), and cytotoxic molecules (Perforin) (1, 16).
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Early studies concluded that cells with an alternative cell surface
or transcription factor phenotype from putative mature NK cells
(mouse: Lin−NK1.1+T-bet+Eomes+CD49b+; human: Lin− IL-
7Rα−CD56dimCD16+) in peripheral organs and blood likely
represented immature NK (iNK) cells (17–21). This hypothesis
is supported by studies demonstrating that subsets of developing
mouse NK cells can be distinguished based on CD27 and
CD11b expression (22, 23). Similarly, previous studies have
suggested that CD56brightCD16− human NK cells in the blood
may be immature precursors to CD56dimCD16+ mature NK
cells (18, 19). However, whether other phenotypic differences
observed in mouse and human group 1 ILCs are due to
tissue-specific microenvironments, distinct lineages of cells,
or developmental/activation states of NK cells is still under
considerable debate and investigation.

Insight into these questions came shortly after the
identification of Lin−IL-7Rα+ “helper” ILCs. Specifically,
genetic evidence suggested that Tbx21-dependent IL-
7Rα+Tbet+Eomes−NK1.1+NKp46+ “ILC1” in the small
intestine did not require Eomes for their development, whereas
NK cells did require Eomes (7). A recent study further supported
these initial data by using Eomes-GFP reporter mice to generate
core transcriptional signatures of Eomes− ILC1 and Eomes+

NK cells from 4 independent tissues. The identified core ILC1
signature led to the discovery of the inhibitory receptor CD200r1
as a stable marker expressed by ILC1 but not NK cells during
homeostasis and inflammation (2). Additional lineage tracing
experiments suggested that CD200r1+Eomes−CD49b− group
1 ILCs constituted a stable lineage during homeostasis, distinct
from CD200r1-Eomes+CD49b+ mature NK (mNK) cells
(2, 7, 24). Functional evidence suggestive of distinct group
1 ILCs in peripheral organs was supported by the findings
that T-bet+Eomes−CD49b− group 1 ILCs (in addition to
ILC2 and ILC3) were long-term tissue-resident cells, whereas
Eomes+CD49b+ mNK cells were derived from the circulation
in almost all organs tested in mouse parabiosis experiments
(2, 4). Similarly, in one human study a subset of donor liver
CXCR6+ group 1 ILCs was found to be maintained up to 13 years
post-liver transplant while donor CXCR6− NK cells were absent,
suggesting that a subset of long-term tissue-resident CXCR6+

group 1 ILCs are conserved in mammals (25). Furthermore,
CD49b−Eomes− group 1 ILCs with a phenotype consistent with
ILC1 in the liver express higher levels of TRAIL than mNK cells
at steady state, and these ILC1 can produce higher levels of tumor
necrosis factor (TNF)-α and IFN-γ following activation ex vivo
(2, 17, 20, 24). While ILC1 in the small intestine were observed to
have poor cytotoxicity and liver group 1 ILCs with a phenotype
consistent with ILC1 express lower levels of granzymes A/B
and perforin at steady state compared to NK cells (7, 24),
peripheral ILC1 express higher transcript levels of granzyme C in
addition to TRAIL and may kill target cells through alternative
mechanisms (2, 24, 26–28). However, it will be important for
future studies to determine whether perforin-independent killing
mechanisms can be used as definitive criteria to functionally
separate ILC1 from NK cells across all mouse and human tissues.
Thus, significant phenotypic and functional heterogeneity has
been demonstrated in group 1 ILCs; however, it is still unclear

to what extent these individual pieces of evidence can be used in
isolation to define group 1 ILC subsets.

DEVELOPMENTAL AND ACTIVATION

STATES OF GROUP 1 ILCs

Collective reports have demonstrated that iNK cells in mouse
bone marrow and periphery can express Ly49 receptors, CD49a,
CD90, TRAIL, CD69, and Eomes, and lack CD49b expression (3,
21, 29–31). Upon adoptive transfer into lymphopenic mice, iNK
cells can induce CD49b expression and retain Eomes expression
(3). During activation, mNK cells can induce expression of
CD49a, CD69, TRAIL, and CD90 while also decreasing Eomes
expression (2, 17, 29, 32), suggesting that iNK and mNK
cell phenotypes can overlap with other reported group 1 ILC
phenotypes based on these markers. Consistent with these
findings, NK cells can repress Eomes expression and induce
CD49a, TRAIL, and CD103 in response to TGFβ and IL-
2 stimulation ex vivo (33, 34). These key findings make the
current dogma of utilizing CD49a, CD49b, and Eomes expression
in Lin−T-bet+NK1.1+NKp46+ cells insufficient to distinguish
between group 1 ILC subsets and activation or developmental
states of NK cells. Furthermore, adipose and small intestine iNK
cells have also been found to be short-term (1 month), but
not long term (4 months) tissue-resident in mouse parabiosis
experiments (3), suggesting that short-term parabiosis (2 weeks-
1 month) experiments are not sufficient to distinguish iNK
cells from ILC1 without additional evidence. Thus, there is
currently insufficient evidence to conclude that T-bet+ group 1
ILCs with the phenotype of CD49a+CD49b+Eomes+NK1.1+ are
either tissue-resident NK (trNK) cells or transitional states of
group 1 ILCs, because these cells may be activated NK cells in
the tissue parenchyma following recruitment from circulation.
Furthermore, CD49a+CD49b−Eomes+NK1.1+ cells may not
represent a transitional subset of group 1 ILC, but instead may
represent iNK cells in peripheral tissues, although further lineage
tracing experiments will be necessary to clarify these issues in
the field.

In the healthy state, mature human group 1 ILCs have been
described to be heterogeneous for cell surface expression of
CD56, CD16, and NKp80 in peripheral tissues (35). However,
CD56 can be expressed on ILC progenitor populations and ILC3
in the tonsil (36), and may be downregulated during activation
in a similar manner to CD16 and NKp80 (37–39). Thus, to
date there are no known stable cell surface markers that can
unequivocally distinguish between human mNK cells (or their
developmental intermediates, which may be tissue-resident) and
other proposed group 1 ILCs in inflamed human tissues, because
activated mNK cells can lose expression of these cell surface
markers during inflammation.

Mouse Group 1 ILC Development
Recent unbiased chromatin accessibility studies in mice suggest
that NK cells can be defined epigenetically as a distinct ILC
lineage through the enrichment of accessible T-bet and Eomes
binding sites compared to other leukocytes (40). Similarly, mNK
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and iNK cells require Eomes for their development (2, 20, 41),
suggesting that Eomes may be the master transcription factor
that defines NK cell lineage identity in mice during homeostasis.
In support of this hypothesis, mNK cells in the peritoneum,
liver, spleen, salivary gland, and adipose tissue were all found
to have a cell-intrinsic developmental requirement for Eomes
and T-bet (2), arguing against tissue-specific transcription factor
developmental requirements formNK cells.While certain studies
have observed that mNK cell numbers are normal in the absence
of T-bet (7, 8, 42), it has been demonstrated previously that
Tbx21−/− NK cells display an immature phenotype and are
functionally deficient (3, 43–45). Therefore, because Tbx21 is
required for optimal mature ILC1 and mNK development (2, 3,
46), Rag2−/−

× Tbx21−/− mice are not a suitable model to test
for the contributions of mature group 1 ILCs in vivo.

The transcription factors Id2 and Nfil3 have also been shown
to be required for mature mouse ILC1 and NK cell development
(47, 48). Certain studies have identified “tissue-resident NK
cells,” “salivary gland ILCs,” and “type 1 ILCs” based on their
development in the absence of Nfil3 (27, 33, 49). However,
similar subsets have been also found to be Nfil3-dependent
in a cell-intrinsic manner in other studies (2, 50). Because
mNK cells can develop in an Nfil3-independent manner during
virus-induced inflammation and aging (33, 51), analysis of
Nfil3−/− mice is likely not sufficient to define group 1 ILC
subsets due to these caveats. Previous studies have also utilized
Zbtb16 fate-mapping studies and Id2 reporter mice to identify
a common helper ILC precursor population that gives rise
to all tissue-resident ILCs, but not mNK cells, to argue that
ILC1 comprise a developmental lineage distinct from NK cells
(7, 52, 53). However, a recent study using dual Zbtb16 and
Id2 reporter mice demonstrated that both NK cells and ILC1
can develop from a Id2+Zbtb16+ shared precursor, suggesting
that these transcription factors alone cannot be used to identify
different group 1 ILC subsets during ontogeny (54). Instead,
several studies have identified the transcription factor Zfp683
(Hobit) as highly expressed in peripheral ILC1 compared to
mNK cells (2, 55, 56). Zfp683−/− mice display a loss of liver
ILC1 but not other ILC populations (including ILC1 in other

tissues) (2, 55), suggesting that mature liver ILC1 have a
unique developmental pathway from other mouse ILCs. While
developmental dependence on Eomes expression can be used to
identify NK lineage cells in peripheral organs of mice, there is
still no definitive evidence that a single transcription factor can
define the development of other group 1 ILC subsets across all
mouse tissues.

DISCUSSION

While collective evidence supports the hypothesis that mouse
group 1 ILCs are composed of Eomes-dependent iNK and mNK
cells, their activation or developmental states may be mistaken
for novel subsets of group 1 ILCs. Eomes-independent ILC1 have
been shown through single- cell sequencing, parabiosis, lineage
tracing, and transcription factor deficient mouse experiments to
be a distinct lineage of group 1 ILCs, and not a developmental
or activation state of NK cells. In human tissues, there is
currently no definitive evidence that can distinguish between
developmental or activation states of group 1 ILCs during
inflammation. Single cell sequencing studies will be needed to
determine the extent of group 1 ILC heterogeneity in various
peripheral tissues, and to identify stable markers that can
distinguish between stable subsets of group 1 ILCs through
lineage tracing in humanized mouse models.
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