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MALT1 plays an important role in innate and adaptive immune signaling by acting

as a scaffold protein that mediates NF-κB signaling. In addition, MALT1 is a

cysteine protease that further fine tunes proinflammatory signaling by cleaving specific

substrates. Deregulated MALT1 activity has been associated with immunodeficiency,

autoimmunity, and cancer in mice and humans. Genetically engineered mice expressing

catalytically inactive MALT1, still exerting its scaffold function, were previously shown

to spontaneously develop autoimmunity due to a decrease in Tregs associated with

increased effector T cell activation. In contrast, complete absence of MALT1 does

not lead to autoimmunity, which has been explained by the impaired effector T cell

activation due to the absence of MALT1-mediated signaling. However, here we report

that MALT1-deficient mice develop atopic-like dermatitis upon aging, which is preceded

by Th2 skewing, an increase in serum IgE, and a decrease in Treg frequency and surface

expression of the Treg functionality marker CTLA-4.
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INTRODUCTION

MALT1 (Mucosa-associated lymphoid tissue lymphoma translocation protein 1) is an intracellular
signaling protein that plays an important role in several cell types, including lymphoid andmyeloid
cells as well as non-hematopoietic cells (1). MALT1 is best known for its role as a scaffold
protein in T cell receptor (TCR)- and B cell receptor (BCR)-induced nuclear factor-κB (NF-κB)
signaling, leading to the activation and proliferation of T and B cells, respectively (2, 3). Moreover,
MALT1-mediated NF-κB signaling plays a key role in the proliferation of certain B cell lymphomas,
such as MALT1 lymphoma and activated B cell-like diffuse large B cell lymphoma (ABC-DLBCL)
(4–13). TCR or BCR stimulation, as well as oncogenic mutations in specific signaling proteins,
leads to the formation of a so-called CBM signaling complex, consisting of CARD11 (also known
as CARMA1), BCL10 and MALT1 (8, 14–18). In this complex, MALT1 acts as an adaptor to
recruit the E3 ubiquitin ligase TRAF6, whose activity facilitates the recruitment and activation of
downstream NF-κB signaling proteins (19–21). The importance of the CBM complex is illustrated
by the impaired TCR-induced NF-κB activation in T cells isolated from Card11-, Bcl10-, and
Malt1-knock-out (KO) mice, respectively (2, 3, 22, 23).

In addition to its scaffold function, MALT1 also acts as a cysteine protease. TCR stimulation
leads to the MALT1-mediated cleavage of several substrates including BCL10, the deubiquitinases
A20 and CYLD, the NF-κB family member RelB, the RNA-binding and RNA-destabilizing proteins
Roquin-1/2, Regnase-1, and N4BP1, the E3 ubiquitin ligase HOIL1, and MALT1 itself (24–34).
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Although the specific biological role of cleavage of each of these
substrates is still largely unclear, MALT1 proteolytic activity
contributes to the fine-tuning of TCR-induced gene expression,
lymphocyte activation and proliferation, and regulatory T cell
(Treg) development and function. Consequently, inhibition of
MALT1 proteolytic activity has been proposed as an interesting
therapeutic approach for autoimmune diseases and certain
cancers, which is further supported by promising results with
MALT1 protease inhibitors in preclinical mouse models (12,
13, 35–37). Of note, MALT1 mutation in humans, causing the
absence or very low expression of MALT1, leads to combined
immunodeficiency (CID), which is characterized by several
bacterial, fungal, and viral infections, indicating that targeting
MALT1 activity may not be without risk (38–43). Moreover,
it was recently shown that Malt1 protease-dead (PD) knock-
in mice expressing a catalytically inactive MALT1 mutant
spontaneously develop multi-organ inflammation due to defects
in T cell homeostasis (44–49). This was rather unexpected
since inflammation was never described for mice that are
completely deficient in MALT1. However, in the present paper
we show that Malt1-KO mice develop atopic-like dermatitis
upon aging.

RESULTS

Malt1-KO Mice Spontaneously Develop
Skin Lesions, Accompanied by Elevated
Serum Cytokine Levels
Malt1-KO mice were housed under SPF conditions and
monitored for macroscopic clinical signs on a regular basis.
Interestingly, the mice were found to develop skin lesions
upon aging, with an average disease onset of 161 days
(Figures 1A,B). The Malt1-KO mice suffer from erosive lesions
in the neck and face region, with the epidermis showing
acanthosis, hyperkeratosis, and parakeratotic scaling, as well
as CD3+ T cell infiltration (Figure 1C). Similar lesions were
observed in another independent Malt1-KO LacZ reporter
mouse line (Figure 1A), indicating that the observed phenotype
is strain-independent. Next to full body Malt1-KO mice, also T
cell-specific (Malt1FL/FLCD4-CreTg/+) and keratinocyte-specific
(Malt1FL/FLK5-CreTg/+) Malt1-KO mice were monitored for
skin lesions over time, but these mice did not develop any
skin lesions (Figure 1B), indicating that absence of MALT1
in T cells or keratinocytes, as such, is not sufficient to
induce skin inflammation. Malt1-KO mice that develop skin
inflammation were found to have increased serum levels of the
pro-inflammatory cytokines IL-2, IL-4, IL-6, IL-17, IFN-γ, and
TNF (Figure 1D). To assess if increased serum cytokine levels
reflect a more general inflammation in MALT1-deficient mice,
we analyzed H&E stained sections of lung, liver, stomach, colon,
small intestine, lacrimal glands and salivary glands. However,
no differences were observed between Malt1-KO and WT mice
for all these tissues (Figure 2A). In addition, we checked blood
glucose levels in young (±20 weeks) and oldermice (7–8months)
to determine possible pancreatic inflammation, but also here
MALT1 deficiency had no effect (Figure 2B). Together, our data

demonstrate that MALT1 deficiency in mice specifically results in
an inflammatory skin phenotype upon aging.

MALT1 Deficiency Results in Defective
Treg Development and CTLA-4 Expression
via a T Cell Intrinsic Mechanism in Both
Young and old Mice
Malt1-KO mice are known to have a defect in Treg development
(44, 46, 50, 51), which could be responsible for the skin
inflammation in aging MALT1-deficient mice. However, it has
been reported by Brüstle et al. that whereas young Malt1-KO
mice have severely reduced numbers of Tregs in blood and
thymus, 1 year oldMalt1-KOmice have normal Treg numbers in
blood, which was suggested to reflect the generation of inducible
Tregs (iTregs) in aging mice (51). Of note, this study did not
mention the development of skin lesions in aged mice. We
therefore analyzed the number of Tregs (Foxp3+CD25+CD4+

T cells) in young and aged (±7 months old) Malt1-KO mice.
In agreement with the above mentioned previous studies, Treg
numbers were reduced in thymus, lymph nodes (LN), and spleen
of lesion-free young mice. However, in contrast to the study by
Brüstle et al., we found that the number of Tregs were equally
reduced in thymus, LN and spleen of aged Malt1-KO mice
that developed skin lesions (Figures 3A,B and gating strategy in
Supplementary Figures 1, 2). The reason for this discrepancy is
still unclear, but different findings may reflect specific differences
in mouse housing conditions. Similar to the fullMalt1-KO mice,
also T cell specificMalt1-KO mice had a reduced Treg frequency
in their thymus, spleen, and LN (Figure 3C), indicating a T
cell intrinsic role of MALT1 in Treg development. We next
investigated whether the remaining MALT1-deficient Tregs are
functional. CTLA-4 expression on Tregs is known to compete
with CD28 on T cells for binding to CD80 and CD86, as well
as to reduce the surface expression of CD80 and CD86 on
antigen presenting cells, resulting in reduced T cell proliferation
and cytokine production (52, 53). We therefore assessed CTLA-
4 surface expression on splenocytes from WT and Malt1-
KO mice that were stimulated in vitro for 4 h with phorbol
myristic acid/Ionomycine (PMA/IO). As shown in Figure 3D, a
reduced frequency of Tregs that express surface CTLA-4 could be
observed in Malt1-KO mice compared to WT mice, suggesting
that the remaining MALT1-deficient Tregs are functionally
impaired (gating strategy in Supplementary Figure 2).

Activation and CTLA-4 Surface Expression
of CD4+ T Cells Is Altered in Malt1-KO
Mice
Since we observed increased CD3+ T cell infiltration in the
diseased skin ofMalt1-KO mice, we further investigated whether
the proliferation and activation of CD4+ T cells is affected in
MALT1-deficient mice. For this purpose, we purified CD4+ T
cells and labeled them with CFSE to measure their proliferation
after 72 h stimulation with anti-CD3 and anti-CD28. This
showed thatMALT1-deficient CD4+ T cells can proliferate, albeit
to a lesser extent than WT CD4+ T cells (Figure 4A), which is
similar to what has previously been described (45). To assess
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FIGURE 1 | Malt1-KO mice develop skin lesions at late age accompanied by elevated serum cytokine levels. (A) Skin lesion in the neck of a Malt1-KO and Malt1-KO

LacZ mouse. (B) Incidence of dermatitis in Malt1-KO mice (n = 8 for controls, n = 24 for Malt1-KO, n = 6 for Malt1FL/FL CD4-CreTg/+, and n = 6 for Malt1FL/FL

K5-CreTg/+). (C) H&E staining on WT and Malt1-KO skin (scale bar 100µm), showing epidermal thickening and parakeratosis in Malt1-KO skin and α-CD3 staining

on WT and Malt1-KO skin (scale bar 100µm), showing increased CD3 staining in Malt1-KO skin. (D) Elevated serum levels of IL-2, IL-4, IL-6, IL-17, IFN-γ, and TNF in

Malt1-KO mice compared to WT mice (both n = 5 and >30 weeks, and Malt1-KO mice have AD). Open circles (WT) and black squares (KO) represent individual

mice. The mean ± SEM is indicated on the graphs. The statistical significance between groups was calculated with an unpaired 2-tailed Student’s t-test: *P < 0.05,

**P < 0.01, and ***P < 0.001.

the activation of CD4+ MALT1-deficient T cells, we stimulated
splenocytes for 4 h with PMA/IO and determined the frequency
of CD44+CD4+ T cells, so-called effector CD4+ T cells. Notably,
Malt1-KOmice had a reduced frequency of effector CD4+ T cells
(Figure 4B), which is consistent with previous findings (2).

Since not only Tregs but also effector CD4+ T cells can
use surface CTLA-4 to suppress proliferation of effector CD4+

T cells (54–56), we assessed the expression of CTLA-4 on
the surface of effector CD4+ T cells from Malt1-KO and
WT mice. In contrast to WT mice, Malt1-KO mice showed
a strong reduction in the frequency of effector CD4+ T cells
that express surface CTLA-4 (Figure 4C and gating strategy in

Supplementary Figure 2). In addition, the expression of CTLA-
4 on the remaining MALT1-deficient surface CTLA-4+ effector
CD4+ T cells was also reduced, as determined by the surface
CTLA-4 mean fluorescent intensity (Figure 4D). These data
clearly show that besides being important for CTLA-4 expression
on the surface of Tregs, MALT1 is similarly important for the
expression of CTLA-4 on the surface of effector CD4+ T cells.
Together, these data show that although MALT1 deficiency leads
to reduced activation and proliferation of stimulated CD4+ T
cells, it also lowers the immune suppressive functions of both
Tregs and effector CD4+ T cells, which could contribute to
disease development.
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FIGURE 2 | Malt1-KO mice do not develop multi-organ inflammation. (A) H&E

staining (scale bar 100µm) of several organs from WT and Malt1-KO mice

(Continued)

FIGURE 2 | (Malt1-KO mice had skin lesions and the WT and KO mice were

between 30 and 40 weeks old). (B) Blood glucose levels in mice of ±20 weeks

(left, WT: n = 5 and KO: n = 4) and mice of 7–8 months (right, WT: n = 10 and

KO: n = 8). Open circles (WT), gray squares (KO), and black squares (KO +

AD = KO mice with atopic dermatitis) represent individual mice. The mean ±

SEM is indicated on the graphs. The statistical significance between groups

was calculated with an unpaired 2-tailed Student’s t-test: no significant

difference was found.

MALT1 Deficiency Causes Th2 Skewing
Accompanied by Increased Serum IgE
Levels
We next investigated whether the impaired Treg development
in Malt1-KO mice has an impact on the T-helper (Th) cell
populations. To this end, we stimulated splenocytes with PMA,
IO, and Brefeldin A for 4 h, and determined the percentage of
Th2 (IL-4 producing CD44+CD4+ T cells) (Figure 5A) and
Th1 cells (IFN-γ producing CD44+CD4+ T cells) (Figure 5B),
respectively (gating strategy in Supplementary Figure 3).
MALT1-deficient mice (±20 weeks, skin lesion free) repeatedly
showed largely similar levels of IFN-γ-producing Th1 cells,
while the IL-4 producing Th2 cells were significantly increased.
Since IL-4, secreted by Th2 cells, is known to induce B cell Ig
isotype switching from IgM to IgE (57), we determined the
serum IgE levels from Malt1-KO and WT mice of several ages.
In agreement with the increased Th2 frequency, IgE levels were
clearly elevated in Malt1-KO mice at any time point tested and
preceded lesion onset (Figure 5C). Furthermore, in the ear skin
of Malt1-KO mice with lesions, we found elevated mRNA levels
of Tslp and Il22 (Figure 5D), which are both known to promote
Th2 responses (58, 59). Collectively, these data indicate that
MALT1 deficiency leads to Th2 skewing and IgE production,
which might contribute to skin lesion development.

DISCUSSION

We report that aging Malt1-KO mice suffer from atopic-like
dermatitis accompanied by elevated serum cytokine levels and
preceded by Th2 skewing and elevated serum IgE levels. No
inflammation could be observed at other sites of the body. In
contrast to Malt1-KO mice, skin lesions were never reported
in mice fully deficient in one of the other components of the
CBM complex, BCL10 and CARD11, or in the upstream activator
PKCθ, even though BCL10 and PKCθ deficient mice were
followed up until 6 months of age (22, 60). Notably, despite being
part of the same signaling pathway, MALT1, BCL10, and PKC-θ
deficiency have also been reported to differentially affect TCR-
induced proliferation, IL-2 production, and NF-κB activation
in T cells, with MALT1-deficient T cells showing a milder
impairment than BCL10- and PKCθ-deficient T cells, suggesting
they may have divergent functions and act in additional signaling
pathways (61).

We further report that atopic-like dermatitis in aging Malt1-
KOmice is associated with a decrease in the number and function
of Tregs in the thymus and periphery. We propose that the
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FIGURE 3 | MALT1 plays a T cell-intrinsic role in Treg development. (A)

Percentage of Tregs (Foxp3+CD25+CD4+ T cells) in the thymus, spleen and

lymph nodes of Malt1-WT and Malt1-KO mice without skin lesions (WT: n = 4

and KO: n = 4, age 10–12 weeks). (B) Percentage of Tregs (Foxp3+CD25+

CD4+ T cells) in the thymus, spleen and lymph nodes of older WT and

Malt1-KO mice with skin lesions (WT: n = 4 and KO: n = 6, age 6.5–8.5

months). (C) Percentage of Tregs (Foxp3+CD25+CD4+ T cells) in the thymus,

spleen and lymph nodes of WT (Malt1FL/FLCD4-Cre+/+, n = 4), and T-KO

(Malt1FL/FLCD4-CreTg/+, n = 4) mice. (D) Percentage of splenic Tregs

(Foxp3+CD4+ T cells) expressing CTLA-4 on their surface after stimulation for

4 h with PMA and IO in WT (n = 5) and Malt1-KO (n = 5) mice. The mean ±

SEM is indicated on the graphs. The statistical significance between groups

was calculated with an unpaired 2-tailed Student’s t-test: **P < 0.01 and

****P < 0.0001.

reduction in immune suppressive Tregs leads to a disruption of
normal immune homeostasis and contributes to the activation of
effector T cells and allergic skin inflammation. In this context,
we could measure more Th2 cells producing IL-4, which is
known to play multiple roles in promoting atopic-like dermatitis
(62). A severe Treg reduction is also seen in patients suffering
from immunodysregulation polyendocrinopathy enteropathy X-
linked (IPEX) syndrome (OMIM #304790), caused by mutations
in the FOXP3 gene (63) as well as mice with a mutation in the
Foxp3 gene, so called scurfy mice (64). The scurfy mice and the
IPEX patients illustrate variable autoimmune disorders. IPEX
patients can suffer from type 1 diabetes mellitus and thyroid
disease, increased IgE levels, asthma and food allergies, while
dermatitis and increased IgE levels are also present in the scurfy
mice (63, 65–67). A lack of functional Tregs is a common feature
in Malt1-KO mice, scurfy mice and IPEX patients (44, 46, 50,
51, 68–70). Moreover, a scurfy-like phenotype was described
for mice (Malt1FL/FLFoxp3-creTg/+) with a specific deletion of
Malt1 in Tregs (36, 49). However, while Malt1-KO mice as
well as MALT1 CID patients display impaired T cell activation
(3, 22, 38–47), this is not the case for IPEX patients, scurfy mice
and mice only lacking Malt1 in Tregs, where there is a failure
to control T cell activation due to the absence of Tregs or the
reduced functionality of Tregs leading to lymphoproliferation
and autoimmunity, resulting in death (36, 49, 63, 65–67, 71).

CTLA-4 is a known functionality marker on Tregs and is
required for their inhibitory function (52, 53). We show that
the remaining Tregs in Malt1-KO mice are also functionally
impaired as demonstrated by a reduced CTLA-4 expression. The
reduced Treg frequency and functionality we observed inMalt1-
KO mice is associated with an increased Th2 frequency. Th2
cells were previously shown to expand disproportionally upon
depletion of Tregs, which tightly control the Th2 population via
induction of apoptosis of Th2, but not Th1 cells (72). Moreover,
Tian et al. showed that addition of recombinant CTLA-4-Ig to
Treg depleted mice induces Th2 apoptosis and thus reduces
the Th2 expansion, illustrating the tight control by Tregs on
the Th2 population (72). In addition to Tregs, also effector
CD4+ T cells make use of surface CTLA-4 to inhibit effector
CD4+ T cells, albeit with much lower efficiency than Tregs (54–
56). Notably, we show that CTLA-4 expression is also reduced
on effector CD4+ T cells in Malt1-KO mice, which may also
contribute to disease pathogenesis. Interestingly, CTLA-4 mRNA
is post-transcriptionally regulated by the endonuclease Regnase-
1 and the RNA-binding proteins Roquin-1 and-2, which were
shown to be inactivated by MALT1-mediated cleavage, leading
to stabilization of CTLA-4 and many other mRNA molecules
(28, 29). Most likely, reduced CTLA4 expression in MALT1-
deficient Tregs and effector CD4+ T cells reflects the absence
of Regnase-1 and Roquin cleavage, leading to CTLA-4 mRNA
degradation and reduced CTLA-4 protein expression.

Mice that are completely deficient in MALT1 as well as
mice expressing a catalytically inactive (protease-dead) mutant
MALT1 have a reduced number of Tregs, but only Malt1-PD
mice develop severe autoimmune symptoms (44–51). Impaired
TCR-mediated effector T cell activation, normally mediated by
the MALT1 scaffold function, has been proposed to prevent
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FIGURE 4 | Activation of Malt1-KO CD4+ T is altered. (A) CFSE labeled CD4+ T cells stimulated for 72 h with plate bound α-CD3 and soluble α-CD28. The CFSE

overlaid histograms displaying the proliferation of WT or Malt1-KO CD4+ T cells (age mice: 10 weeks lesion-free). (B) Splenocytes were stimulated for 4 h with PMA

and IO (same for C and D) in order to determine the percentage of CD44+ CD4+ T cells. (C) Percentage of CD44+CD4+ T cells that express CTLA-4 on their

surface. (D) Mean fluorescence intensity (MFI) of CTLA-4 on CD44+CD4+ T cells that express CTLA-4 on their surface. For (B–D) open circles (WT: n = 4) and black

squares (KO: n = 4) represent individual mice. The mean ± SEM is indicated on the graphs. The statistical significance between groups was calculated with an

unpaired 2-tailed Student’s t-test: *P < 0.05 and ***P < 0.001.

FIGURE 5 | Th2 skewing and elevated IgE levels in Malt1-KO mice. (A) Splenocytes of 20 weeks old mice without skin lesions were stimulated for 4 h with PMA and

IO (same for B), in order to determine the percentage of CD44+CD4+ T cells expressing IL-4 (WT and KO: n = 8). (B) Percentage of CD44+ CD4+ T cells expressing

IFN-γ (WT and KO: n = 8). (C) IgE levels in serum collected from WT and Malt1-KO mice of ±15, ±20, and >30 weeks (15 weeks WT and KO: n = 4, at 20 weeks

WT: n = 8 and KO: n = 6 and at 30 weeks WT: n = 6 and KO: n = 9). Open circles (WT), black squares (KO), and gray squares (KO + AD) represent individual mice.

(D) mRNA expression levels of Malt1, Tslp, and IL22 (relative to reference genes Hprt1 and Ubc) in ears of Malt1-WT mice (n = 7), Malt1-KO mice (n = 11), and

Malt1-KO + AD mice (n = 3) suffering from dermatitis. The mean ± SEM is indicated on the graphs. For (A–C) all results were obtained by flow cytometry the

statistical significance between groups was calculated with an unpaired 2-tailed Student’s t-test. For (D) the statistical significance between groups was calculated

with a one-way ANOVA with a Tukey’s multiple comparison test. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.

spontaneous inflammation in full Malt1-KO mice (1). Our
present finding that Malt1-KO mice spontaneously develop
skin inflammation upon aging, implicates a role for MALT1-
independent antigen or cytokine receptor signaling leading to
low or intermediate T cell activation. The reduced frequency of
functional Tregs in combination with a lowered effector T cell

activation causes a gradual and selective expansion of Th2 cells,
culminating in allergic skin inflammation without autoimmunity
or generalized inflammation.

Skin inflammation in atopic dermatitis is assumed to arise
due to a misdirected immune response against harmless antigens
on the one hand, and to skin barrier defects on the other hand
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(73). We propose that scratching may cause local skin barrier
defects, which in combination with the Treg deficiency and the
Th2 skewing favors the specific development of skin lesions in
Malt1-KO mice. This is further supported by a report showing
that tape stripping in combination with Treg depletion results
in skin thickening, increased IL-4 and IL-13 mRNA levels in
the skin, and elevated serum IgE levels (74). Of note, whereas
an increase in IL-4 was already detectable in Malt1-KO mice
before the development of skin lesions, elevated levels of Tslp
and Il22mRNA, which are known to promote expression of Th2
cytokines, such as IL-4, could only be detected in lesional ear skin.
A possible explanationmight be that increasedTslp and Il22 levels
only occur upon skin barrier disruption in skin lesions, which is
in agreement with an observed increase in TSLP expression upon
tape stripping (75, 76).

Persistent severe dermatitis (7/9) and increased serum IgE
levels (4/8) have been described in patients with loss of function
mutations in MALT1 (38, 40–43). Similarly, dermatitis has been
reported in genome-wide association studies for CARD11 (77)
and is also one of the clinical features found in most patients
with loss of function mutations in CARD11 (78–80). Also mice
that have hypomorphic mutations in Card11 display dermatitis,
reduced Tregs, and increased IgE and Th2 levels (81–83).
The proposed mechanism for disease development is the tight
relationship between Tregs and Th2 cell levels (72, 82). However,
our T cell-specific Malt1-KO mice did not develop skin lesions,
suggesting that absence of MALT1 in T cells only is not sufficient
to drive skin inflammation in aging mice. CARD11 is a member
of the CARD-CC protein family, which also contains CARD9,
CARD10 (also known as CARMA3), and CARD14 (also known
as CARMA2) (84), which can all form distinct CBM complexes
in a cell-type specific manner. Recently, Peled at al. reported
that two loss-of-function mutations in CARD14 are associated
with atopic dermatitis (85). CARD14 is mainly expressed in
keratinocytes and activates MALT1 signaling in keratinocytes
(86, 87), which led us hypothesize that MALT1 deficiency in
keratinocytes was driving atopic-like dermatitis. However, we
also did not observe any skin lesions in keratinocyte-specific
Malt1-KO mice. Possibly, combined deficiency in T cells and
keratinocytes is needed to induce the atopic skin phenotype in
aged mice. Alternatively, we cannot exclude a role for other cell
types as well.

In general, the here established relationship between impaired
MALT1-dependent TCR signaling, partial Treg deficiency,
and dysregulated accumulation of Th2 cells, may provide
a mechanistic basis to explain the allergic responses in
patients carrying MALT1 and CARD11 mutations, and invites
future studies investigating associations between atopy and
genetic variations in other components of the TCR-MALT1
signaling pathway.

MATERIALS AND METHODS

Mice
Malt1-KO mice (backcrossed for more than 10 generations
into C57BL/6 background) were a kind gift from Dr. T. Mak
(Toronto, Canada). Another Malt1 allele from EUCOMM

(Malt1tm1a(EUCOMM)Hmgu/+) was derived from ES cells and
subsequently back-crossed to germline-expressing Flpe-deleter
mice (88) to generate a conditional Malt1-deficient allele
(Malt1FL/+). The ES cells were also backcrossed to a germline-
expressing Cre-deleter mouse (89) to obtain an alternative full
deficient allele with a LacZ reporter (Malt1IRES−LacZ/+). To
generate a T-cell specific knock-out, Malt1FL/+ was further
crossed to CD4-CreTg/+ mice (90) and K5-CreTg/+ (91) and
offspring was inter-crossed to select for Flpe-deleter-negative
T cell-specific (Malt1FL/FLCD4-CreTg/+) and skin-specific
(Malt1FL/FL K5-CreTg/+) MALT1-deficient mice. CD4-Cre is
always kept heterozygote by selecting one parent CD4-CreTg/+

and the other parent as Cre-negative. The specificity of CD4-Cre
was confirmed via western blot (Supplementary Figure 4)
using rabbit monoclonal anti-MALT1 (SC-28246, Santa
Cruz) and anti-Cre (6905-3, Merck Millipore). The K5-Cre
is always kept heterozygote by selecting a male K5-CreTg/+

and a female as Cre-negative, to avoid female germline
transmission (91). Mice were housed in individually ventilated
cages in a specific pathogen-free (SPF) facility. Mice were
supplied with water and food ad libitum and experiments were
performed in compliance with the guidelines of the University
of Ghent Ethics Committee for the use of laboratory animals
(EC2011-024 and 2013-066). Mice were monitored regularly
for signs of dermatitis, consisting of hair loss in the facial,
ear and neck region, together with redness, skin thickening,
and scratching.

Genotyping
For Malt1-KO-mice we used the primers MALT1-F (GTGCTC
TTGTAA TTTTCTGTGCTC), MALT1 WT-R (GGGTACATC
ATGGCCTGAACAGTTG), and MALT1 KO-R (GGGTGGGAT
TAGATAAATGCCTGCTC), resulting in 172 bp (WT) and 272
bp (KO) PCR products. The genotypings were made using GoTaq
Green Hot Start (Promega) master mix, with a typical PCR
program: 5min 94◦C denaturation, 35–40 cycles [45 s 94◦C|30 s
60◦C|45 s 72◦C] and 10min 72◦C final elongation.

For the Malt1tm1a(EUCOMM)Hmgu/+ derived mice we monitored
the Malt1 Flox-allele or KO allele with the primers MALTcKO-F
(GTTTCTCAGGTCTTTAGTTCATGTC), CoMLT-3-R (TAT
ACTCTACATCTCCATGGT), MALTcKO-R (TTGTTTTGC
AGATCTCTGCC), and MLT-LacZ-F (TCGCTACCATTACCA
GTTGGT) resulting in 280 bp (WT), 400 bp (FL), 345 (KO),
or 514 bp (KO-LacZ) PCR products. Flp was detected with the
primers Flp-F (TTAGTTCAGCAGCACATGATG) and Flp-R
(GGAGGATTTGATATTCACCTG), resulting in a 370 bp PCR
fragment. K5-Cre was detected with the primers Cre-F (TGC
CACGACCAAGTGACAGCAATG) and Cre-R (AGAGAC
GGAAATCCATCGCTCG) producing a 374 bp PCR fragment.
CD4-Cre was detected with primers CD4-Cre-R (TCAAGG
CCAGACTAGGCTGCCTAT) and CD4-Cre-F2 (TCTCTGTGG
CTGGCAGTTTCTCCA) producing a 300 bp PCR fragment.
The genotypings were made using the GoTaq Green Hot Start
(Promega) master mix, with a typical PCR program: 5min 95◦C
denaturation, 35–40 cycles [30 s 95◦C|30 s 55–60◦C|60 s 72◦C]
and 10min 72◦C final elongation.
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Histology and Immunohistochemistry
Skin, lung, liver, colon, small intestine, stomach, lacrimal gland,
and salivary gland samples were fixed with 4% paraformaldehyde
and imbedded in paraffin. Sections (5µm) were stained with
hematoxylin and eosin. Skin sections were also stained with anti-
CD3 (clone CD3-12; Serotec). Images were acquired with a BX51
discussion microscope (Olympus) with PixeLink camera under
100×magnification.

RNA Extraction, cDNA Synthesis, and
Quantitative Real-Time PCR
After sacrifice, ears were collected and incubated overnight
in RNA later at 4◦C before long term storage at −70◦C.
For RNA extraction, the ears were transferred to TRIzol
reagent (Invitrogen) and homogenized using the Precellys 24
(Bertin technologies with CK26 beads). After phenol/chloroform
phase separation, RNA was isolated using the Aurum total
RNA mini kit (Bio-Rad). cDNA was synthesized using the
SensiFASTTM cDNA synthesis kit (Bioline), according to
manufacturer’s instructions. Quantitative PCR was done with
a LightCycler 480 (Roche) using sensiFASTTM SYBR No-
ROX kit (Bioline) with a total of 10 ng cDNA and 300 nM
of specific primers in a 10 µl reaction. Real-time reactions
were done in triplicates. The following specific primers
were used (5′-3′): Hprt1 Fwd AGTGTTGGATACAGGCCA
GAC and Hprt Rev CGTGATTCAAATCCCTGAAGT; Ubc
Fwd AGGTCAAACAGGAAGACAGACGTA and Ubc Rev TCA
CACCCAAGAACAAGCACA; Malt1 Fwd GGACAAAGTCGC
CCTTTTGAT and Rev TCCACAGCGTTACACATCTCA; Il22
Fwd AGACAGGTTCCAGCCCTACAT and Il22 Rev TCT
TCTGGATGTTCTGGTCGT; Tslp Fwd TCTCAGGAGCCT
CTTCATCCT and Tslp Rev CTCACAGTCCTCGATTTGCT.
Analysis was done with qBase software (Biogazelle). Values
were normalized to two reference genes, as determined by
Genorm analysis.

Blood Glucose Levels
A drop of blood from the tail was applied to a test strip and
the glucose level was measured with a Freestyle lite glucose
meter (Abbot).

Flow Cytometry
Detection of Tregs
Single cell suspensions of thymus, spleen, and lymph nodes
were surfaced stained with Aqua Live/dead fixable stain (Life
Technologies) or Fixable Viability Dye eFluor 506 (eBioscience),
anti-CD16/CD32 Fc block (clone 2.4G2; BD Biosciences), anti-
CD3-V450 (clone 17A2; BD Biosciences) or anti-CD3 eFluor450
(clone 17A2; eBioscience), anti-CD4-FITC (clone GK1.5; BD
Biosciences or eBioscience), anti-CD25-PercPcy5.5 (clone PC61;
BD Biosciences) for 20min. Next, cells were permeabilized for
30min, followed by 30min of intracellular staining for anti-
Foxp3-PE (clone FJK-16s; eBioscience). For the intracellular
staining, the Foxp3 buffer set (eBioscience) was used and all
incubation steps were done on ice.

CTLA-4 Expression of Tregs and CD44+CD4+

Effector T Cells
Splenocytes cultured in complete medium (RPMI 1640 medium
supplemented with 10% FCS, Sodium Pyruvate, L-glutamine,
antibiotics, and 2-Mercaptoethanol) were stimulated with PMA
(50 ng/ml) and ionomycin (IO) (1µg/ml) for 4 h at 37◦C.
The cells were stained as mentioned above, but anti-CD44-
APC-efluor780 (clone IM7; eBioscience) and anti-CTLA-4 PE-
eFluor610 (clone UC10-4B9; eBioscience) were also included in
the surface staining.

Analysis of Cytokines by Intracellular Cytokine

Staining
Splenocytes were cultured in complete medium and stimulated
with PMA (50 ng/ml), IO (500 ng/ml) and Brefeldin A (1µg/ml)
for 4–5 h at 37◦C. Stimulated cells were washed, surface stained
with anti-CD16/CD32, Aqua Live/dead fixable stain or Fixable
Viability Dye eFluor 506, anti-CD3-v450 or anti-CD3 eFluor450,
anti-CD4-FITC, APC-anti-CD44-APC eFluor780, for 20min.
Next, cells were fixed and permeabilized for 30min. using the
Foxp3 buffer set, followed by intracellular staining with anti-IL4-
APC (clone 11B11; eBioscience) and anti-IFNγ-PE-Cy7 (clone
XMG1.2; BD Pharmingen) for 30 min.

Proliferation of CD4+ T Cells
CD4+ T cells isolated with the MACS CD4+ T cell isolation kit II
were labeled with 2.5µM CellTraceTM CFSE (Life Technologies)
according to the manufacturer’s protocol. The cells were cultured
in complete medium for 72 h with 5µg/ml plate bound anti-CD3
(145-2C11; BD Pharmingen) and 1µg/ml soluble anti-CD28
(37.51; BD Pharmingen) and 50 IU/ml recombinant mIL-2 (PSF,
VIB). Cells were surface stained with Aqua Live/dead fixable
stain, anti-CD4-FITC and fixed as mentioned above.

All data were obtained with a LSRII flow cytometer (BD
Biosciences) and FlowJo Software (Treestar, Inc, Ashland, Ore)
was used for data analysis.

Analysis of IgE and Cytokines in Serum
Peripheral blood samples were collected for serum preparation.
The level of IgE in serum was determined using the mouse IgE
ELISA Ready-SET-Go kit (eBioscience) and the concentration of
IgE was calculated using GraphPad Prism 6 (GraphPad Software,
Inc). The levels of IL-2 (171-G5003M), IL-4 (171-G5005M), IL-
6 (171-G5007M), IL-17 (171-G5013M), IFN-γ (171-G5017M),
and TNF (171-G5023M) was determined by Bio-Plex (Biorad)
according to the manufacturer’s conditions.

Statistical Analysis
Statistical analysis (indicated in the figure legends) was
performed with GraphPad Prism 7.
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