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Checkpoint immunotherapy that targets inhibitory receptors of T cells, thereby reversing

the functional exhaustion of T cells, marks a breakthrough in anticancer therapy. The

success of T cell-directed checkpoint inhibitors of CTLA-4 and PD-1/PD-L1 has opened

a new approach for cancer immunotherapy and resulted in extensive research on immune

checkpoints. However, it is only in recent years that research on NK cell exhaustion and

potential checkpoints impacting NK cells has become popular. NK cells, as the major

player in innate immunity, are critical for immune surveillance, particularly the control of

metastasis and hematological cancers. The balance between activating and inhibitory

signals fine tunes the activation and effector functions of NK cells, and transformed cells

modulate NK cells by upregulating negative signaling that “exhausts” NK cells. Exhausted

NK cells with excessive expression of inhibitory receptors (checkpoint molecules) are

impaired in the recognition of tumor cells as well as antitumor cytotoxicity and cytokine

secretion. Therefore, an understanding of the potential checkpoint molecules involved

in NK cell exhaustion is particularly important in terms of NK cell-targeted cancer

immunotherapy. In this review, we summarize recent advances in NK cell checkpoint

inhibitors and their progress in clinical trials. Moreover, we highlight some of the latest

findings in fundamental NK cell receptor biology and propose potential NK cell checkpoint

molecules for future immunotherapeutic applications.
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INTRODUCTION

Excessive negative regulation of immune cells by inhibitory receptors (checkpoint molecules)
results in functional exhaustion of these cells, which is one of the major reasons
for tumor escape. The activation and function of immune cells are regulated through
activating and inhibitory receptors on these cells, and establishing an equilibrium between
activating and inhibitory signaling is critical because it assures effective control against
pathogenic factors (such as tumors, viruses, and bacteria) meanwhile helping to avoid
self-directed attacks (such as autoimmune disease) (1, 2). The negative feedback provided
by inhibitory receptors is the key to immune regulation; however, unfortunately, tumor
cells can take advantage of this negative feedback system, as they upregulate the surface
expression of corresponding ligands to ingratiate excessive expression of inhibitory receptors
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on immune cells that automatically leads to reduced activation
and functional exhaustion of these cells (3, 4). Antibodies that
specifically target these inhibitory checkpoints can effectively
block the interaction between the checkpoint molecule and its
ligands, thereby reversing the functional exhaustion of immune
cells and restoring antitumor immunity.

Checkpoint immunotherapy targeting checkpoint molecules
that reverses functional exhaustion in immune cells marks a
major breakthrough in anticancer therapy. Blocking inhibitory
receptors on T cells to reverse functional exhaustion in these
cells has made great progress. T cells from cancer patients
highly express inhibitory receptors including cytotoxicity T-
lymphocyte-associated protein 4 (CTLA-4), programmed cell
death protein 1 (PD-1), T cell immunoglobulin- and mucin-
domain-containing molecule 3 (TIM-3), lymphocyte activation
gene 3 (LAG-3), T cell immunoreceptor with Ig and ITIM
domains (TIGIT), etc., which contribute to T cell functional
exhaustion (5, 6). Blocking these checkpoint molecules can
effectively reverse T cell exhaustion and restore the antitumor
capacity of T cells. During the past 10 years, the efficacy and
feasibility of checkpoint immunotherapy have been verified
in clinical settings, and antibodies targeting CTLA-4, PD-
1/programmed death-ligand 1 (PD-L1), TIM-3, LAG-3, or TIGIT
have entered clinical trials (7, 8). Monoclonal antibodies (mAbs)
targeting CTLA-4 and PD-1/PD-L1 were approved by the U.S.
Food and Drug Administration (FDA) in 2011 and 2014,
respectively. The combined use of an anti-CTLA-4 mAb with an
anti-PD-1 mAb showed better efficacy than either antibody used
as a monotherapy (9–11).

However, although remarkable clinical benefits derived from
anti-CTLA-4 and anti-PD-1/PD-L1 antibody therapies have been
noted in some patients, there are still many patients who do
not respond to these treatments. Currently, researchers are
still trying to understand these “non-responders;” additional
unknown inhibitory pathways that suppress immune responses
could be an explanation for nonresponse. On the other hand,
tumors escape T cell-mediated immunity by downregulating the
expression of major histocompatibility complex class I (MHC-I)
molecules; these MHC-I-null tumor cells are not attacked by T
cells, but they are still targets of natural killer (NK) cells (12).
Moreover, Zhang et al. demonstrated the significance of NK
cells in cancer immunotherapy and noted that mAb targeting
checkpoint molecule TIGIT, which is expressed by both T cells
and NK cells, could improve the antitumor immunity of both T
and NK cells. Furthermore, they found that TIGIT blockade was

Abbreviations: NK, Natural killer; CTL, Cytotoxic T lymphocyte; PBMC,

Peripheral blood mononuclear cell; MDSC, Myeloid-derived suppressor cell;

mAb, Monoclonal antibody; IFN, Interferon; TNF, Tumor necrosis factor;

IL, Interleukin; KO, Knockout; HLA, Human leukocyte antigen; ADCC,

Antibody-dependent cell-mediated cytotoxicity; MHC, Major histocompatibility

complex; FDA, Food and Drug Administration; MCA, Methylcholanthrene; PD-

1, Programmed death-1; CTLA-4, Cytotoxic T-lymphocyte-associated protein

4; TIM-3, T cell immunoglobulin and mucin domain 3; TIGIT, T cell

immunoreceptor with Ig and ITIM domains; KIR, Killer cell immunoglobulin-like

receptor; LAG-3, Lymphocyte activating gene 3; FGL1, Fibrinogen-like protein 1;

NKG2A, NK group 2 member A; Gal-9, Galectin-9; CAF, Carcinoma-associated

fibroblast; PEBL, Protein expression blocker; HMGB1, High mobility group box 1

protein; CEACAM-1, Carcinoembryonic antigen-related cell adhesion molecule 1.

effective even in the absence of T cells and B cells, highlighting the
importance of NK cells in checkpoint-targeted immunotherapy
(13, 14).

NK cells are innate lymphocytes that play a critical role
in the early defense against transformed cells, and they are
particularly important in the control of cancer metastasis and
hematological cancers (1, 15–17). NK cells can directly kill tumor
cells, secrete various cytokines such as interferon (IFN)-γ and
tumor necrosis factor (TNF)-α to initiate antitumor responses,
and recruit other immune cells into the antitumor response
(1, 18, 19). Alterations in NK cells, for example, excessive
expression of inhibitory receptors or reduced expression of
activating receptors, can result in impaired cytotoxicity against
tumor cells and a decreased ability to recruit other immune cells
(20–22). Some checkpoint molecules in cytotoxic T lymphocytes
(CTLs), such as PD-1, LAG-3, TIGIT, and TIM-3, are shared
with NK cells. Blockade with checkpoint inhibitors that reverses
the functional exhaustion of NK cells opens a new strategy for
cancer immunotherapy that may complement the limitations
of T cell-based immunotherapy. This review summarizes recent
advances in NK cell checkpoint molecules in humans (Figure 1)
and the corresponding antibodies being studied in clinical
trials (Tables 1, 2). In addition, we highlight some of the
latest findings in fundamental NK cell receptor biology that
may provide a fundamental basis for future NK cell-based
immunotherapeutic applications.

KILLER CELL LECTIN-LIKE RECEPTOR
FAMILY

NKG2A
NK group 2 member A (NKG2A) is a type II membrane
receptor that forms a heterodimer with CD94 (23). NKG2A
binds a human leukocyte antigen (HLA) class I molecule (HLA-
E) (24) and transduces inhibitory signaling that suppresses
the cytokine secretion and cytotoxicity of NK cells (25–27).
NKG2A+ NK cells infiltrate the tumor microenvironment,
and increased expression of NKG2A in NK cells has been
observed in patients with non-small cell lung cancer (28, 29),
breast cancer (30), colorectal cancer (31, 32), acute myeloid
leukemia (33, 34), hepatocellular carcinoma (35), breast cancer
(36), cervical cancer (32), etc. A large proportion of NK
cells with high NKG2A expression has also been found in
tumor-draining lymph nodes (36). NK cells with elevated
NKG2A expression are functionally exhausted and associated
with a poor prognosis in human hepatocellular carcinoma (35).
NKG2A expression predominantly increases on CD56dim NK
cells compared to CD56bright NK cells, and these NKG2A+

CD56dim NK cells are functionally exhausted and highly
correlated with massive tumor size in human hepatocellular
carcinoma (35).

Due to the strong capability of NKG2A to suppress NK
cells, blockade of NKG2A is effective in restoring functions
of NK cells. A mAb targeting NKG2A, namely, monalizumab
(formerly IPH2201), has been tested in both phase I and
phase II clinical trials (Table 2). NKG2A is overexpressed in
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TABLE 1 | Potential NK cell checkpoint molecules in cancer.

Targets Monoclonal antibody Expression distribution Ligand Signaling motif

KILLER CELL LECTIN-LIKE RECEPTOR FAMILY

NKG2A Monalizumab, IPH2201 CD8+ T cells and NK cells HLA-E ITIM

KILLER CELL IMMUNOGLOBULIN-LIKE RECEPTOR FAMILY

KIR IPH2101, 1-7F9, Lirilumab, and

IPH4102

CD4+, CD8+ T cells, NK cells MHC class I molecules ITIM/ITAM

IMMUNOGLOBULIN SUPERFAMILY

TIGIT MTIG7192A, OMP-313M32, and

AB154

CD4+, CD8+ T cells, NK cells CD155, CD112, CD113 ITIM/ITT

CD96 – CD4+, CD8+ T cells, NK cells CD155 ITIM/YXXM

LAG-3 Sym022, BMS-986016, Relatlimab,

IMP321, and Eftilagimod Alpha

CD4+, CD8+ T cells, NK cells, B

cells, and dendritic cells

MHC class II molecules,

Fibrinogen-like Protein 1

KIEELE

TIM-3 sym 023, TSR-022, LY3321367,

BGB-A425, and MBG453

CD4+, CD8+ T cells, dendritic

cells, NK cells, and monocytes

Gal-9, phosphatidylserine,

HMGB1, Ceacam-1

Tyrosine

NK cells from chronic lymphocytic leukemia patients, and
blocking NKG2A with monalizumab is sufficient to restore the
direct cytotoxicity of NK cells against HLA-E-expressing tumor
cells (37). Treatment with IPH2201 has been shown to trigger
NKG2A+ NK cell-mediated lysis of HLA-E+ target cells in
vitro and abolish HLA-E+ leukemia and lymphoma tumors in
xenograft mouse models of human neoplastic disease (NOD-
SCID mice injected with HLA-E+ Epstein-Barr virus-positive
cells or acutemyeloid leukemia cells) (38). Interestingly, although
NKG2A is predominantly expressed by NK cells, a study by the
Vivier group showed that blockade of NKG2A enhanced the
effector functions of both NK cells and CD8+ T cells in mice and
humans (32). The use ofmonalizumab not only promoted human
NK cell antibody-dependent cell-mediated cytotoxicity (ADCC)
against various tumor cells but also rescued the function of CD8+

T cells when combined with PD-1 blockade (32). This group also
reported impressive clinical outcomes: the use of monalizumab
combined with cetuximab (an anti-EGFR antibody) in previously
treated patients with squamous cell carcinoma of the head and
neck showed a 30% response rate with limited side effects [fatigue
(17%), pyrexia (13%), and headache (10%)] (32). Interestingly,
a study by Kamiya et al. showed that NKG2Anull NK cells,
which were generated through transduction of anti-NKG2A
protein expression blockers (PEBLs), exhibited relatively high
cytotoxicity against HLA-E+ tumor cells; moreover, this method
generated more potent cytotoxicity than blockade with an anti-
NKG2A mAb (39), suggesting a new method for developing
NKG2A-targeted cancer immunotherapy.

KILLER CELL IMMUNOGLOBULIN-LIKE
RECEPTOR FAMILY

KIRs
The killer-cell immunoglobulin-like receptors (KIRs) on human
NK cells include both activating and inhibitory receptors,
among which the inhibitory KIRs exhibit an inhibitory signaling
motif and are named with the convention KIRxDL (40).
KIR2DL and KIR3DL specifically bind to HLA-C and HLA-A/B

allotypes, respectively (41, 42). KIR2DL includes KIR2DL1 and
KIR2DL2/3, which bind distinct HLA-C allotypes to suppress
the activation and effector functions of NK cells (41). Tumor
cells induce the upregulated expression of KIRs on NK cells; for
example, the expression of KIR2DL2 and HLA-C1 is significantly
elevated in breast cancer patients (43); KIR2D (L1, L3, L4, and S4)
and KIR3DL1 are expressed on tumor cells and TILs from non-
small cell lung cancer patients, and patients without expression
of KIR2D (L1, L3, L4, and S4) or KIR3DL1 on their tumor cells
or TILs exhibit extended overall survival (44). KIR centromeric
B haplotype is associated with significant risks of multiple basal
cell carcinoma and squamous cell carcinoma, suggesting that
interactions between KIRs and HLA molecules may modify
the risks of basal cell carcinoma and squamous cell carcinoma
(45). Interestingly, patients with bile duct cancer show multiple
alterations at KIR gene loci (46), and genetic variations in KIRs
are also present in non-small cell lung cancer patients who are
resistant to anti-PD-1 monotherapy (47).

Due to their impressive suppressive effect on NK cells,
human mAbs targeting KIRs have shown some clinical benefits.
Lirilumab (1-7F9, IPH2101) targeting KIR2DL1, KIR2DL2, and
KIR2DL3 increases NK cell cytotoxicity against autologous
acute myeloid leukemia blasts and mediates the lysis of HLA-
C-expressing tumor cells both in vitro and in vivo (48).
Lirilumab also enhances NK cell activity against autologous
multiple myeloma cells by preventing inhibitory KIR-ligand
interactions (49). Phase I studies of lirilumab in patients
with acute myeloid leukemia, hematological malignancies or
solid tumors have shown that lirilumab can effectively block
KIRs with mild adverse events (50, 51). However, a study by
Carlsten et al. demonstrated that lirilumab not only reduced
KIR2D expression on NK cells but also rapidly reduced NK
cell functions, resulting in significantly diminished overall
responses (52). On the other hand, IPH4102 targeting KIR3DL2
shows encouraging clinical activity in patients with relapsed or
refractory cutaneous T-cell lymphoma, particularly those with
Sézary syndrome (53).

An in vitro study found that stimulation with IL-
12/IL-15/IL-18 also downregulated the expression of
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TABLE 2 | Clinical trials based on potential NK cell checkpoint inhibitors in cancer.

Registry Disease Intervention Phase Status Enrollment Sponsors and

collaborators

TIGIT NCT03119428 Locally advanced cancer,

metastatic cancer

OMP-313M32/Nivolumab I Active 30 OncoMed

Pharmaceuticals, Inc.

NCT03563716 Non-small cell lung cancer MTIG7192A/Atezolizumab II Active 120 Genentech, Inc.

NCT03628677 Non-small Cell Lung

Cancer, squamous cell

carcinoma of the head and

neck, renal cell carcinoma,

breast cancer, colorectal

cancer, melanoma, bladder

cancer, ovarian cancer,

endometrial cancer, merkel

cell carcinoma,

gastroesophageal cancer

AB154/AB122 I Recruiting 242 Arcus Biosciences, Inc.

NCT02794571 Advanced/metastatic

tumors

Atezolizumab/MTIG7192A I Recruiting 300 Genentech, Inc.

KIR NCT01750580 CANCER, NOS Lirilumab/Ipilimumab I Completed 22 Bristol-Myers Squibb

NCT01714739 CANCER, NOS Lirilumab/Nivolumab/

Ipilimumab

I/II Active 337 Bristol-Myers Squibb

NCT03203876 Advanced cancer Lirilumab/Nivolumab/

Ipilimumab

I Active 21 Bristol-Myers Squibb

Ono Pharmaceutical

Co.Ltd

NCT01222286 Smoldering multiple

myeloma

IPH2101 II Completed 30 Innate Pharma

NCT00999830 Multiple myeloma IPH2101 II Completed 27 Innate Pharma

NCT00552396 Multiple myeloma Anti-KIR (1-7F9) I Completed 32 Innate Pharma

NCT01256073 Acute myeloid leukemia IPH2101 I Completed 21 Innate Pharma

NCT01687387 Acute myeloid leukemia IPH2102 II Completed 152 Innate Pharma

NCT02481297 Leukemia, chronic

lymphocytic leukemia,

lymphocytic leukemia

Lirilumab/Rituximab II Active 8 M.D. Anderson Cancer

Center

Bristol-MyersSquibb

NCT02593045 Cutaneous T-Cell lymphoma IPH4102 I Active 60 Innate Pharma

NCT03902184 Lymphoma, mycosis

fungoides/sezary syndrome

IPH4102 + Gemcitabine

+ Oxaliplatin

II Recruiting 250 Innate Pharma

TIM-3 NCT03489343 Metastatic cancer, solid

tumor, lymphoma

Sym023 I Recruiting 48 Symphogen A/S

NCT02817633 Advanced or metastatic

solid tumors

TSR-022/TSR-042/TSR-

033

I Recruiting 819 Tesaro, Inc.

NCT03680508 Adult primary liver cancer,

advanced adult primary liver

cancer, localized

unresectable adult primary

liver cancer

TSR-022 + TSR-042 II Not yet

recruiting

42 University of Hawaii

NCT03311412 Metastatic cancer, solid

tumor, lymphoma

Sym021/Sym022/Sym023 I Recruiting 102 Symphogen A/S

NCT03099109 Solid tumor LY3321367/LY3300054 I Recruiting 196 Eli Lilly and Company

NCT03744468 Locally advanced or

metastatic solid tumors

BGB-A425/tislelizumab I/II Recruiting 162 BeiGene

NCT03961971 Glioblastoma multiforme MBG453 I Not yet

recruiting

15 Sidney Kimmel

Comprehensive Cancer

Center at Johns Hopkins

NovartisPharmaceuticals

(Continued)
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TABLE 2 | Continued

Registry Disease Intervention Phase Status Enrollment Sponsors and

collaborators

NCT03066648 Leukemia, myelodysplastic

syndromes, preleukemia,

bone marrow diseases,

hematologic diseases

Decitabine/PDR001/

MBG453

I Recruiting 175 Novartis Pharmaceuticals

NCT02608268 Advanced malignancies MBG453/PDR001 I/II Recruiting 250 Novartis Pharmaceuticals

LAG-3 NCT03489369 Metastatic cancer, solid

tumor, lymphoma

Sym022 I Recruiting 30 Symphogen A/S

NCT03311412 Metastatic cancer, solid

tumor, lymphoma

Sym021/Sym022/Sym023 I Recruiting 102 Symphogen A/S

NCT02061761 Hematologic neoplasms BMS-986016/BMS-

936558

I/II Recruiting 132 Bristol-Myers Squibb

NCT02966548 Cancer Relatlimab/Nivolumab I Recruiting 45 Bristol-Myers Squibb

Ono Pharmaceutical

Co.Ltd

NCT01968109 Neoplasms by site Relatlimab/Nivolumab/

BMS-986213

I/II Recruiting 2000 Bristol-Myers Squibb

NCT03459222 Advanced cancer Relatlimab/Nivolumab/

BMS-986205/Ipilimumab

I/II Recruiting 230 Bristol-Myers Squibb

NCT02658981 Glioblastoma, gliosarcoma,

recurrent brain neoplasm

BMS 986016/Anti-PD-

1/Anti-CD137

I Recruiting 100 Sidney Kimmel

Comprehensive Cancer

Center at Johns Hopkins

National Cancer Institute

(NCI)

Bristol-MyersSquibb

NCT03044613 Gastric cancer, esophageal

cancer, gastroesophageal

cancer

Nivolumab/Relatlimab/

Carboplatin/Paclitaxel/

Radiation

I Recruiting 32 Sidney Kimmel

Comprehensive Cancer

Center at Johns Hopkins

Bristol-MyersSquibb

NCT03623854 Chordoma, locally

advanced chordoma,

metastatic chordoma,

unresectable chordoma

Nivolumab/Relatlimab II Recruiting 20 Jonsson Comprehensive

Cancer Center

National Cancer

Institute(NCI)

NCT03493932 Glioblastoma Nivolumab/BMS-986016 I Recruiting 20 National Institute of

Neurological Disorders

and Stroke (NINDS)

NCT03743766 Melanoma Relatlimab/Nivolumab II Recruiting 42 John Kirkwood

Bristol-MyersSquibb

NCT00351949 Stage IV renal cell

carcinoma

IMP321 I Completed 24 Immutep S.A, Umanis

NCT03252938 Solid tumors, peritoneal

carcinomatosis

IMP321/Avelumab I Recruiting 50 IKF Klinische

Krebsforschung GmbH at

Krankenhaus Nordwest

NCT00349934 Metastatic breast cancer IMP321 I Completed 33 Immutep S.A, Umanis

NCT03625323 Non-small cell lung cancer,

squamous cell carcinoma of

head and neck

Eftilagimod

alpha/Pembrolizumab

II Recruiting 109 Immutep S.A, Merck

Sharp & Dohme Corp.

NCT02614833 Stage IV breast

adenocarcinoma

IMP321/Paclitaxel II Active 241 Immutep S.A.

NCT02676869 Stage IV and stage III

melanoma

IMP321/Pembrolizumab I Active 24 Immutep Australia Pty.

Ltd.

NKG2A NCT02921685 Hematological malignancy Monalizumab (IPH2201) I Recruiting 18 Institut Paoli-Calmettes

InnatePharma

(Continued)
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TABLE 2 | Continued

Registry Disease Intervention Phase Status Enrollment Sponsors and

collaborators

NCT02557516 Chronic lymphocytic

leukemia

Monalizumab I/II Active 22 Innate Pharma

NCT02459301 Gynecologic cancer IPH2201 I Active 59 Canadian Cancer Trials

Group

NCT02643550 Head and neck neoplasms Monalizumab/Cetuximab/

Anti-PD-L1

I/II Recruiting 140 Innate Pharma

AstraZeneca

NCT02671435 Advanced solid tumors Durvalumab

(MEDI4736)/Monalizumab

(IPH2201)

I/II Recruiting 501 MedImmune LLC

NCT03822351 Unresectable stage III

non-small cell lung cancer

Durvalumab/Monalizumab/

Oleclumab

II Recruiting 300 MedImmune LLC

NCT03833440 Non-small cell lung cancer Durvalumab

(MEDI4736)/Monalizumab/

Oleclumab

(MEDI9447)/AZD6738

II Not yet

recruiting

120 Assistance Publique

Hopitaux De Marseille

NCT02331875 Squamous cell carcinoma of

the oral cavity

IPH2201 I/II Terminated 3 Innate Pharma

NCT03088059 Squamous cell carcinoma of

head and neck

Afatinib/Palbociclib/

IPH2201/Durvalumab/

Niraparib/BAY1163877

II Recruiting 340 European Organization

for Research and

Treatment of Cancer

FIGURE 1 | Overview of potential NK cell checkpoint molecules and their corresponding ligands. Recognition and clearance of tumor cells by NK cells are regulated

through activating and inhibitory receptors on NK cells that bind their corresponding ligands on tumor cells. Increased expression of ligands on tumor cells induces

altered expression of inhibitory receptors on NK cells, excessive negative regulation results in functional exhaustion of NK cells. This figure summarizes inhibitory

receptors on NK cells that could also act as checkpoints in cancer immunotherapy, including HLA class I-specific receptors (KIR and NKG2A) and those recognizing

ligands other than HLA class I molecules (CD96, TIGIT, LAG-3, and TIM-3).

KIR2DL2/3, KIR2DL1, and KIR3DL1 on peripheral
blood NK cells, resulting in reduced inhibitory KIR
signaling and elevated CD16-dependent cytotoxicity

(54). Furthermore, these IL-12/IL-15/IL-18-stimulated
NK cells showed increased cytotoxicity against tumor
cells (54).
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IMMUNOGLOBULIN SUPERFAMILY

TIGIT
TIGIT is an immunoglobulin protein that belongs to the CD28
family (55, 56). It was discovered as a surface receptor on T
cells that recognizes CD155 in 2009 (57); however, TIGIT is also
expressed on NK cells and interacts with other ligands, such
as CD112 and CD113 (56).Together with CD226 and CD96,
TIGIT participates in a balanced system to control the activation
and function of T cells and NK cells. Unlike CD96, which
inhibits only IFN-γ production in NK cells and has no effects
on cytotoxicity, TIGIT can inhibit NK cell cytotoxicity directly
through its ITIM domain in both humans and mice (58, 59).

A study showed that the cytotoxicity of YTS NK cells (human

NK cell line) transfected with TIGIT was strongly inhibited by

CD155-transfected 721.221 cells and this inhibition could be

blocked with an anti-TIGIT mAb in vitro (58). Furthermore,

blockade of TIGIT has also been shown to significantly increase

mouse NK cell-mediated killing of CD155-expressing B12 cells
and enhance the secretion of IFN-γ (59). In an in vivo study,
NK cells isolated from TIGIT-transgenic mice produced reduced
amounts of IFN-γ after incubation with Yac-1 cells (murine T cell
lymphoma cell line), while NK cells isolated fromTIGIT−/− mice
produced increased amounts of IFN-γ. The suppression of IFN-
γ production was mediated by TIGIT-CD155 ligation through
the NF-κB pathway (60). In humans, NK cells with lower levels
of TIGIT isolated from healthy individuals were shown to have
a higher ability to secrete cytokines, degranulate, and kill target
cells than those with higher TIGIT expression (61), suggesting
the ability of TIGIT to regulate immune responses.

The expression of TIGIT is highly variable among different
cancer types. The highest expressions of TIGIT in lymphocytes
are found in Hodgkin’s lymphoma, Warthin’s tumors, medullary
breast cancer, intestinal stomach cancer, and seminoma, while
the lowest expressions of TIGIT in lymphocytes are found
in renal oncocytoma, papillary renal cell cancer, desmoid
tumors, pancreatic neuroendocrine cancer, chromophobic
renal cell cancer, and adrenocortical cancer (62). Indeed,
TIGIT−/− mice show no resistance to lung metastasis in
three different experimental lung metastasis models (B16F10,
murine melanoma cell line; RM-1, murine prostate cancer cell
line; E0771, murine breast cancer cell line) (63); moreover,
TIGIT expression on NK cells is not significantly different
between pancreatic cancer patients and healthy controls (64).
Furthermore, a reduced proportion of TIGIT+ NK cells has been
observed in the intratumoral region of hepatocellular carcinoma
compared to the peritumoral region (65).

In contrast, TIGIT is overexpressed on CD8+ tumor-
infiltrating lymphocytes (TILs) and tumor antigen-specific CD8+

T cells from melanoma patients and often coexpressed with
the inhibitory receptor PD-1 (66). Coblockade of TIGIT and
PD-1 can reverse dysfunctions in CD8+ TILs and antigen-
specific CD8+ T cells by increasing their proliferation and
effector functions (66). TIGIT expression was also found to be
significantly increased in CD4+ T cells from chronic lymphocytic
leukemia patients, and an increased number of TIGIT+ CD4+

T cells was found in patients with advanced disease stage

(67). Moreover, TIGIT−/− was shown to significantly inhibit
tumorigenicity in both CT26 tumor-bearing BALB/c mice and
MC38 tumor-bearing C57BL/6 mice, whereas an anti-TIGIT
mAb significantly inhibited tumor growth in both of these
colorectal tumor models (68). Furthermore, a study showed
that TIGIT−/− mice intravenously injected with B16 melanoma
cells had relatively few lung metastases and improved overall
survival (13). It is also important to note that TIGIT inhibits
IFN-γ secretion of both CD8+ T cells and NK cells in the
above mentioned colorectal tumor models; interestingly, CT26
tumor-bearing TIGIT knockout (KO) mice develop tumors early
after NK cells are depleted, suggesting that NK cells and T cells
collaborate to eliminate tumors (68).

The Tian group has demonstrated that TIGIT is highly
expressed on tumor-infiltrating NK cells and associated with
NK cell exhaustion in different tumor models [CT26 colon
cancer, 4T1 breast cancer, B16 melanoma, and fibrosarcoma
induced by methylcholanthrene (MCA)] and patients with colon
cancer (13). NK cell-specific TIGIT KO in mice results in
significantly prolonged survival, while TIGIT blockade inhibits
NK cell exhaustion in colon tumors, breast tumors, and MCA-
induced fibrosarcomas (13). Surprisingly, they showed that anti-
TIGIT mAb could reduce tumor mass and slow tumor growth
in T cell-deficient mice; in addition, NK cell deficiency resulted
in an increased metastasis and number of exhausted CD8+ T
cells, and abolished the effect of TIGIT blockade even in the
presence of TIGIT-expressing CD8+ T cells (13). Notably, the
therapeutic effects of anti-TIGIT mAbs, anti-PD-L1 mAbs or
anti-TIGITmAbs combined with anti-PD-L1 mAbs all depended
on the presence of NK cells (13), indicating the importance of
NK cells in checkpoint-targeted immunotherapy. Other studies
have also indicated the importance of TIGIT+ NK cells in the
tumor microenvironment. For example, blocking TIGIT could
increase cytokine production byNK cells after an incubation with
trastuzumab-coated breast cancer cells (69); the proportion of
TIGIT+ NK cells was significantly increased in the peripheral
blood mononuclear cell (PBMC) population of non-muscle
invasive bladder cancer patients compared to that of healthy
controls (70); endometrial tumor-resident CD103+ NK cells
expressed higher levels of TIGIT than circulating CD103− NK
cells, and tumor-resident NK cells from patients with lymph
node invasion showed significantly higher expressions of TIGIT
than those from patients with no lymph node invasion (71); and
TIGIT+ NK cells showed increased susceptibility to functional
suppression by CD155-expressing myeloid-derived suppressor
cells (MDSCs) (72). Currently, several clinical trials (phase I
and phase II) focused on testing the feasibility of targeting
this new pathway and improving therapeutic effects through
combination with existing immunotherapies are either active or
recruiting (Table 2).

CD96
CD96 is a transmembrane glycoprotein that belongs to the
immunoglobulin superfamily (73, 74). It was identified as a
key receptor on NK cells that recognizes the ligand CD155 in
2004 (75) and was initially identified as a possible costimulatory
receptor. However, 10 years later, its inhibitory characteristics
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were revealed by the Smyth group (76). Their study showed that
CD96 competes with CD226 for CD155 binding and negatively
regulates IFN-γ secretion in NK cells (77); however, it does not
affect the direct killing of tumor cells by NK cells. Furthermore,
CD96−/− mice are resistant to MCA-induced fibrosarcoma
and experimental lung metastasis modeled by injecting B16F10
melanoma cells (77), and blocking CD96 with a mAb inhibits
experimental metastases in three different models (B16F10
melanoma, 3LL lung carcinoma, and RM-1 prostate cancer) (63).
Blockade of the CD96-CD155 interaction was also shown to
be effective in controlling lung metastases in NCR2-transgenic
mice injected with B16-PDGFD cells (78). An anti-CD96 mAb
was shown to be superior to other well-characterized checkpoint
inhibitors, such as anti-CTLA-4 and anti-PD-1 antibodies, and
the combination of an anti-CD96 mAb with an anti-CTLA-4 or
anti-PD-1/PD-L1 mAb could further inhibit experimental lung
metastases (63). Notably, although CD96 was also expressed by T
cells, the control of metastases by an anti-CD96 mAb appeared
to be dependent on NK cells, CD226 and IFN-γ production
(63), suggesting a non-negligible role for NK cells in cancer
immunotherapy. Further, blocking CD96 reduced the number of
B16F10 metastases in Tigit−/− mice compared to wildtype mice,
indicating the synergistic potential of blocking CD96 and TIGIT
in treating cancer (63).

The structural basis for the CD96-CD155 interaction involves
the “ancillary key” motif that is critical for CD155 recognition;
moreover, CD96 and CD155 interact via the “lock-and-key”
docking mode (79). However, surprisingly, a comparison
between three anti-CD96 mAbs, including two that block the
CD96-CD155 interaction (3.3 and 6A6) and one that does not
block this interaction (8B10), revealed that although the two
blocking mAbs showed higher potency than the non-blocking
mAb in the control of metastases, it was not necessary to block
the CD96-CD155 interaction to promote NK cell antimetastatic
functions (80, 81). In contrast, another study using a transgenic
mouse model of resectable pancreatic ductal adenocarcinoma
showed that a mAb targeting the CD96-CD155 interaction
(6A6) significantly reduced distant metastases, while a mAb
that did not target the CD96-CD155 interaction (8B10) showed
no effect on the frequency of metastases (82). One possible
explanation for the contradictions occurred involves various
microenvironmental cues in in vitro vs. in vivo settings, given
that the microenvironment in an in vivo experiment is much
more complicated and involves various cell-cell interactions and
consequences (for example, cytokine secretions, etc.) following
these interactions, which may contribute to the differences raised
between the studies.

In humans, a significantly decreased percentage of CD96+

NK cells in pancreatic cancer patients and associations of this
decreased percentage with lymph node metastasis and tumor
histological grade were observed (64), suggesting a possible
protective role for CD96+ NK cells in pancreatic cancer.
Contradictorily, another study showed increased serum levels of
soluble CD96 in NK cells from late-stagemelanoma patients (83).
In addition, a study noted an elevated proportion and number
of CD96+CD56dim NK cells in hepatocellular carcinoma tissues,
and these NK cells were functionally exhausted with impaired

IFN-γ and TNF-α productions (65). Furthermore, patients with
higher CD96+ NK cell infiltration within tumors have been
shown to exhibit relatively short disease-free survival times (65).
These studies suggest a protumor role for CD96+ NK cells in
melanoma and hepatocellular carcinoma.

LAG-3
LAG-3 is a negative coinhibitory receptor expressed on T cells
and NK cells that binds MHC class II (MHC-II) molecules
on target cells (84, 85). LAG-3 also interacts with LSECtin, a
cell surface lectin that belongs to the C-type lectin receptor
superfamily, to inhibit IFN-γ production by effector T cells (86).
Recently, Chen and colleagues identified fibrinogen-like protein
1 (FGL1), a liver-secreted protein, as an MHC-II-independent
ligand for LAG-3 in both humans andmice (87). Previous studies
have shown that LAG-3 negatively regulates the proliferation
and activation of T cells (88, 89) and that it also interacts with
FGL1 to inhibit antigen-mediated T cell responses both in vitro
and in vivo (87). LAG-3 and PD-L1 coregulate the exhaustion
of CD8+ T cells, and compared to anti-PD-L1 mAb or anti-
LAG-3 mAb monotherapy, dual blockade of LAG-3 and PD-L1
increases the number and effector functions of functional virus-
specific CD8+ T cells (90), suggesting that the combination of
anti-LAG-3 and anti-PD-L1 antibodies results in an improved
reversal of exhaustion.

LAG-3 has been shown to suppress immune responses in
several tumors, including Hodgkin’s lymphoma, gastric cancer,
breast cancer, and other solid tumors (91). In studies of squamous
cell carcinoma mouse models, both CD8+ and CD4+ TILs
coexpressed LAG-3 and PD-1, and dual blockade of LAG-3
and PD-1 significantly suppressed tumor growth (92). LAG-3
has been detected in TILs from 41.5% of non-small cell lung
cancer patients and associated with the checkpoint molecules
PD-1 and TIM-3 (93). Moreover, elevated LAG-3 expression
has been associated with reduced progression-free survival in
patients with advanced non-small cell lung cancer treated with
PD-1 blockade (93). Elevated expression of LAG-3 has also
been observed in patients with peripheral T cell lymphoma or
NK/T cell lymphoma (94). LAG-3+ TIL numbers are increased
in MHC-II+ tumors (lung cancer, melanoma, and breast
cancer), and MHC-II+ tumors acquire immunosuppressive
signals through LAG-3; thus, combined PD-1/PD-L1 and LAG-
3 blockade can provide a particular advantage against MHC-
II+ tumors (95). Interestingly, expression of the newly identified
ligand FGL1 has also been shown to be upregulated in
cancer, and blockade of the FGL1-LAG-3 interaction stimulates
immune responses and exhibits therapeutic effects on mouse
tumor models (MC38 colon cancer and Hepa1-6 liver cancer)
(87). Furthermore, compared to monotherapy, an anti-FGL1
mAb or anti-LAG-3 mAb in combination with an anti-B7-
H1 mAb significantly reduces tumor burden and prolongs
survival (87).

An early study in 1996 indicated that mice lacking the
lag3 gene exhibited reduced lysis of Yac-1 cells; in addition,
polyclonal antibodies against LAG-3 could reduce NK-mediated
lysis of Yac-1 cells but leave MHC-II-deficient target cells intact,
suggesting the existence of an independent mode of natural
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killing through LAG-3 (96). However, this independent mode
of natural killing has not been observed with human NK
cells, and blockade of LAG-3 has no effect on the natural
killing of various target cells (97). Notably, although studies
on LAG-3+ NK cells are limited, the role of these cells in
antitumor immunity should not be neglected. A study showed
that using IL-12 to boost the cytotoxicity of NK cells in a
lung cancer model (BALB/c mice injected with 4T1 cells)
increased the NK cell population expressing high levels of
coinhibitory molecules, including LAG-3, which limited NK
cell-mediated antimetastatic activity (98). The combination of
an anti-LAG-3 mAb with IL-12 significantly reduces lung
metastasis, whereas monotherapy fails to achieve this effect (98).
Furthermore, synergy between an anti-LAG-3 mAb and IL-12
contributes to the increased efficacy of IL-12 immunotherapy
in breast cancer, which is solely dependent on NK cells,
suggesting that LAG-3 is applicable in not only T cell-mediated
immunotherapies but also NK cell-mediated antimetastatic
immunotherapies (98).

TIM-3
TIM-3 is a type I glycoprotein that binds galectin-9 (Gal-
9), high mobility group box 1 protein (HMGB1), and
carcinoembryonic antigen-related cell adhesion molecule 1
(CEACAM-1) on target cells to act as an NK cell coreceptor
(91, 99, 100). An early in vitro study showed that an NK92
cell line overexpressing TIM-3 secreted an increased amount
of IFN-γ, while TIM-3 blockade resulted in reduced IFN-
γ production (101). However, although human TIM-3+

NK cells are functional in terms of cytokine production
and cytotoxicity, they become suppressed when TIM-3
is cross-linked with antibodies (102), suggesting that an
interaction between TIM-3 and its ligand can result in NK
cell dysfunction.

TIM-3 can mediate cell exhaustion and suppress immune
responses under both chronic viral and cancerous conditions.
For example, TIM-3 mediates suppression of NK cells in
chronic hepatitis B patients, while TIM-3 blockade results in
increased NK cell cytotoxicity both in vitro and ex vivo (103).
TIM-3 is highly expressed in various tumor types, including
gastrointestinal stromal tumor (104), lung adenocarcinoma
(105), perineural squamous cell carcinoma (106), melanoma
(107), gastric cancer (108), acute myeloid leukemia (109), colon
cancer (110), bladder cancer (70), renal cell carcinoma (111),
pancreatic cancer (112), glioma (113), anaplastic thyroid cancer
(114), peripheral T cell lymphoma, NK/T cell lymphoma (94),
etc. Significant overexpression of TIM-3 has been observed
in peripheral NK cells from non-muscle invasive bladder
cancer patients (70); moreover, TIM-3 is expressed in TILs
from 25.3% of non-small cell lung cancer patients and
associated with the expression of PD-1 and LAG-3 (93). TIM-
3 expression was found to be higher on peripheral NK cells
from glioma patients than on those from healthy controls,
and these TIM-3+ NK cells showed a reduced capability
for IFN-γ production and correlated with the proportion
of Ki-67+ tumor cells (113). Furthermore, TIM-3 expression
is upregulated on NK cells in late-stage melanoma patients,

and blockade of TIM-3 reverses NK cell exhaustion in these
patients (107).

TIM-3 functions as a potential prognostic marker in several
tumor types. Upregulated expression of TIM-3 in peripheral
NK cells from lung adenocarcinoma patients correlates with
decreased overall survival, while blockade of TIM-3 enhances
cytotoxicity and IFN-γ production in peripheral NK cells
(105). Overexpression of TIM-3 in NK cells from gastric
cancer patients has been associated with an advanced tumor
stage (108). In addition, a study found that endometrial
tumor-resident CD103+ NK cells expressed higher levels
of TIM-3 than circulating CD103− NK cells, and tumor
NK cells from patients with lymph node invasion showed
significantly higher expression of TIM-3 than those from
patients with no lymph node invasion (71). Bladder cancer
patients have high levels of TIM-3+ NK cells and Gal-9+

tumor cells, and patients with relatively low levels of TIM-
3+ NK cells and Gal-9+ tumor cells have an improved
prognosis (115). Furthermore, TIM-3+ NK cells are defective
in esophageal cancer, and relatively high TIM-3 expression
on NK cells correlates with a poor prognosis in esophageal
carcinoma (116).

However, contradictorily, studies have also reported
stimulatory functions of TIM-3 (117). For example, after
short-term stimulation with anti-CD3/CD28 antibodies, TIM-3
can enhance the secretion of IL-2 and signaling pathways that
lead to T-cell activation (118, 119). TIM-3 engagement during
antigen stimulation directly promoted CD8T cell differentiation
through mTORC1 (120). Furthermore, activation of human T
cells was not affected by the presence of Gal-9 or antibodies
to TIM-3 (121), which also reported a contradictory role of
Gal-9 as a ligand for TIM-3. These studies suggest that the use
of anti-TIM-3 should be particularly careful because TIM-3
also plays an activating role under certain circumstances,
whether its antibodies act as agonist or antagonist remains
to be questioned. Both anti-murine and anti-human TIM-3
antibodies bind to TIM-3 in a manner that interfere with the
binding of TIM-3 to both phosphatidylserine and CEACAM1,
the understanding of the interaction between TIM-3 and its
ligands plays an important role in the screening of anti-TIM-3
antibody candidates (122).

Some studies have explored the reasons underlying the
upregulation of TIM-3 expression on NK cells in the
tumor microenvironment. One study reported that the
LPHN1/PKC/mTOR-TIM-3-Gal-9 pathway in human acute
myeloid leukemia induced high levels of Gal-9 secretion
and the release of soluble TIM-3 (109). Gal-9 impaired the
killing of tumor cells by NK cells, whereas soluble TIM-3
impaired the ability of T cells to produce IL-2, contributing
to the breakdown of immune surveillance and thus to the
progression of tumors (109). Another proposed mechanism is
that MHC-I-deficient tumors induce coexpression of TIM-3 and
PD-1 on NK cells, resulting in functional NK cell exhaustion
in both tumor-bearing mice and cancer patients; functional
recovery in these exhausted NK cells induced by vaccination
requires IL-21 produced by NKT cells (110). Furthermore,
carcinoma-associated fibroblasts (CAFs) have been shown
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to promote the expression of TIM-3 in pancreatic cancer
patients (112). Sustained IL-15 stimulation upregulates TIM-3
expression on both T and NK cells (123). TIM-3 expression
can also be induced by TNF-α through the NF-κB signaling
pathway (116). In addition, IL-27/NFIL3 signaling axis has been
identified crucial for the induction of Tim-3, IL-10 and T-cell
dysfunction (124).

PERSPECTIVE

The success of mAbs targeting CTLA-4 and PD-1 has shed
light on cancer immunotherapy, and restoring exhausted
T cells has shown promising clinical outcomes in some
patients. However, there were still many patients who are
nonresponsive to these treatments. However, recent findings
indicate that improved survival highly correlates with the
frequency of DNAM-1+CD56dim NK and NKp46+CD56dim NK
cells after treatment with anti-CTLA-4 in patients with malignant
mesothelioma (125). Hsu and Hodgins et al. demonstrated
in multiple tumor models that PD-1 is upregulated on the
most activated and functionally responsive intratumoral NK
cells, suggesting that the efficacy of PD-1 blockade depends in
part on inducing an NK cell-based antitumor response (126).
Thereof, we propose that NK cell-targeted immunotherapy may
provide an alternative or complementary approach to overcome
the limitations of T cell immunotherapy and combination
with NK cell immunotherapy could increase the response
rate of T cell-targeted treatments. NK cells are critical for
immunosurveillance, particularly in the control of metastasis
and hematological cancers. A study by the Tian group indicated
the importance of NK cells in checkpoint immunotherapy;
TIGIT blockade prevented NK cell exhaustion in the absence
of T cells and B cells, and an anti-TIGIT mAb improved T
cell responses in an NK cell-dependent manner (13). These
findings suggest that certain checkpoint molecules expressed
by both T cells and NK cells may exert a greater effect
on NK cells than on T cells and that NK cells could be
essential for the T cell-mediated antitumor response in such
a scenario.

The recent success of anti-NKG2A mAb on clinical trials
unleashes its role as a promising checkpoint inhibitor in
treating cancers with minimum side effects, and the success
of NKG2A blockade also points out the importance of NK
cells in anti-tumor immunity and advances the idea that
combined reversal of both T and NK cell exhaustion is truly
important in anti-tumor immunotherapy. Anti-NKG2A
could be the third potential checkpoint inhibitor approved
by the FDA following anti-CTLA-4 and anti-PD-1/PD-L1.
Another promising checkpoint molecule targeting NK cells
is TIGIT based on the results observed by the Tian group
(13). However, due to its constitutive expression on peripheral
human NK cells, more studies are required to fulfill its role
as a checkpoint in treating cancer. The balance between
CD96, TIGIT, and CD226 is critical for proper immune

responses by NK cells. The accumulation of CD96 in NK
cells in hepatocellular carcinoma patients disrupts the balance
between these three receptors, which subsequently results in
NK cell dysfunction and exhaustion (65); therefore, careful
examination of the CD96-TIGIT-CD226 system should be
involved in developing immunotherapies targeting these
receptors. In addition to CD155, CD112, and CD113, human
TIGIT can also bind to the Fap2 protein of Fusobacterium
nucleatum, and the interaction between TIGIT and Fap2
inhibits NK cell cytotoxicity (127). This finding unleashes
a new mechanism of tumor immune evasion that depends
on the bacterium and identifies new possibilities for NK
cell immunotherapy. Alterations in KIR and HLA gene
loci affect NK cell functions, which should be considered
when developing immunotherapies against KIRs (46). The
interaction between LAG-3 and the newly defined ligand
FGL1 suppresses the functions of T cells, and whether
FGL1 also interacts with LAG-3 on NK cells merits further
research (87).

Other checkpoint molecules on NK cells have been proven
to be potential targets, and further experiments are needed
to prove these novel targets for NK-based immunotherapy
(22, 128). There are ways to improve the efficacy of NK
cell immunotherapy. For example, NKG2Anull NK cells are
more effective than NKG2A+ NK cells treated with an anti-
NKG2A mAb, suggesting a new immunotherapeutic approach
using NKG2Anull NK cells (39, 129). In addition, cytokines
can enhance the efficacy of mAbs (130), and a combination of
cytokine treatment with checkpoint immunotherapy may boost
the effects of mAbs. Furthermore, we believe that combined
blockade of checkpoint molecules expressed by T cells and NK
cells could unleash antitumor immunity mediated by innate
and adaptive populations, which not only improve overall
antitumor immune responses but also allow the two approaches
to complement each other; this strategy might be the solution
for the “non-responders.” Accumulating evidence suggests that
NK cell-targeted immunotherapy is highly feasible; however,
our knowledge of the inhibitory mechanisms in NK cells is
still inadequate, and more fundamental research is required to
identify the best inhibitory pathways to be targeted for future
clinical applications.
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