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Microbial metabolites have a profound effect on the development of type 1 diabetes

(T1D). The cross-talk between the gut microbiota, the nervous system, and immune

system is necessary to establish and maintain immune and gut tolerance. As quoted by

Hippocrates, “All disease begins in the gut.” Although this has been recognized for 2,000

years, the connection between the gut and autoimmune T1D is not yet well-understood.

Here, we outline new advances supported by our research and others that have

contributed to elucidate the impact of microbial metabolites on the physiology of the

pancreas and the gut through their remarkable effect on the immune and nervous system.

Among many of the mechanisms involved in the gut–beta-cell–immune cross-talk, glial

fibrillary acidic protein (GFAP)-expressing cells are critical players in the development of

invasive insulitis. Besides, this review reveals a novel mechanism for microbial metabolites

by stimulating IL-22, an essential cytokine for gut homeostasis and beta-cell survival.

The close connections between the gut and the pancreas are highlighted through our

review as microbial metabolites recirculate through the whole body and intimately react

with the nervous system, which controls essential disorders associated with diabetes.

As such, we discuss the mechanisms of action of microbial metabolites or short-chain

fatty acids (SCFAs), IL-22, and GFAP on beta-cells, gut epithelial cells, neurons,

and glial cells via metabolite sensing receptors or through epigenetic effects. The

fine-tuned gut–neuro–immune network may be profoundly affected by SCFA deficiency

related to dysbiosis and diet alterations at very early stages of the initiation of the

disease. Thus, dampening the initial immune response or preventing the perpetuation

of the immune response by maintaining the integrity of the gut is among the alternative

approaches to prevent T1D.

Keywords: SCFA (short chain fatty acids), GFAP—glial fibrillary acidic protein, gut microbiota, glial cell, interleukin

22 (IL-22), ILC3s, beta cells, diabetes

INTRODUCTION

Type 1 diabetes (T1D) is a chronic autoimmune disease in which T cells destroy the
insulin-producing beta-cells of the pancreas (1–3). The beta-cell’s attack happens when T cells
recognize autoantigens such as glutamic acid decarboxylase (GAD), islet cell autoantigen 69
(ICA69), insulinoma-associated antigen 2 (IA2), islet-specific glucose-6-phosphatase catalytic
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subunit–related protein (IGRP), and proinsulin, which are widely
accepted as the initiating autoantigens in T1D (4, 5). Antigenic
targets for T cell priming are not solely expressed in beta-
cells, but also in multiple tissues distal to islets, and they can
be found in food like insulin or produced by bacteria like
GAD (6–8). This all leads to many questions. How antigen
expression in other distal tissues to beta-cells control the invasive
infiltration of immune cells into the pancreas? Is the gut an
important compartment as a source of antigens that trigger T1D?
Is the gut microbiota influencing T cell priming against beta-
cells? The microenvironment regulates beta-cell function and
maturity, in particular close interaction with endocrine cells,
neuronal, immune, and vascular cells (9, 10). Pancreatic ducts are
physiologically neighboring to the beta-cells, and their primary
function is to deliver enzymes or pancreatic juices provided from
the exocrine pancreas into the duodenum to help digestion. As
such, the pancreatic beta-cells can be influenced by the gut, which
is intimately connected not only through the pancreatic ducts but
also by lymph ducts (11). Beyond the pancreas, there is hardly
any tissue in the body that has not been somehow in contact
with gut microbial SCFAs. From food fermentation, bacteria in
the large bowel produce many metabolites that are used by the
epithelial cells in the gut. The remaining amount is transported
to the liver where they are metabolized and then released to
systemic circulation. As such, SCFAs have a broad spectrum
of remarkable beneficial properties that affect many systems, in
particular under inflammatory conditions, regulating metabolic,
and immune responses (12–14).

One example is the nervous system, which is also critical
for the pancreas to function (15). Both the endocrine and the
exocrine part of the pancreas are innervated by the sympathetic
and the parasympathetic nervous system, as such pancreatic
sensory neurons have been shown to play a critical role in
controlling islet inflammation (16). Similarly, the enteric nervous
system (ENS) via the enteric glial cells (EGCs) is vital to maintain
gut and immune homeostasis (17, 18), given that diabetic animals
and patients presented gastrointestinal motility disorders (19).
In this review, we will discuss the gut–neuro–immune axis in
T1D and its effect on beta-cell priming. In particular, we will
focus on the role of GFAP-positive cell types as critical players in
T1D and on the impact of the gut microbiota, SCFAs, and their
mechanisms of action through interleukin 22 (IL-22).

GFAP—NOT THE USUAL SUSPECT!

Beta-cells are involved in late T cell priming, suggesting that they
are not required during the induction of T1D (20, 21). So, a
critical consideration is—what might be driving the initiation of
T1D? It has been shown in the pancreas that GFAP-expressing
peri-islet Schwann cells (pSC or glial cells) can attract and
recruit autoreactive cells, which precedes the attack on beta-
cells. Two studies support the finding that immune responses to
autoantigens expressed in pSCs precede the immune response
to beta-cells (6, 7). In particular, they showed that early T
cell attack on GFAP-expressing pSCs progressively results in
the release of glial cell antigens, GFAP, and insulin (6, 7).

GFAP epitopes for autoreactive T and B cells have now been
identified in non-obese diabetic (NOD) mice and humans with
T1D. Serum GFAP antibodies are now used as a predictive
marker for the development of T1D, and it has been shown that
administration of GFAP as a vaccine delayed the progression
of T1D by regulating T cell differentiation (22, 23). GFAP-
expressing glial cells of the peripheral nervous system require
TRPV1 expression for their proper maturation, and studies
have shown that depleting TRPV1-expressing cells reduced the
development of insulitis in NOD mice (16, 24). It is fascinating
that a cytoskeletal protein widely expressed in pancreatic ductal
cells and also in pancreatic glial cells of the central and peripheral
nervous system may work as an early autoantigen in T1D.

Exploring further this idea, Slattery’s group has recently shown
that ablation of autoantigen presentation in GFAP-expressing cell
types reduced the development of invasive insulitis in NODmice
(25). We can speculate that reduction, but not total elimination
of invasive infiltration, may be due to the absence of presentation
of autoantigens other than insulin by GFAP-expressing cells,
suggesting that Ag-derived ductal cell is one of the critical
requirements in orchestrating the initiation of autoimmune
responses to beta-cell antigens.

THE SCFAS: MODULATOR OF GUT
INFLAMMATION AND AUTOREACTIVITY

After many years of efforts and studies focusing on the
destruction of the beta-cells in the pancreas, there is still no
cure or method of prevention for T1D. So, it makes us wonder
whether we have been losing the battle only because we are not
looking beyond the walls of the pancreas. T1D can be viewed
as an orchestrated autoimmune response originated in the gut.
This is evident from the observation that in many autoimmune
diseases including T1D, the integrity of the epithelial barrier
is compromised, leading to a phenomenon termed as “leaky
gut” (26, 27). Pathogens, microbial products, and food-derived
antigens find the leaky gut as a route to encounter the resident
immune cells. For example, Gram-negative bacteria produce
lipopolysaccharides (LPS), an identified endotoxin that can
induce immune responses via the toll-like receptor 4 (TLR-
4) expressed on monocytes (28). Given the gut connects to
the pancreas through pancreatic lymph nodes (PLNs) and
mesenteric lymph nodes (MLNs), bacterial and food products
can hyperactivate resident T and B autoreactive cells in the
gut or the gut-associated MLNs (29). Alternatively, it has
been shown that gut microbial products can reach PLNs and
locally modify the presentation of pancreatic self-antigens (30).
Therefore, excess of food, chemicals, and microbial antigens
can skew the intestinal immune system toward a perpetually
pro-inflammatory state that may trigger T1D. Newly-diagnosed
children with T1D present autoantibodies to GAD, a pancreatic
beta-cell autoantigen that is also produced by many bacterial
species (31). For instance, T1D patients present antibodies
against a heat shock protein from the Mycobacterium avium
subspecies paratuberculosis, MAP Hsp65, which has a high

Frontiers in Immunology | www.frontiersin.org 2 October 2019 | Volume 10 | Article 2429

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Jayasimhan and Mariño The Gut-Immune-Brain Axis in Diabetes

degree of homology with human GAD65, suggesting that cross-
reactivity between MAP Hsp65 and GAD65 potentially could
be a mechanism of triggering TID (32). Strong homology has
been found between the islet-antigen IGRP and several gut-
and oral-derived microbial peptides. These peptide sequences
encode for magnesium transporter (Mgt), for hypothetical
protein IEM_00289 and NAD synthetase, respectively, which
activate NY8.3 CD8+ T cells with comparable potency to IGRP
native peptide (33). Thus, molecular mimicry between excess
of gut microbial antigens and islet cell autoantigens may be a
mechanism by which gut dysbiosis leads to T1D development.

T1D is a multifactorial condition; diet and environment
play an inevitable role in disease modulation (1, 13). Human
and murine studies have demonstrated that defects in the
induction of central and peripheral tolerance checkpoints (34)
also correlate with an altered gut microbiota (35–39), which are
notable contributors to T1D pathology. Building on previously
extensive reviews on the gut microbiota topic, we have firmly
discussed that an altered microbiota and SCFA deficiency are
primary causal factors triggering T1D (12–14, 40). The gut
microbiota through the production of dietary SCFAs plays a
significant role in host defense by modulating the immune
system and metabolism. Studies conducted by our group have
shown that the combination of a diet rich in acetate and
butyrate protected 90% of the NOD mice against T1D, yielding
exceptionally high levels of the corresponding SCFAs to the feces
(35). In this study, SCFA-induced T1D protection happened
via changes in gut/immune regulation-expanding regulatory
T (Treg) cells and reducing pathogenic B cells, CD4+, and
CD8+ T cells. Diet rich in SCFA acetate and butyrate not
only reduced the levels of serum LPS and pro-inflammatory
interleukin 21 (IL-21) but also increased the level of serum IL-
22, an important cytokine that maintains a healthy commensal
microbiota, gut epithelial integrity, and mucosal immunity and
ameliorates metabolic disease (41–44). Alternatively, SCFAs can
also reduce islet-specific immune responses by increasing the
production of antimicrobial peptides (AMPs) in the beta-cells
(45). As it has been shown, C-type lectin regenerating islet-
derived protein IIIγ (REGIIIγ) and defensins disrupt surface
membranes of bacteria, thus enabling a broad regulation of
commensal and pathogenic bacteria in the gut (46–48). Diana’s
group showed that insulin-secreting beta-cells produced the
cathelicidin-related antimicrobial peptide (CRAMP), which was
defective in NOD mice. Intraperitoneal administration of SCFA
butyrate stimulates the production of CRAMP on pancreatic
beta-cells via G protein-coupled receptors (GPCRs), which also
correlated with the conversion of inflammatory immune cells to
a regulatory phenotype (45). Likewise, another study has shown
that microbial SCFAs contribute to the increasing concentrations
of serum IL-22 (35) required for beta-cell regeneration by up-
regulating the expression of Regenerating Reg1 and Reg2 genes
in the islets (49).

There are pieces of evidence of compromised gut integrity,
dysbiosis, and associated inflammation of the gastrointestinal
tract (GI) in NOD mice and patients with T1D (50–55),
similar to what has been shown in other inflammatory or
autoimmune gut diseases (i.e., infection, celiac disease, IBD).

The gut microbiota and the ENS play a critical role in
diabetic gastrointestinal motility disorders, as individuals with
diabetes suffer from symptoms such as nausea, heartburn,
vomiting, diarrhea, abdominal pain, and constipation (56, 57).
For example, it is known that slow motility of the GI leads to
alterations of the gut microbiota that favors pathogenic bacterial
overgrowth and subsequently diarrhea (58, 59). As such, the
abundance and diversity of bacteria needed to maintain the
integrity of the gut were significantly lower in children with
T1D compared to healthy controls (60). On the other hand,
animal studies have suggested that accelerated colonic transit
time, relative to constipation, could be caused by autonomic
neuropathy and diabetes-induced denervation of sympathetic
nerve terminals (56, 61). Diet and/or deficiency of dietary SCFAs
can also modulate the intestinal motility and survival of enteric
neurons by miRNAs, which are involved in energy homeostasis,
lipid metabolism, and proliferation and development of GI
smooth muscles. miRNAs have been vastly studied in organ
damage caused by diabetes, and one study has shown in mice
that high-fat diets delay the GI transit, partly by inducing
apoptosis in enteric neuronal cells, and this effect was shown
to be mediated by Mir375 associated with reduced levels
of Pdk (62). There is still too much to understand about
the intrinsic mechanisms underlying the connection between
the gut microbiota and the ENS and how this affects the
course of T1D. Particularly high-fiber or specialized acylated
starch diets that boost the microbial production of SCFAs
are effective in the control of gut infections and diarrhea, as
it has been shown to promote commensal acetate-producing
bacteria (63).

IL-22 AND ENS TAKE CONTROL OF T1D

Activation of IL-22 through microbial SCFAs contribute to the
maintenance of gut homeostasis by the close connection between
the intestinal-resident innate lymphoid cell 3 (ILC3) and EGCs.
IL-22 is expressed by ILC3, which lies close to EGCs (64), but
its role in T1D is still elusive (14). ILCs sustain appropriate
immune responses to commensals and pathogens at mucosal
barriers by potentiating adaptive immunity and regulating tissue
inflammation (65, 66). Likewise, EGCs have critical roles in
maintaining gut homeostasis, as they can sense the pathogenic
bacteria through toll-like receptors (TLRs). EGCs surround
neurons and also connect with blood vessels and lymphatics (67),
which allowed EGC-derived signaling molecules to modulate
mucosal immunity. As such, EGCs sense environmental stimuli
and extend their stellate projections into the ILC3 aggregates
within the crypto-patches of the intestinal lamina propria
and release neurotrophic factors that stimulate IL-22 secretion
from ILC3s (68). The notion that gut microbiota affects the
development and maturation of EGCs was shown in germ-
free (GF) mice, which present a defective influx of EGCs into
the intestinal mucosa (69). This occurs via expression of the
neuroregulatory receptor (RET), as ablation of RET in ILC3
leads to reduced IL-22 production and compromised epithelial
protection in colon inflammation mouse models (69).
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Aligned with this idea, does the early autoreactivity to GFAP
observed during insulitis originate in the gut? This is possible
to the connections between the pancreas, the ENS, and the gut.
The fine-tuned neuro–beta-cell cross-talk is more likely to be
broken by the pathological changes occurring in a perturbed
gut. Alterations of the gut microbiota, referred to as dysbiosis,
decrease epithelial permeability, causing inflammation, and
associated tissue damage that exposes numerous self-antigens
harbored in the gut and associated enteric neuronal tissues.
Gut microbial products can also sense enteric neurons and
EGCs partly by pattern recognition receptors, such as TLRs.
Indeed, pathogenic and commensal SCFA-producing bacteria
up-regulate differentially toll-like receptor 2 (TLR2) expression
on human EGCs (70). Expression of TLR2 on enteric neurons
and EGCs controls nNOS+ neurons and acetylcholine-esterase-
stained fibers in the myenteric ganglia. For example, Escherichia
coli promoted expression of MHC II molecules on EGCs and
significantly induced S100B protein overexpression and nitric
oxide (NO) release from EGC, which was counteracted by pre-
treatment with TLR and S100B inhibitors (70). As such, the
myenteric plexus of TLR2Ko mice presented reduced expression
of glial markers, GFAP, and S100B. Overexpression of GFAP
has been observed to correlate with inflammatory responses in
the gut (71). S100B is considered as a neurotrophin, due to its
either tropic or toxic effects depending on the concentration in
the extracellular milieu. Excess amount of S100B acts on RAGE
(receptor for advanced glycation end-products), leading to the
phosphorylation of mitogen-activated protein kinases (MAPK)
and subsequent activation of the nuclear factor κB (NF-κB) and
the associated release of NO. Excess NO causes damage to the
tissue, resulting in inflammation and reduced integrity of the
guts (72, 73). The protective role of EGCs in the maintenance
of the gut epithelial integrity has been demonstrated in mice
lacking GFAP-positive (+) glia that presented fatal hemorrhagic
jejuno-ileitis (74).

During chronic tissue inflammation, significantly increased
expression of GFAP on glial cells after stimulation with LPS
and pro-inflammatory cytokines has been shown (75), similar
to what has been seen in Crohn’s disease (CD) and necrotizing
enterocolitis (NEC). On the other hand, the presence of MHC
class II expression on activated EGCs suggests that these cell types
can present antigens (76, 77) derived from multiples sources,
including microbes and host. EGCs, with the help of their stellate
projections, sample microbial antigens crossing the epithelial
barrier and activate diabetogenic T cells. This is given under
dysbiosis, predominant in T1D and many autoimmune diseases,
and the release of microbial antigens such as LPS may break
the tolerance of EGCs leading to overexpression of glial cell
markers GFAP and S100B. Thus, GFAP-expressing glial cells may
have a protective role in maintaining the integrity of the gut,
but under uncontrolled inflammatory conditions, it may lead to
autoreactivity. As such, glial cell-derived protein GFAP is now an
identified autoantigen in T1D and autoantibodies to GFAP has
been detected in NOD mice and humans with T1D (23), thus
showing the relevance of the microbiota–EGC pathways in T1D.

One study has shown that SCFA butyrate can induce
increasing excitatory choline acetyltransferase (ChAT) neurons

through the butyrate transporter monocarboxylate transporter
(MCT), which is expressed by enteric neurons (78). However,
it is still unknown what factors control neuronal MCT2
expression. Further studies will be necessary to determine how
SCFAs regulate MCT2 expression and control the activity of
intestinal neural circuits. SCFAs exert their function through
two mechanisms, via metabolite sensing GPCRs or inhibition
of histone deacetylase (HDAC) activity (13, 35, 79, 80). There
are three receptors for SCFA acetate, butyrate, and propionate,
namely GPR43 (FFA2), GPR41 (FFA3), and GPR109a. GPR43 is
activated by SCFAs with varying potency—acetate > propionate
> butyrate. GPR43 is expressed on gut epithelial cells and
certain immune cells (81). GPR109a is expressed on a variety
of immune cells, as well as adipocytes, hepatocytes, gut and
retinal epithelium, vascular endothelium, and neuronal tissue
(82). GPR109a is primarily activated by both niacin and butyrate
ligands. While niacin levels are not high enough to activate
the receptor under normal physiological conditions, levels of
butyrate, obtained from the gut environment, and its oxidized
form, β-hydroxybutyrate, are sufficient to stimulate a response
(82). Similarly, GPR41 has been reported to be expressed on
EGCs and enteric neurons (83, 84). GPR41 also binds the three
major SCFAs, but with differing affinities (85).

Similar to the effects exerted through the GPCRs, SCFAs
can influence the function and development of immune cells
directly through epigenetic regulation of gene expression such
as inhibition of HDACs (13, 86). HDACs allow the conversion
of repressive chromatin structures, which takes place on lysine
residues on N-terminal tails of histones 3 and 4, to increase gene
transcription. HDACs are a group of 18 known enzymes that
remove acetyl groups from the histones tails that bind DNA (87).
Although little is known about the effects of SCFAs on EGCs
through epigenetic modifications, it has been shown that butyrate
treatment increases acetylation of the H3K9 in primary enteric
neurons and the EGC in vitro (84).

SCFAs can also modulate gut motility by the production
of serotonin by epithelial enterochromaffin cells (ECs) (88,
89). For instance, GF mice present gut dysmotility that was
reversed by inoculation with SCFA-producing bacteria. Tested
in human-derived EC cell lines, SCFAs increased serotonin (5-
hydroxytryptamine [5-HT]) by up-regulating THER expression
of tryptophan hydroxylase 1 (Tph1) (89) and by the serotonin-
selective reuptake transporter (SERT), which is expressed by
intestinal epithelial cells (90). Another critical role of SCFAs
on the ENS is evidenced by the conversion of primary bile
acids synthesized de novo into secondary bile acids in the
liver (91). Aside from their role in dietary fat absorption,
secondary bile acids can activate several GPCRs and nuclear
hormone receptors, including the G-protein-coupled bile acid
receptor 1 (TGR5) and farnesoid X receptor (FXR), highly
expressed in enteric neurons and enteroendocrine L cells
that improved intestinal inflammation and glucose tolerance
in HFD-fed mice (92). TGR5 also affect peristalsis that is
mediated partly by serotonin 5-HT (93), implicating its potential
for the treatment of constipation and diarrhea. Altogether,
this suggests the relevance of the gut–neuro–immune axis in
T1D (Figure 1).
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FIGURE 1 | Diet and gut microbiota through the production of dietary SCFAs exert anti-inflammatory effects by controlling the activity of multiple immune cell types,

outside or locally in the intestinal mucosa, the enteric glial cells and neurons but also glial cells in the pancreatic islets and the beta-cells. As such SCFAs promote

IL-22 production CD4+ T cells or by supporting ILC3 cells, the major producers of IL-22. Also SCFAs can reduce production of pro-inflammatory cytokines IL-21,

LPS, induce beta cell regeneration via AMPS, regulate GFAP in the gut and beta-cells, modulate the expansion of regulatory T and reduction of autoreactive CD8T

cells and reducing B cell hyperactive antigen presentation capacity. Activation of GPRCs (GPR41 and GPR43) on enteroendocrine cells of the intestinal epithelium and

TLR signaling (e.g., TLR2 and TLR4) maintains subsets of enteric neurons resulting changes in gut motility, conversion of primary bile acids into secondary bile acids,

which activate TGRS expressed by enteroendocrine cells and enteric neurons among many others.
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CONCLUDING REMARKS

Among the described effects that SCFAs have on modulating
the immune system, beta-cell biology, and gut homeostasis,
we have uncovered a novel role for SCFAs by modulating the
ENS in the gut, central for the control and prevention of
T1D. Overall, an immune response to antigens presented not
only by GFAP-expressing pSCs in the pancreas but also by
GFAP-expressing EGCs in the gut is a novel finding involved
in the initiation of the autoimmune process. Could it trigger
antigen-experienced autoreactive cells to move up the gut and
reach the ductal and beta-cells, and break the GFAP-expressing
neuronal mantle of the islets? This is an unexplored field
and requires further research. Given the close location and
connection between the gut and the pancreas and their intrinsic

dependence from the nervous system, this fine-tuned immuno–
neuro-islet cross-talk may be profoundly affected by perturbed
gut homeostasis at very early stages of the initiation of the
T1D. Dampening the initial immune response or preventing
the perpetuation of the islet-specific immune response by
maintaining the integrity of the gut is among the possible
therapeutic approaches to reprogram T1D (12, 14). Thus, any
hope for a cure may lie in methods that can halt immune-
mediated beta-cell damage by maintaining or improving gut–
immune tolerance.
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