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CD molecules are surface molecules expressed on cells of the immune system that play

key roles in immune cell-cell communication and sensing the microenvironment. These

molecules are essential markers for the identification and isolation of leukocytes and

lymphocyte subsets. Here, we present the results of the first phase of the CD Maps

study, mapping the expression of CD1–CD100 (n = 110) on 47 immune cell subsets

from blood, thymus, and tonsil using an eight-color standardized EuroFlow approach

and quantification of expression. The resulting dataset included median antibody binding

capacities (ABCs) and percentage of positivity for all markers on all subsets and was

developed into an interactive CD Maps web resource. Using the resource, we examined

differentially expressed proteins between granulocyte, monocyte, and dendritic cell

subsets, and profiled dynamic expression of markers during thymocyte differentiation,

T-cell maturation, and between functionally distinct B-cell subset clusters. The CD

Maps resource will serve as a benchmark of antibody reactivities ensuring improved

reproducibility of flow cytometry-based research. Moreover, it will provide a full picture

of the surfaceome of human immune cells and serves as a useful platform to increase

our understanding of leukocyte biology, as well as to facilitate the identification of new

biomarkers and therapeutic targets of immunological and hematological diseases.
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INTRODUCTION

Leukocytes display on their surface molecules that are crucial for sensing hazardous
environmental changes and mediating cell adhesion and communication between cells both
within the immune system and with stroma. These include receptors, transporters, channels,
cell-adhesion proteins, and enzymes. The complexity of surface-expressed proteins, also called
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the surfaceome, is emphasized by the fact that an estimated 26%
of human genes encode transmembrane proteins (∼5,500) (1).
However, recent in silico evaluations predict that 2,886 proteins
are actually expressed at the outer cell membrane, i.e., the cell
surface (2). Experimental evidence exists for ∼1,492 proteins
across multiple tissues (3) and 1,015 proteins that are expressed
in one or more immune cell type and lymphoid tissue (4).

Over the past four decades, a vast array of cell surface
molecules has been discovered through the production of
monoclonal antibodies (mAbs) (5). These mAbs, together with
the development of multicolor flow cytometric analysis (6), have
been instrumental to determine their expression and function.
Human leukocyte differentiation antigen (HLDA) workshops
have led to the characterization and formal designation of
more than 400 surface molecules (7, 8), known as CD
molecules (www.hcdm.org). CD nomenclature provides a unified
designation system for mAbs, as well as for the cell surface
molecules that they recognize. Thesemolecules include receptors,
adhesion molecules, membrane-bound enzymes, and glycans
that play multiple roles in leukocyte development, activation, and
differentiation. CD molecules are routinely used as cell markers,
allowing the identification of the presence and proportions
of specific leukocyte cell populations and lymphocyte subsets,
and their isolation, using combinations of fluorochrome-labeled
antibodies and flow cytometry. Importantly, analysis of CD
molecules, known as immunophenotyping, is a fundamental
component for the diagnosis, classification, and follow-up of
hematological malignancies and immunodeficiencies, and the
monitoring of immune system disorders such as autoimmune
diseases. More recently, mAbs recognizing CD molecules have
been established as invaluable tools for the treatment of cancer,
such as checkpoint inhibitors (9), and autoimmune diseases (10).
Development and testing of such therapeutics rely on accurate
knowledge expression and function of the target molecule as has
been negatively illustrated by the disaster in the Phase I TGN1412
study with an anti-CD28 superagonist (11).

Currently, there are extensive gaps in our knowledge of CD
molecule expression patterns, mainly because of the discordancy
in the setup of the expression studies and the major changes in
flow cytometry technology over the last 30 years (12). As a result,
there has been overinterpretation in summarizing tables, which
can be misleading. Thus, there is an urgent need to construct a
higher resolution and accurate map of the expression profiles of
the CD molecules to visualize the surface of leukocyte landscape.
Moreover, an important part of the bibliography is incorrect and
often misleading.

To correct current misinterpretation and to overcome
gaps in knowledge, the HCDM has initiated the CD Maps
project, a multi-institute research program to generate a
high-resolution map of the cell surface of human immune
cells using standardized multicolor flow cytometry protocols.
Here, we present the results of the first phase of the
CD Maps study, which includes the expression signature
of CD1–CD100 on 47 cell populations and subsets, 41 of
which were non-overlapping. The data have been acquired
across four expert flow cytometry laboratories to ensure
reproducibility and have been built into an online web resource

with free user access. Expression profiling of CD markers
across immune cell subsets revealed dynamic changes in
expression levels and hints at further immune cell diversity
for markers that were expressed on a fraction of defined
populations. These insights can prove critical for development
of therapeutics targeting dysregulated immune responses or
malignant cells.

MATERIALS AND METHODS

Human Tissue Samples
The use of human pediatric tissue and adult buffy coats
was approved by the Human Ethics Committees of the
Erasmus Medical Center, the University Hospital Motol, and the
universities of Salamanca and Barcelona, and was contingent on
informed consent in accordance with the Declaration of Helsinki.
Thymus material was obtained from 12 children requiring
surgery for congenital heart disease. These children did not
have hematologic or immunologic diseases. Non-necrotizing
tonsil tissue was obtained from seven donors, including two
adults (32 and 34 years) and five children (4–8 years) who
underwent scheduled tonsillectomy. Blood buffy coats of 12
healthy adult volunteer donors were obtained from the local
blood banks.

Single Cell Isolation and Preparation
The blood leukocyte isolation protocol was optimized to
minimize platelet adhesion (satellitism). Briefly, the buffy coat
suspension was diluted 6× in PBS containing 2mM EDTA,
followed by adding an equal volume of a 4% dextran solution
(Sigma-Aldrich, Saint Louis, MO, USA) in 0.9% NaCl. The
mixture was left for 30min for erythrocytes to sediment
prior to collecting the supernatant containing the leukocytes.
Following a spin (130 g, 15min, RT) and removal of the
supernatant, the residual erythrocytes in the pellet were lysed
using hypotonic lysis with a 0.2% NaCl solution for 55 s,
followed by supplementation of 1.2% NaCl to achieve an isotonic
concentration of NaCl. Following addition of PBS and a spin
(130 g, 15min, RT), the lysis step was repeated. Finally, the
suspension of leukocytes was washed and diluted with PBS/BSA
(PBS with 0.5% BSA and 0.09% NaN3) to a final concentration of
4× 107/ml.

Thymocytes and tonsillar lymphocytes were isolated via gentle
shaking from manually dissociated thymus and tonsil tissue,
respectively, washed with RPMI 1640 with 25mM HEPES, L-
glutamine, 100 U/ml penicillin, and 100 mg/ml streptomycin
(Lonza, Basel, Switzerland) supplemented with 10% (v/v) heat-
inactivated fetal bovine serum (FBS, Thermo Fisher Scientific,
Rockford, IL). Single-cell suspensions were either directly used
for immunophenotyping, or stored in FBS with 10% DMSO
in liquid nitrogen for analysis at a later stage. Live frozen
cells were thawed by dropwise addition of 1ml FBS, followed
by addition of 8ml of medium. Cells were washed twice,
counted, washed, and diluted with PBS/BSA (PBS with 0.5%
BSA and 0.09% NaN3) to a final concentration of 1.25 ×
107/ml. Whenever frozen and thawed thymocytes were used,
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we observed a marked decrease of proportion of double-
positive stage thymocytes, but their phenotype was similar to the
fresh thymocytes.

Staining of Cells With Antibodies for
Immunophenotyping
Cells were stained in V-bottom 96-well plates in a total
suspension volume of 50 µl. First, one of each of the PE-
labeled mAbs to CD1–CD100 were added to each well (details
of each marker are provided in Supplementary Table 2). The
amounts were according to the manufacturer’s recommended
titer and topped up to 10 µl with PBS/BSA. Subsequently, 40
µl of cell suspension (1.6 × 106 cells for buffy coats, 5 × 105

cells for thymus or tonsil) was added to each well. Following
careful mixing, the suspensions were incubated for 30min at
room temperature in the dark. Next, 25 µl of backbone mAb
reagent mix was added to each well, carefully mixed, and
incubated again for 30min (RT, in the dark). Four Ab backbone
cocktails were prepared (two for blood, one for thymus, and one
for tonsil), and the reagents were titrated beforehand (details
provided in Supplementary Table 1). The cells were washed
three times (8min, 500 g, RT) in PBS/BSA and resuspended
in 200 µl of PBS with 2mM EDTA for acquisition. A detailed
CD Maps standard operating protocol can be downloaded from
www.hcdm.org. Although we aimed for the complete set of
CD1–CD100 markers, we were limited to the 110 that were
commercially available and that were not of the IgM isotype. The
following CD markers were not included: (a) mAbs with IgM
isotype against carbohydrate antigens that were not available as
PE-conjugates: CDw12, CD15u, CD15s, CD15su, CD17, CD60a,
CD60b, CD60c, CD65, CD65s, CD75, and CD75s; (b) mAbs
that were validated by the HLDA workshops, but that were not
commercially obtainable: CD1c, CD66a, CD66d, CD66e, CD66f,
CD85a, CD92, and CD94. Furthermore, several CDmarkers were
present as backbone markers in our panels potentially interfering
with the PE staining. To mitigate the blocking effect on the PE-
reagent, we (a) used a different clone known to bind a distinct
epitope (e.g., CD16, CD45), and where no clone with a distinct
epitope was available, we (b) incubated the cells first with the PE-
conjugate for 15min, prior to addition of the backbone cocktail.
When the backbone marker was impacted, the gating strategy
was manually adjusted using the PE-conjugated marker. The
CD1–CD100 markers were assessed with commercially available
reagents from three different vendors and used at vendor-
recommended titers. Some reagents exhibited higher background
staining than others, which is probably due to these having
a lower antigen affinity and were therefore used at higher
concentration. This could explain why the expression levels
(MFI) for some CD markers were above that of the FMO in
a subset that is known not to express it. Finally, some subsets
(particularly myeloid cells and cells from tonsil) exhibited high
background autofluorescence and some degree of non-specific
binding (13).

Flow Cytometer Instrument Setup
Data acquisition was performed on four different sites on
LSR II, LSR Fortessa, and FACS Canto instruments (BD

Biosciences, San Jose, CA, USA) equipped with 405-nm, 488-
nm, and 633/647-nm excitation lasers and an HTS loader.
Cytometer Setup and Tracking (CS&T) beads (BD Biosciences)
and 8-peak Rainbow bead calibration particles (Spherotech,
Lake Forest, IL, USA) were used for PMT voltages and light
scatter setup to achieve inter-laboratory standardization as
developed by the EuroFlow consortium (14). Each panel was
applied on a total of 12 donors, and 1 million events were
acquired per staining (well). The EuroFlow Standard Operating
Procedure (SOP) for Instrument Setup and Compensation can
be downloaded from www.euroflow.org. Three out of four
laboratories participate in the EuroFlow Quality Assessment
scheme that investigates the MFI of selected cell subsets (15). The
same concept was adopted to test the performance of the four
laboratories on a testing cohort of three local donors using four
reagents (CD8, CD21, CD25, and CD28) representing different
staining intensities.

Conversion of PE Fluorescence Intensity to
Antibody Binding Capacity (ABC)
To convert PE fluorescence to the amount of PE molecules
bound to a target, we used the PE Fluorescence Quantitation
Kit (BD Biosciences) with four known levels of PE. The
pellet was resuspended in 500 µl of PBS/BSA and analyzed
by flow cytometry in parallel with each experiment. The
measured PE signals for all stainings on all cell subsets were
fitted to the PE calibration curve to extract the number of
PE molecules.

PE-conjugation of mAbs is quite consistent with a 1:1 ratio
of fluorochrome:antibody. To test and correct for any deviations,
we have measured and calculated a correction factor reflecting
the amount of PE for each antibody (correction factors were
in the range 0.73–1.32, mean – 1 SD to mean + 1 SD). A
volume of 25 µl of UltraComp eBeadsTM Compensation Beads
(Thermo Fischer Scientific) was diluted with 15 µl of PBS/BSA,
mixed with excess of tested PE-labeled antibody and incubated
for 30min, RT, in the dark. Compensation Beads were washed
twice in PBS/BSA (8min, 500 g, RT), resuspended in 70 µl
of PBS with 2mM EDTA, and analyzed by flow cytometry.
All 116 mAbs were measured, and for each mAb, a ratio of
individual median PE/(median of all medians) was calculated
as a correction factor. A standard deviation of the correction
factor was 0.3; a total of 26 mAbs (25%) of all mAbs yielded
a correction factor above or below 1 standard deviation; thus,
for mAbs with a correction factor <0.7 or above 1.3, the
measurement was repeated to exclude any outliers. The average
of all correction factor values (after exclusion of outliers) was
used to recalculate the ABC for all 111CD markers on all 47
defined subsets.

Analysis, Gating, and Export of Values
Leukocyte and lymphocyte subsets to be analyzed were pre-
defined (Supplementary Figures 1–4), and all acquisitions for
each of the four panels were gated by a single laboratory
using FlowJo (version 9 or 10) or Infinicyt software. From
each defined subset, the following set of statistics was extracted
for the PE channel: median, mean, mode, CV, 10th, 25th,
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50th (median), 75th, 90th percentile (Supplementary Figure 5).
Furthermore, a gate was set to define the percentage of
positive events, using the fluorescence minus one (FMO)
staining as a negative control. The minimum cell count for
statistical evaluation was set to 100, and subsets with lower
cell counts were omitted from further analysis. Samples with
<500,000 events in the leukocyte gate (CD45+) or samples
with an apparent shift in CD45 expression with time during
acquisition (indicative of clogging) were not used for analysis
(manually curated).

The conversion from PE fluorescence to target molecule
number (ABC unit) was performed as described above using
the “define calibration” function in either the FlowJo or
Infinicyt software packages. Descriptive statistics obtained from
these software programs were exported for all defined subsets
into one delimited flat table text file per tube. To these
tables, additional information on material source, antibody
characteristics, experiment details, etc. were added, as well as
uniform cell subset identifiers: short machine friendly names,
longer descriptive names.

Data Import and Pre-processing
All subsequent work was carried out in R Development Core
Team (16). All used R packages are listed and references are
provided in Supplementary Table 4. Data were imported into
the R environment using standard import functions, converting
data to R objects. Each of the four data flat tables from the
four tubes was processed separately. After checks for duplicated
data entries, these were converted into matrix-like formats and
previously calculated median correction factors were applied.
Sample wise centrality measures (means and medians) were
calculated and data were converted from wide to long format
for easier subsequent computation. Dictionaries of cell subset
and statistics-related terms were built and combined from
all sources. The processed and combined data were stored
in binary format and were cleaned (all non-positive values
were converted to the value one), a correction factor was
applied, and group-based centrality statistics (mean and median)
were calculated.

Distribution of Frequency of PE-Positive
Cells
Sigmoidal fit and separation of markers into positive,
intermediate, and negative groups on a per-cell subset basis
was performed using R package sicegar (17). Simple sigmoidal fit
was performed by logistic function

PE
(

cds
)

= fsig
(

cds
)

=
PEmax

1+ exp
(

−a1
(

cds− cdsmid

))

where PE(cds) is the percentage of PE-positive cells, given as
a function of sequence of CD markers cds. The CD markers
are ordered based on rising median percentage of PE-positive
cells. There are three parameters to be fitted: PEmax—maximum
percentage of PE-positive cells, cdsmid—midpoint as half of
maximum, and a1. The a1 parameter is related to the slope of

PE(cds) at cds= cdsmid via the formula.
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Distribution of Median Fluorescence
Intensity
Modeling of a turning point in a sequence of rising median
fluorescence intensity per cell subset was done using Menger
curvature adapted from Christopoulos (18).

The Menger curvature for y = f (x) at (xi, yi) is:

DC (xi) =
√
A− B2

∥

∥pq
∥

∥

∥

∥qr
∥

∥

∥

∥rq
∥

∥

where

A = 4
∥

∥pq
∥

∥

2 ∥

∥qr
∥

∥

2

B =
∥

∥pq
∥

∥

2 +
∥

∥qr
∥

∥

2 −
∥

∥rp
∥

∥

2

∥

∥pq
∥

∥ =
√

(xi−1 − xi)
2 +

(

yi−1 − yi
)2

∥

∥qr
∥

∥ =
√

(xi − xi+1)
2 +

(

yi − yi+1

)2

∥

∥rp
∥

∥ =
√

(xi+1 − xi−1)
2 +

(

yi+1 − yi−1

)2

And the convex turning point at section of the curve is:

D = max {DC (xi) , i = 2, . . . , n− 1}

Hierarchical Clustering Analysis
For hierarchical clustering analysis (HCA), the pheatmap R
package (https://github.com/raivokolde/pheatmap) was used.
Per cell subset, median Qb values were log10 transformed
after minimum median Qb values were raised above zero.
Observations with missing values and FMO controls were
removed and data were z-score scaled. For HCA, the Euclidean
distance and Ward linkage (ward.D2) were used (19).

Generation and Utilities of a Dynamic Web
Resource
To share CD Maps data as a resource with a user-friendly
interface, an application with web page front-end was written
in R using the R package Shiny. Shiny allows background
computations in R serving results to a web-based front-end and
uses a reactive programming paradigm. Reactive programming
allows for dynamic user-directed content generation and
therefore interactive data exploration and analysis. For enhanced
user interactivity, several R packages were used that facilitate
access to JavaScript libraries (e.g., d3heatmap, htmlwidgets). The
resulting web page includes general CD Maps information, as
well as several angles from which to interrogate CD Maps data
(www.hcdm.org; Figure 1).

An example is the interrogation feature “What are protein
levels of selected CD markers on selected sequence of cell
subsets?” For this scenario, the user is able to select CD
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FIGURE 1 | Overview of the CD Maps web resource available at hcdm.org. (A) The user interface allows for interactive data interrogations. The resource uses several

scenarios for data exploration and allows for data download, bookmarking of analysis state, and image export. Analysis examples: (B) paired analysis of CD marker

expression on cell subsets, e.g., in a differentiation setting. (C) Visualization of expression of multiple CD markers including a measure of variation for a single subset.

(D) Analysis and visualization of statistically differentially expressed CD markers between two subsets or two groups of cell subsets.

markers and a sequence of cell subsets to visualize expression
in multiple subsets using a dot-line plot. The sequence of
cell subsets is based on the order in which these have been
selected, and the values on the y axis are by default the median
ABC values from all biological repeats. The variable displayed
on the y axis can be exchanged by the user for any of the
available cell subset statistics. As the graph is also a dot plot,
the size of the dots can be used to visualize an additional
quantitative parameter per cell subset and can be selected by
the user (e.g., percentage of PE-positive cells). The line plot uses
unique colors for each selected CD marker. Besides the graph
itself, the application also dynamically generates figure captions.
Finally, the application also allows the user to “bookmark”
the state selected settings in the application for later follow-
up analysis. In conclusion, the web resource functions are
based on the principle that the user specifies details for data
interrogation within given scenario boundaries, and such details
are sent to the web server, where R is used to compute and
prepare outputs, and those outputs are sent back in real time
to user, giving a smooth, dynamic, and interactive feeling to
the user.

Reproducibility and Version Control
Reproducibility and version control of data processing and
application development throughout the project were achieved
using GIT versioning software (https://git-scm.com/) RStudio
IDE (RStudio, Inc., Boston, MA, USA) and Bitbucket repository
(Atlassian, Sydney, Australia). Deployment is facilitated via
Docker virtualization (https://www.docker.com/, Docker, Inc.,
San Francisco, CA, USA).

RESULTS

Generation of a Web Resource for
Expression Profiling of CD1–CD100 on
Major Immune Cell Lineages and Their
Subsets
To investigate the expression levels on major leukocytes, subsets
of the first surface molecules that had been defined in the 1980s
and early 1990s with CD markers 1–100 (20–24), we developed a
multicolor immune phenotyping panel consisting of four tubes:
(A) innate and (B) adaptive immune cells from blood (25, 26),
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(C) B-cell subsets from tonsil (27, 28), and (D) T-cell progenitors
in thymus (29, 30) (Supplementary Table 1). One channel was
reserved for a PE-labeled drop-in mAb directed against one
of the CD1–CD100 antigens (Supplementary Table 2). Twelve
biological repeats were acquired, and after curation (detailed
SOP in Supplementary Data Sheet 1), expression analysis was
performed on nine biological repeats for tube A, 11 for B,
7 for C, and 5 for D. Multiple descriptors of CD marker
expression were defined for each gated cell subsets and exported
(Supplementary Figure 5), including the median fluorescence
intensity, which was converted to ABC using the QuantiBRITE
beadmeasurements, and the percentage of positive cells using the
FMO control value as cutoff.

The resulting dataset consisted of over a million data points
of derived statistics and annotation information that together
form a quantitative insight into the cell surfaceome of the
human immune system. To make the data accessible as a
major resource for detailed studies by us and the scientific
community, we constructed an interactive web-based application
(Figure 1). The resource contains multiple features to visualize
the complete dataset [e.g., principal component analysis (PCA)]
and to examine specific cell lineages and/or subsets (e.g., pairwise
comparisons and patterns of expression during cell maturation).

The combined information of CD marker expression levels
and percentages of positive cells were depicted as a “drop plot”
(Figure 2), in which colors represent the ABC and the dot sizes
represent the percentage of positivity. The CDmarkers displayed
a wide range of expression patterns. For example, CD44, CD45,
CD46, and CD47 were highly expressed on nearly all cells
within the majority of defined subsets, whereas CD49a, CD49b,
and CD49c were typically expressed at low levels. Importantly,
all markers showed positivity for at least one subset, and the
expression patterns of molecules such as CD3, CD4, CD8, CD14,
CD19, and CD20 agreed with their designation as well-defined
lineage markers (Figure 2).

Intra- and Inter-population Variation of CD
Marker Expression
Further examination involved the relative intensity of
expression of all CD markers in all defined cell subsets
(Supplementary Figure 6 and Supplementary Table 4). The
most highly expressed markers (e.g., CD45 on naive CD4 T-cells;
Figure 3A) reached 105 ABC units, with lower expression
levels for, e.g., CD3 and CD27 at 104, and CD31 and CD49f at
103. Ubiquitously expressed molecules on immune cells such
as CD44, CD45, CD46, CD47, CD50, CD98, and CD99 had
a low coefficient of variation (CV) across the studied subsets
(Figure 3B), as did some molecules with overall low expression
levels (e.g., CD49c). In contrast, as expected, markers with
lineage- and/or subset-specific expression patterns show a
greater degree of heterogeneity in expression over the examined
subsets (e.g., CD19, CD24, CD35).

To examine donor variation for expression all markers, CVs
were calculated per cell subset for each marker and displayed as
box whisker plots (Figure 3C). In general, the highly expressed
markers were found to have relatively low inter-donor variability,

FIGURE 2 | Expression map of CD1–CD100 on all 42 non-overlapping cell

subsets. CD markers are numerically ordered vertically with the FMO on the

bottom row. The cell subsets are grouped (innate cells; thymocytes; T-cells; B

cells) and sorted within lineage on their maturity. The median expression level is

visualized by color, and the median percentage of positive cells is visualized by

the size of the dot. For cell type abbreviations, see Supplementary Table 3.

whereas the CVs were higher for CDmarkers that were expressed
at low levels (Figure 3C). Indeed, some of the markers with
small boxes in Figure 3A (CD44, CD45, CD46, CD47, CD98, and
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FIGURE 3 | Expression levels and heterogeneity of expression of cell surface markers across cell types. (A) Median fluorescence (in antibody binding capacity; ABC)

for all markers on one cell subset (naïve CD4 T-cells) ordered from low to high median expression. CD markers in red font are discussed in the main text, FMO is

highlighted in orange, and a horizontal orange line depicts the median FMO background. Similar plots for all cell subsets are provided in Supplementary Figure 6.

(Continued)
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FIGURE 3 | (B) Fluorescence (in ABC) across all cell subsets per CD marker with box whisker plots (median, IQR, and range). The CD markers are ordered from low

to high median expression (black horizontal lines). (C) Coefficients of variation (CV) of expression across all cell subsets per CD marker. The CD markers are ordered

from low to high median CV (black horizontal lines) as box whisker plots with the color representing the median expression level ABC. (D) Frequency of positive cells

for all markers on one cell subset (naive B-cells) ordered from low to high frequency. Similar plots for all cell subsets are provided in Supplementary Figure 7. In all

plots, fluorescence intensity is also represented by the coloring of the boxes.

CD99) were highly expressed and showed a relatively low CV.
Still, some CD markers had a higher variability of expression in
all cell subsets (CD15, CD36, and CD66b), and some CDmarkers
with higher ABC had also relatively high CVs (CD43 and CD48).

The amount of surface protein (here expressed as ABC)
is perhaps the most used measure of protein expression in
a cell subset and corresponds most closely to measures of
expression in other forms of analysis with bulk cells. However,
flow cytometry being a single-cell technique has the advantage
of distinguishing individual cells that do or do not express
a marker. This can be shown as percentage of positivity,
and this has been defined relative to FMO for all measured
CD markers in each cell subset (Supplementary Figure 7 and
Supplementary Table 5). Ordered visualization of markers with
increased positivity revealed sigmoidal curves per cell subset
(Figure 3D and Supplementary Figure 7), separating markers
that were negative on all, positive on all, or positive on a fraction
of the cells within the subset. The frequencies of positive cells
were tightly associated with the fluorescence (shown by coloring),
with some exceptions: e.g., low CD9 and high CD48 on naive
B-cells (Figure 3D).

Clustering of Cell Subsets and CD Markers
To interrogate and visualize common expression patterns of
markers and how these related on the defined cell subsets, we
performed unsupervised HCA (Figure 4). The analysis revealed
three main cell clusters: T-cells, B-cells, and myeloid cells. Within
both B- and T-cells, the blood and tissue subsets were grouped
into two separate subclusters.

Regarding CD marker patterns, CD19, CD20, CD21,
CD22, CD72, and CD74 clustered together with predominant
expression among B-cell subsets, whereas CD11b, CD11c, CD13,
CD14, CD16, CD33, and CD88 were found to be expressed
in the myeloid cell cluster (Supplementary Figure 8). The
thymocyte cluster contained CD9, CD10, CD1a, CD1b, CD1d,
CD71, CD69, CD90, and CD34, which are known markers for
progenitor cells and for cell activation. A cluster of CD markers
expressed on all subsets and at all stages included CD45, CD44,
CD99, CD47, and CD50. Lastly, a T-cell cluster was apparent,
containing CD2, CD3, CD4, CD5, CD6, CD7, CD8, CD26,
CD28, CD49e, CD49f, CD62L, CD84, CD95, and CD96. In
addition to these dominant clusters, the heatmap also clearly
visualizes expression of CD markers outside of the dominant
cluster, such as CD24 expression on neutrophils and eosinophils,
and CD21 expression on immature thymocytes (Figure 4 and
Supplementary Figure 8).

Granulocyte, Monocyte, and Dendritic Cell
Analysis
Three monocyte subsets can be typically defined
based on differential expression of CD14 and CD16

(Supplementary Figure 1), and these subsets have been
shown to be associated with distinct diseases (31, 32). Of the
111CD markers tested, 31 were significantly different in ABC
(p < 0.01) between any two of the three subsets (Figure 5A).
Remarkably, multiple integrins (CD11b, CD49e) and other
adhesion molecules (CD33, CD62P), as well as antigen-
presentation molecule CD1d were specifically downregulated
on non-classical monocytes as compared to the classical and
intermediate subsets.

By definition, CD16 (FcγRIII) was upregulated on
intermediate and non-classical monocytes. In contrast, CD64
(FcγRI) was specifically downregulated on non-classical
monocytes, whereas all subsets expressed relatively similar
levels of CD32 (FcγRIIa and FcγRIIb). The CD35 antigen
(complement receptor 1) was specifically downregulated on
non-classical monocytes. Within the family of tetraspanins,
CD63 expression was specifically high on classical monocytes,
and CD9 and CD82 expression levels were significantly reduced
on non-classical monocytes, whereas no differences were seen
for CD37, CD53, and CD81.

Similar to the monocyte subsets, we performed a detailed
phenotypic comparison between the major two DC subsets in
blood: myeloid (m)DC and plasmacytoid (p)DC. pDCs were
defined on the basis of co-expression of HLA-DR and CD123
(Supplementary Figure 1 and Supplementary Table 3). Due to
the limitations in markers we could use in the backbone,
we defined one mDC population on the basis of HLA-
DR+CD11c+CD14–CD16–, which includes both the CD1c+
cDC1 and the CD141+ cDC2 subsets (33). Forty of the 111CD
molecules differed significantly in expression level between mDC
and pDC (p< 0.01), and of these 19 with a p< 0.001 (Figure 5B).
Most of the differences were the result of higher expression
of markers on pDCs. Markers with low expression included
molecules typically found on lymphocytes (CD3, CD10, and
CD19), and this probably does not represent actual expression.
In addition, pDC expressed higher levels of multiple integrins
(CD29, CD49a, CD49c, CD49d) and adhesin molecule CD54
(ICAM-1), as well as the previously reported immunoregulatory
receptor CD5 and tolerogenic receptors CD85d, CD85j, and
CD85k (33), whereas the death receptor CD95 was significantly
reduced on pDC (34). Expression levels of the previously
reported CD11b, CD11c, and CD13 were reduced, but not with a
significance of p < 0.01 (34).

Between neutrophils and eosinophils, 20 CD molecules
were significantly different (p < 0.01) and all were lower
on the latter subset (Figure 5C). These included the well-
described CD10, CD15, and CD16, as well as integrins
CD11b, CD11c, CD18; integrin ligand CD50; complement
receptors CD35, CD88, and CD93; and the IgA receptor
CD89. About half of the significantly different markers between
basophils and eosinophils were around borderline expression
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FIGURE 4 | Hierarchical clustering analysis of CD marker expression on leukocyte subsets. Unsupervised clustering was performed on all CD markers (n = 117) and

all cell subsets (n = 47) based on log10 transformed Median ABC. Cell subsets are color coded based on their lineage and their tissue of origin. Hierarchical tree was
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Supplementary Figure 8 for larger version of this figure, including CD marker labeling.

(103) (Figure 5D). Of the rest, 11 were significantly higher
in basophils and included the tetraspanins CD9, CD53, and
CD82; the FcγRII (CD32); multiple cell adhesion molecules
(CD38, CD44, CD54, CD62L); complement decay factor CD55;
and SLAM family member CD84. Conversely, eosinophils
expressed significantly more CD15, glycoproteins CD22 and
CD24, ectoenzyme CD39, TNF receptor CD40, and adhesion
molecules CD49f and CD66c.

T-Cell Maturation
Within the CD3+ cells, the three main lineages
(TCRγδ+, CD4+, and CD8+) were distinguished
(Supplementary Figure 2). Pairwise analysis of parallel
maturation stages between the CD4 and CD8 lineages for
markers with significance of >0.01 and change of at least
10-fold (Supplementary Figure 9A) revealed consistently higher
CD59 expression on CD4 T-cells (all stages, except for TemRA;
CD45RA+CD27–) (35). Conversely, “senescence” marker CD57
and tetraspanin CD63 were both higher on CD8 T-cells in the
central memory (Tcm) stage.

In addition, multiple CD markers were differentially
expressed between stages of T-cell maturation. Naive CD8
T-cells (CD45RA+CD27+) were nearly all positive for the
CD45RA isoform, CD31 (PECAM-1), and costimulatory
molecules CD27 and CD28 (Figure 6) (36). While the

integrins (CD18 and CD11c) were expressed on all T-cell
subsets, their degree of expression increased with maturation
(Supplementary Figure 9B). The relative amount of surface
CD45RA was about twice as high as CD3, which in turn
was nearly twice that of CD27 (Supplementary Figure 9B).
The expression levels of regulators of activation were tightly
controlled as evidenced by low CV within each subset (CD3,
CD45RA, CD28, CD27, and CD31; Supplementary Figure 9C).
By definition, CD8 Tcm and Tem cells lacked surface CD45RA,
and all expressed the CD45RO isoform, generated by alternative
splicing. CD95 was expressed on all memory subsets, whereas
CD57 was gradually upregulated from Tcm to Tem subsets,
which in turn gradually lost CD31. Furthermore, CD28 positivity
decreased from Tcm to Tem. Finally, in TemRA, CD45RA was
re-expressed with a concomitant loss of CD45RO, and a massive
increase in CD57 positivity (37). In our gating strategy, a separate
population (CD45RAdimCD27+) was defined in-between CD8

Tnaive and Tcm. In contrast to Tnaive, CD45RAdim cells
expressed CD95 and CD45RO and lower levels of CD27, and

lacked CD38 expression. On the other hand, the CD45RAdim

cells were distinct from TemRA, as they did express CD28, and
not CD85j. The phenotype of CD45RAdim cells therefore seems
to fit with that of antigen experienced T memory stem cell subset
as has been suggested before (38, 39). Similar to CD8 T-cells,
transition of naive CD4 T-cells to memory was accompanied by
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CD42b were excluded from the plots in (B–D). Both markers were not expressed on any granulocyte or DC cell type (ABC < 2 × 102).

a decrease in expression of CD31, CD38, and CD45RA, while
CD45RO, CD95 (Fas-receptor), and CD84 (SLAMF5) were
upregulated (data not shown) (40, 41).

Thymocyte Differentiation
In addition to mature T-cells in blood, T-cell progenitors
in thymus were examined with a separate tube
(Supplementary Figure 3) (29, 42), thereby enabling complete
mapping of CD marker expression from early T-cell progenitors
until effector memory cells (Figure 7) with the maturation
tool in the web resource (Figure 1). This revealed that CD10 is
gradually lost as cells differentiate from the double negative (DN)
to the double positive (DP) stage, and is completely absent on
single positive (SP) CD4+ T-cells. Distinct expression patterns
were seen for costimulatory molecules CD27 and CD28. Early
progenitors already expressed medium levels of CD28, which
increased to a maximum after the DP stage, whereas CD27 was
low or absent until the DP stage, reaching its maximum just
before thymocytes exit to periphery at the CD1a-SP CD4 stage.
All thymocytes expressed CD31, which was gradually lost on
peripheral naive CD4 T-cells. CD11a was expressed on all stages

of T-cell differentiation, with varying degrees of intensity, and a
peak on effector memory T-cells.

Antigen-Dependent B-Cell Maturation in
Tonsil
Within the total HCA of CD1–CD100 on all cell subsets (Figure 4
and Supplementary Figure 8), the tonsil B-cell subsets were
clustered together, and within this cluster, three subclusters were
formed containing the three major functional compartments: (i)
B-lymphocytes, including naive and unswitched and switched
memory B-cells; (ii) germinal center (GC) cells, including
centrocytes (CC) and centroblasts (CB); and (iii) plasma cells
(PC), including CD138– and CD138+ PC. Over 30CD markers
showed statistically significant differences (p< 0.01) between any
two of these three major subsets, and a p < 0.001 was observed
for >20CD markers. Populations within each of the three these
subgroups were very homogeneous based with <5CD markers
significantly different (p < 0.01) between them.

PC and B-lymphocyte groups were most different with in
CD marker expression (p < 0.01, 37 CD markers; p < 0.001,
27CD markers). Those differences with a p < 0.001 included
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upregulation of a large set of adhesion and signaling molecules
(CD18, CD31, CD54, CD97, CD98, and CD99) together
with a different profile of expression of activation/signaling
markers (CD9, CD24, CD27, CD28, CD37, CD39, CD43,
CD44, CD45RA, CD52, CD53, CD63, CD79b, and CD81)
and complement receptor proteins (CD35, CD46, CD55, and
CD59) (28, 43). Visualization with the maturation tool from
the CD Maps web resource (Figure 1) showed that some of
these phenotypic features of an antibody-secreting cell signature
were already acquired in the GC compartment (Figure 8). These
phenotypic changes included upregulation of molecules involved
in adhesion/migration (CD54, CD98) and enzymatic activity
(CD10; pattern 3); changes in cell activation/signaling (CD24,

CD44) and complement receptors (CD35, CD59; pattern 6),
as compared to B-lymphocytes. PC and GC groups differed
in 20CD markers (p < 0.001), including those that were
already upregulated during the GC phase (CD54, CD59, and
CD98; pattern 3), reversion of phenotypic changes observed
during GC reaction (CD20, CD31, CD32, CD40, CD47, and
CD55; patterns 1, 2, and 4), and upregulation of markers
that were absent on both B-lymphocytes and GC cells (CD9,
CD28, CD43, CD63, and CD97). Finally, some markers were
upregulated (CD46 and CD99; pattern 2) or decreased as
compared to both B-lymphocytes and GC (CD37, CD45RA, and
CD52; pattern 5).

DISCUSSION

We here examined 111CD markers on 47 leukocyte subsets
using multicolor flow cytometry with the marker of interest in
the PE channel. The resulting expression profile is the largest
quantitative dataset of surface protein expression levels on
human immune cells.

The examined surface proteins represent those that were
defined clustered mAbs in HLDA workshops I–V that were held
in the 1980s and early 1990s (20–24). At that time, the protein
expression patterns were defined in great detail. However, with
advances in technologies and new insights into immune cell
function and subsets, we deemed the expression data incomplete,
not fully accurate, and lacking quantitative information. Indeed,
when we compare our data with a CD chart of a major antibody
vendor, we could find over 50 discrepancies and 25 missing
values. In part, those discrepancies stem from a positivity and
negativity definition on a broadly defined cell lineage: any
positivity found at any stage and/or activation status is regarded
as positivity on such chart. Our detailed analysis on well-defined
subsets potentially clarifies this.
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To ensure robustness and reproducibility of our data, we
standardized our experimental procedures and flow cytometer
setup according to the protocols that were established for clinical
use by the EuroFlow consortium (www.EuroFlow.org) (14).
Subsequently, the measurements were independently performed
in three to four laboratories, each acquiring data from three to
four donors with parallel acquisition of PE signal calibration
particles. Indeed, gating of subsets using the backbone markers
could be reliably performed on the data, irrespective of their
origin. There are limitations in the interpretation of the
signal near the background (a combination of autofluorescence,
spillover spread, non-specific antibody binding, and antibody
titer) that resulted in a “gray zone” at 200–700 ABC units in
lymphocytes and 1,000–10,000 ABC units in myeloid cells that
has to be evaluated by amore sensitive approach in future studies.

Thus, we have obtained a realistic dataset, which can be
prepared reproducibly in any laboratory following the same
operating procedure. Although we do not claim we have covered
population variation with only 12 donors per CD marker, by
displaying up to 12 donors using median values, outliers caused
by, e.g., rare genetic polymorphisms (CD45 isoforms or CD39)
or by accidental activation (CD69) would not overtly affect the
results (44–46). Accurate quantification of CDmarker expression
levels is not only important for biological function, but can be

utilized as well for a proper design of flow cytometry experiments,
where also intensity of expression is essential information for a
successful multicolor panel (47).

The unique feature of our data resource is the detailed
information in expression levels and changes between diverse
immune cell subsets, thus allowing interpretation of quantitative
changes during thymocyte development, B-cell maturation in the
tonsil, and between blood cell subsets that might share expression
of the same marker but with different quantities.

In the present study, we quantitatively mapped the expression
of 111 surface-expressed proteins on 41 non-overlapping
leukocyte subsets from three human tissues. With this being a
large-scale analysis and a systems approach, a few concessions
had to be made in experimental design. Accuracy of exact
quantification of CD marker expression is potentially skewed by
the antibody binding occurring through either one or two Fab
domains (48). Thus, the ABC unit that was used to quantitatively
depict expression has an errormargin of a factor 2 for the number
of expressed molecules. Still, our measurements for CD4 yielded
a median of 38,650 ABC (cloneMEM-241) for naive CD4 T-cells,
which was very similar to the previously published value of 42,000
ABC (clone SK3) (49). Finally, for this large-scale approach,
we only could use one antibody reagent for each given CD
marker. Selection criteria for these reagents included (1) being
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a clone that was approved in the HLDA workshops and (2) good
reactivity based on our in-house experience. Our pilot tests for
two clones for CD4 (MEM-241 and RPA-T4) and CD8 (MEM-31
and HIT8a) showed differences of up to 20% in expression levels.
As the clones we tested have been through the HLDA workshops,
these will serve as a benchmark that can either be matched or can
be surpassed by alternative reagents. The resource we have built
will be appended in the future with new clones, new reagents,
new CD markers, and new cell subsets. In the upcoming 11th
HLDA workshop, this methodological framework will be used to
measure and cluster antibody reactivities across subsets to help
assign new CD nomenclature. This approach follows the strategy
proposed by the International Working Group for Antibody
Validation (IWGAV) that has documented expression patterns
for 3,706 antibodies in immunoprecipitates (50, 51). Including
future reactivity patterns of HLDA 11 in the CD Maps resource
will enhance its role as a benchmark for the research community.

Regarding the immunobiology, we did not exhaustively define
all functionally defined immune cell subsets. With four tubes
using seven channels for the backbone each, we were able to
define 41 unique, non-overlapping subsets. Several cell types were
not included, such as helper T-cell subsets, regulatory T-cells, NK
T-cells, andmucosa-associated invariant T-cells (MAIT).With an
extended panel using more fluorescent markers, such limitation
can be overcome in future studies. However, rare cell populations
such as innate lymphoid cells will remain a challenge as this
would require the acquisition of more than a million events
per staining.

In conclusion, we have demonstrated the possibility to
systematically quantify the expression of surface-expressed
proteins on the multitude of immune cells using standardized
multicolor flow cytometry. There is a need for this standardized
systems approach to avoid confusion from separate observations
in individual laboratories, to correct potential mistakes in the
literature, and to predict potential off-target effects of antibody-
based therapies. The CDMaps web resource enables each user to
explore the data and it has the capacity to function as a platform
for surface molecule expression data that can be updated with
newer CDmarkers andmore leukocyte subsets.With the ongoing
activities of the HLDA workshops, the CD Maps project can
provide the means to get toward a full picture of the surfaceome
of human immune cells.
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