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The gut microbiota significantly regulates the development and function of the innate

and adaptive immune system. The attribute of immunological memory has long been

linked only with adaptive immunity. Recent evidence indicates that memory is also

present in the innate immune cells such as monocytes/macrophages and natural

killer cells. These cells exhibit pattern recognition receptors (PRRs) that recognize

microbe- or pathogen-associated molecular patterns (MAMPs or PAMPs) expressed by

the microbes. Interaction between PRRs and MAMPs is quite crucial since it triggers

the sequence of signaling events and epigenetic rewiring that not only play a cardinal

role in modulating the activation and function of the innate cells but also impart a

sense of memory response. We discuss here how gut microbiota can influence the

generation of innate memory and functional reprogramming of bone marrow progenitors

that helps in protection against infections. This article will broaden our current perspective

of association between the gut microbiome and innate memory. In the future, this

knowledge may pave avenues for development and designing of novel immunotherapies

and vaccination strategies.
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INTRODUCTION

The host immune system has the two major arms of protection. The first is innate immunity,
which is characterized by non-specific and rapid response against the infectious agent. The
second is adaptive, whose hallmark is specificity and memory (1). In the absence of adaptive
immune response, innate immunity takes charge of mounting a successful defense response in
many organisms (e.g., invertebrates, plants) including mammals (2). Innate immune memory is
an emerging concept initially coined by Netea and colleagues that defines the rapid protective
response of innate cells to heterologous infections (3–5). This is accompanied by the epigenetic
reprogramming that modulates their gene expression and metabolic state and thereby affects the
physiology and function of innate immune cells (6, 7). Notably, innate immune memory does not
lead to permanent changes in the genome of cells such as mutations and rearrangement of genes,
a characteristic of adaptive immune cells (T cells, B cells) (6). Recent findings showed the presence
of previously encountered memories even in the non-immune cells of the host (8, 9).
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The key players mediating the communication of host
and microbes are the sensors, known as pattern recognition
receptors (PRRs), expressed by innate immune cells such as
dendritic cells (DCs), monocytes/macrophages, and natural
killer (NK) cells (10–13). These PRRs recognize microbe- or
pathogen-associated molecular patterns (MAMPs or PAMPs)
(14–16) PRRs mainly include the families of toll-like receptors
(TLRs), nucleotide-binding oligomerization domain (NOD)–like
receptors (NLRs), C-type lectin receptors (CLRs), and RIG-I–
like receptors (RLRs) (10, 11). The microbiota recognition via
these PRRs may induce the memory response upon primary
exposure (17, 18). This immunological memory in innate cells
has been associated with non-specific vaccination effects. For
instance, NK cells and monocytes derived from BCG-immunized
individuals displayed a heightened immune response upon re-
stimulation and heterologous infections (19, 20). Further, there
is evidence of innate memory induction by polio and measles
vaccines in humans (21). However, much remains to be studied
in the context of gut microbiota–induced innate memory.

Gut microbiota has been established to be a crucial regulator
of immune cell development and function (10, 22). The gut
microbes and mammals have coevolved and cohabitated for
millions of years and exhibit a high degree of mutualism (23).
While the microbes get a habitat and nourishment from the
host, these microbes return the favor by regulating various
host physiological functions, including dietary digestion, and
imparting protective immunity against pathogens (24, 25).
Further, gut commensal–mediated competition for habitat site,
nutrients, or secretion of antimicrobial peptides aids in the
maintenance of homeostasis (26, 27). Additionally, signals
derived from gut microbes are suggested to tune the immune
cells for pro- and anti-inflammatory responses that may affect the
susceptibility to diseases (22, 28). Likewise, germ-free mice have
been shown to possess immune defects and impaired defense
systems (29).

In a healthy state, the immune system reacts against the
pathogenic microbes via activation of the inflammatory response,
while being tolerant of beneficial microbiota (24, 30). For
instance, bacterial phyla such as Bifidobacteria and Lactobacillus
are considered beneficial and thus classified as “symbionts.”
On the other hand, few species of Escherichia coli are viewed
as opportunistic pathogens (pathobionts) (31, 32). Thus, the
intestinal immune system requires a careful surveillance system
to constantly monitor the flora communities in the lumen
for maintaining the host defense. It is well-documented that
T cell homeostasis and differentiation and their function are
extensively modulated by the gut bacteria (33). For example,
Bacteroides fragilis and segmented filamentous bacteria (SFB)
have been reported to induce Tregs and Th17 cell differentiation,
respectively, in the intestine, thus affecting the host response
to infections (34, 35). It is still unclear how the gut microbial
population, and its components, could reprogram the innate
immune cells to exhibit memory responses.

Given the importance of gut microbiota, characterization
and understanding of the involved microbial factors that
determine the innate immune memory response is crucial for
constructing novel therapeutic interventions (3, 7). This review

provides current knowledge of gut microbial signatures and
their interaction with the innate cells in imparting them the
“memory” characteristics. It would be beneficial to develop
immunotherapies and vaccination strategies that can generate
memory features in innate cells to efficiently combat pathogens.
Here, we discuss and hypothesize the possible impact of gut
microbiota in inducing the beneficial innate memory response in
the host (Figure 1).

PROSPECTIVE LINK BETWEEN GUT
MICROBIOTA AND INNATE IMMUNE
MEMORY

The presence of microbiota-derived ligands/products/
metabolites affects the differentiation and function of myeloid
and lymphoid lineage innate cells via PRRs (36–38). Innate
immune memory has been seen to be an attribute of myeloid
cells (monocytes/macrophages), innate lymphoid cells (ILCs)
including NK cells, and bone marrow progenitors (39). It is
mediated by the transcriptional changes in genes or a specific
locus and epigenetic rewiring of these cells upon the primary
exposure (39). Consequently, the secondary response to the
subsequent infections is enhanced, rapid, and nonspecific
(Figure 2). This phenomenon also exists in the bone marrow
progenitors, indicating the systemic effects of gut microbiota
(40), and the induced memory may persist from weeks up to
months (20, 41).

Training of PRRs expressing innate cells with gut
microbial/non-microbial ligands is required as a protective
mechanism independent of adaptive immunity during
secondary infection/pathogenic exposures (42). For instance,
administration of unmethylated CpG oligodeoxynucleotides
prior to infection confers protection in a sepsis and meningitis
model (43). Further, polysaccharide β-glucan has been reported
to impart defense against Staphylococcus infection (44, 45).
Other microbial components such as peptidoglycan that are
expressed on numerous bacteria generate innate memory in
Toxoplasma infection (46). In addition, cytokines such as IL-18,
IL-12, IL-6, IL-23, IL-1β, and IL-15 have been demonstrated to
generate memory response in innate cells (47, 48). Several studies
established the existence of NK cell memory that leads to their
increased activation upon second stimulation (43, 48). Moreover,
DCs from protectively immunized mice demonstrated memory
response against a fungal pathogen. These DCs showed increased
IFN signaling pathway activation and specific histone (H3K4me3
and H3K27me3) modifications (49).

Importantly, commensals in the gut are involved in the
production of immunomodulatory metabolites that comprise
short-chain fatty acids (SCFAs) such as butyrate, acetate, and
propionate (50–52). Further, commensals such as Bacteroides,
Lactobacillus, and Bifidobacteria synthesize secondary bile acids
that are derived from the metabolism of primary bile acids (53–
55). Binding of these bioactive molecules to the receptors on the
innate cells regulate their metabolism and functions (51, 56).

SCFAs serve as inhibitors of histone deacetylases (HDACs) in
innate cells such as DCs and macrophages (57–59). Moreover,
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FIGURE 1 | Schematic illustration of gut microbiota as potential inducer of innate memory. The gut microbial products serve as a source of microbe-associated

molecular patterns (MAMPs) that bind pattern recognition receptors (PRRs) on innate cells such as monocytes/macrophages and natural killer (NK) cells. Further, this

cell activation is accompanied by the epigenetic and metabolic reprogramming which is responsible for their increased cytokine release and heightened immune

response upon the subsequent pathogenic exposure. Moreover, these microbial ligands reach the bone marrow through blood circulation and condition the

hematopoietic progenitors to induce long-term memory traits and enhance myelopoiesis for mounting the beneficial inflammatory response during systemic infections.

it was shown that SCFAs boost the population of myeloid
precursors, resulting in protection against infection (60, 61).
Additionally, secondary bile acids are known to modulate gut
microbial composition (62). Further, they influence the function
of innate cells by inhibiting NF-κB activation (63, 64). These
findings suggest the possible epigenetic regulation of these cells
via metabolites in the process of innate memory formation.

Emerging evidence suggests that diet-induced microbial
changes in the gut could lead to the long-lasting rewiring of
the innate cells. Interestingly, western diet (WD) has been
linked to enhanced innate immune response. It is shown
to induce epigenetic and transcriptional reprogramming of
myeloid progenitors via the NLRP3 inflammasome and IL-1R
signaling (65). In this case, WD-induced dysbalanced cholesterol
biosynthesis led to the accumulation of mevalonate, which is
implicated in the generation of innate memory. Indeed, a few

studies indicate that maternal diet during pregnancy can have a
pronounced effect in shaping the offspring microbiome (66, 67).
Further, the gut may be a source of bacteria present in breast
milk (68, 69). Of note, microbial exposure during pregnancy
enhances the ILC3 and F4/80 (+) CD11c (+) mononuclear cell
population in the gut of neonates along with the reprogramming
of their intestinal transcriptional profiles. This effect is attributed
to the transfer of maternal antibodies that retains the microbial
signatures (70). In addition, infections during pregnancy can
induce maternal immune activation (MIA), which can lead to
the generation of immune cells with “memory” phenotype via
epigenomic changes (71, 72). This can result in the condition
of hyperimmune activation and neuropsychiatric diseases later
in life.

Apart from the diet, stress is another emerging factor that
can elicit innate memory phenotype (73, 74). Host cells secrete
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FIGURE 2 | Representative model of innate immune memory response. After initial exposure to gut microbial components, innate cells with “memory” traits respond

rapidly with high magnitude of immune response to the secondary stimulation.

an array of small molecules upon stress or any cellular damage
that can activate PRRs (75). These molecules, termed danger-
associated molecular patterns (DAMPs), resemble PAMPs and
thus are potential inducers of innate immune memory in cells
(75). Social stress also releases IL-6, IL-1β, and TNF-α cytokines
(73). Exposure to stressors has been demonstrated to trigger gut
microbe–mediated release of MAMPs in blood circulation (76).
Further, stressors implicate modification of H3K9 histones and
the activation of transcription factor ATF7 (77).

Gut microbiota has been reported to play a key role in
the induction of innate immune memory and protect against
infections in both vertebrates and invertebrates (78, 79). These
robust, non-specific memory effects mediated by MAMP–
microbiota interaction may contribute to the development
of effective vaccines and therapies that rely on boosting the
host innate defense. Understanding the phenomenon and the
involved mechanisms can be utilized to train these innate cells
and enhance their function against pathogenic infections in the
host. Further, this would aid the design and development of novel
therapies to treat diseases (80).

MECHANISMS OF INNATE MEMORY
INDUCTION BY MICROBIAL
COMPONENTS

Recent studies have highlighted the array of mechanisms
through which microbes imprint memory phenotype in innate
cells. Transcriptional changes are the hallmark of memory
imprints in innate cells, which involve chromatin modifications;

specifically, the activation and expression of inflammatory genes
take place many times higher than the basal level. This happens
via the enhanced accessibility of DNA to enhancers/promoters,
increased histone methylation, and acetylation along with
enzyme RNA polymerase activity (81). These events are
accompanied by transcription factor (NF-κB, STAT molecules,
AP-1) translocation and activation (82–84). After the initial
exposure to microbial ligands, DNA methylation/histone
modifications continue to trigger rapid response upon re-
exposure. Further, various immunological pathways such as
STAT1, JNK, and MAPK are activated in the process of innate
memory generation. For instance, MAPK activates the ATF7
transcription factor and decreases the repression of histones
by recruiting the histone H3K9 dimethyltransferase (85).
For instance, BCG changes the transcriptional signatures of
hematopoietic stem cells (HSCs) to promote myelopoiesis and
generate more potent macrophages that can protect against
subsequentMycobacterium tuberculosis infection (9). Of interest,
a diet enriched in low-density-lipoprotein cholesterol such as
WD elicits the expansion of HSCs along with the reprogramming
of granulocyte monocyte precursor cells (GMPs) through the
activation of NLRP3 inflammasome and possibly includes gut
dysbiosis (65).

Importantly, cells with innate memory were reported to
exhibit increased size, granularity, and activated phenotype
(86). They are usually deprived of acetylation and lack
active transcription. However, their inflammatory cytokine
gene promoters are marked with histone methylation (H3K4),
conferring them the attribute of rapid response upon re-exposure
(87). These epigenetically rewired innate cells may be sustained
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in the host niche as seen in the case of NK cells and monocytes
(40, 88). Interestingly, microbiota absence in mice impaired
the histone modification in NK cells, rendering them unable
to trigger a protective inflammatory response against viral
infection (78).

Interestingly, various cellular metabolic pathways are involved
in triggering and maintaining these epigenetic modifications
(89, 90). Induction of memory features by β-glucan (microbial
polysaccharide) is accompanied by a metabolic shift to aerobic
glycolysis; this is referred to as the “Warburg effect” (91).
Several studies reported that genes of the mTOR-HIF1α pathway
were induced in β-glucan triggered monocytes that have
undergone epigenetic changes, i.e., H3K4me3 and H3K27ac
(7, 91). Moreover, TCA cycle metabolites such as mevalonate,
succinate, and fumarate induce the activation of genes required
to generate innate memory (92, 93). The pathway of cholesterol
synthesis and mevalonate through the activation of IGF1
receptor andmTOR and further enrichment of histoneH3K4me3
generated innate memory (93). There are also studies indicating
the metabolic shift that leads to enhanced aerobic glycolysis,
cholesterol synthesis, and NAD+/NADH ratio in cells (7,
91). Further, another metabolite, acetyl-CoA, has been shown
to induce histone acetylation of genes related to glycolytic
enzymes, such as phosphofructokinase, hexokinase 2, and
lactate dehydrogenase (LDH), thus increasing glycolysis and
inducing memory phenotype (94). In fact, β-glucan has also
been shown to access bone marrow and act on myeloid-
biased long-term HSCs (40). It is accompanied by changes in
lipid metabolism, IL-1β signaling, and activation of the GM-
CSF/CD131 axis. This β-glucan–mediated training is sufficient
to protect against secondary challenges and recover from
chemotherapy-induced myelosuppression.

The occurrence of innate immune memory relies on factors
such as dose/amount and duration of initial inflammatory
stimulus or PAMP. For example, a single low dose of
lipopolysaccharide (LPS) was able to induce more release
of proinflammatory molecules upon re-exposure and thus
induce innate memory (86). In another study, a similar
phenomenon was observed via epigenomic changes such as
histone H3K4me1 modification. On the contrary, four-time
administration of LPS led to the tolerant phenotype in
cells (95). Moreover, Ifrim et al. reported that moderate to
high doses of PRR ligands such as flagellin (10µg/ml), LPS
(100µg/ml), and poly I:C (100µg/ml) led to tolerance (86).
On the contrary, a low to moderate dose of β-glucan (1µg/ml)
and muramyl dipeptide (MDP) (10µg/ml) was able to elicit
memory generation.

PRR MEDIATED REGULATION OF INNATE
MEMORY BY GUT MICROBIOTA

Gut microbiota is a source of ligands that serve as MAMPs
and activate innate cells expressing PRRs. In the homeostatic
condition, the aberrant PRR activation is limited by various
mechanisms such as the mucus layer (96); secretion of

antimicrobial peptides, e.g., defensins (97); regenerating islet-
derived protein 3 gamma (RegIIIγ) release by Paneth cells (98);
secretory IgA (99); and inhibitory TLR signaling (100–102).
Further, the PRR expression is context-dependent and varies
in cell types to control the deleterious inflammatory response
(16, 103). Interestingly, it is seen that the administration of
Lactobacillus plantarum protected well against viral infections
(104, 105). Further, there is emerging evidence that gut
microbiota is known to affect innate memory phenotype at the
distant mucosal sites or peripheral tissues. Yao et al. reported the
immunological memory phenotype and protective functions in
alveolar macrophages after respiratory virus infection (106).

In the context of memory, initial stimulation of innate cells
by MAMPs serves as a factor for “priming” and functionally
reprogramming of these cells to mediate heightened non-specific
response to subsequent pathogenic exposure (39). Gut microbial
components, mainly peptidoglycan, flagellin, β-glucan, and
lipoproteins, may induce memory phenotype in the innate cells,
which could underline their potential as an effective adjuvant for
vaccination studies (107, 108).

Peptidoglycan: It is an important component of the bacterial
cell membrane envelope, not present in the eukaryotic host. It
is found in both gram-positive and gram-negative commensals
(109). Further, the synthesis of peptidoglycan is ubiquitous in gut
bacteria that is recognized by NOD receptors (110). For instance,
NOD-1 binds only γ-d-glutamyl-meso-diaminopimelic acid
(DAP)–containing muropeptides, whereas NOD-2 recognizes
the MDP component (34). Further, a report demonstrated
that NOD-2 induced H3K4me3 epigenetic modification in
monocytes, a feature linked to innate memory (111). Moreover,
NOD receptor activation triggers the inflammasomes to secrete
cytokines such as IL-1β and IL-18, which is implicated inmemory
generation (112).

Flagellin: It is the essential component of many commensals
and pathogens that activates TLR-5 signaling on innate cells
(113). CD103+ DCs in the intestine recognize flagellin and
secrete IL-23, which in turn triggers the ILCs to secrete IL-22 and
thus facilitates innate defense (114).

β-glucan: This cross-linked glucan particle is commonly
found in fungi and some bacterial cell walls (115). It is reported
to induce long-term memory response in macrophages and bone
marrow progenitors (40). This is accompanied by accumulation
of metabolite mevalonate and Warburg effect in innate cells
(91, 93). β-glucan is known to bind dectin-1 receptor (44, 116).

LPS: It is a glycolipid majorly found in the outer membrane
of gram-negative bacteria and induces activation of TLR-4
and downstream NF-κB signaling (117). Earlier studies have
shown that pretreatment with LPS prevents subsequent infection
(118, 119). Further, LPS derived from gut microbes such as
Bacteriodetes species is a potent activator of innate response
(120), although the dose of LPS is a crucial factor to determine the
induction of either memory or tolerant phenotype in cells (86).

Amongst the PRRs, TLRs are the most extensively studied
transmembrane or intracellular glycoproteins that recognize a
variety of microbial ligands or MAMPs as discussed above (10,
11). TLRs trigger signaling pathways, which leads to the secretion
of cytokines and gene transcription in monocytes/macrophages
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and bone marrow progenitors (10). Triggering of TLR-2 by
microbial lipoteichoic acids, lipoproteins, lipopeptides, and
glycolipids activates NF-κB and is known to impart protection
in intestinal acute inflammation (121). Additionally, initial
priming of macrophages with TLR-2 and NOD-2 has been
shown to confer protection against acute infection (105). This
rapid response to continuously exposed mucosal tissue appears
to be an essential part of host defense. In addition, a study
demonstrated that stimulation of TLR-3 on macrophages with
dsRNA could lessen the symptoms of DSS-induced colitis (122).
Another study demonstrated the protective response in colitis
upon TLR-3 activation by dsRNA of lactic acid–producing
commensals (123).

In a healthy intestine, sensing of microbial LPS by TLR-
4 is required to defend against invading pathogens (14).
At homeostasis, there is a low level of TLR-4 expression,
which gets elevated in inflammatory conditions and diseases.
This results in the activation of innate immunity to restrict
pathogenic exposure (124). Moreover, TLR-5 binds the
flagellated bacteria and imparts protection to Enterobacter
and Salmonella infections in the host (125, 126). Furthermore,
another intracellular receptor, TLR-9, binds to the unmethylated
CpG dinucleotides, which are abundant in commensals
(127). TLR-9 activation stimulates the secretion of many
proinflammatory cytokines including IL-12, which is
considered a crucial cytokine to induce innate memory
phenotype. Notably, it is the pathogenic microbe, not
commensals, that breaches the gut lining and activate the
basolateral TLR-9 receptor (128, 129). Notably, host genetic
variations in the microbiota composition and pathogenic
exposure could impact the commensal-mediated immune
memory induction.

Another important class of PRRs involved in the education of
innate cells is intracellular NLRs (130). Interestingly, commensal
recognition by NLRs maintains homeostasis in the gut, while
the pathogenic species of Salmonella and Helicobacter pylori
trigger the inflammatory response (131, 132). NOD-1 and NOD-
2 expressed in monocytes/macrophages are known to recognize
microbial peptidoglycans DAP and MDP, respectively (34). NLR
activation initiates the signaling pathways such as p38, MAPK,
and NF-κB and elicits the release of cytokines (such as IL-1β
and IL-18) that are known to induce innate memory phenotype
(47, 48, 133). A study revealed that gut microbiota–derived
peptidoglycan enhanced the pathogen-clearing capacity of bone
marrow–derived neutrophils. The MDP fragments from the gut
translocated to the bone marrow and triggered the neutrophil
activation via NOD-1 signaling (134). This raises the possible
hypothesis that gut microbial components reach peripheral sites
and affect their epigenetic programming to imprint the memory
phenotype (40).

Noticeably, these PRRs’ stimulation may also lead to the
tolerogenic phenotype, but this relies on the nature and duration
of exposure to the initial microbial stimuli (135). Thus, these
PRRs mediated modulation of innate cells should be monitored
and utilized to generate the protective memory phenotype and
ultimately the rapid, heightened, and efficient response against
invading pathogens.

GUT MICROBIOTA INFLUENCES
FUNCTIONAL REWIRING OF BONE
MARROW PROGENITORS

The impact of microbiota in the immediate sites of
colonization such as the intestine, skin epithelium, and
respiratory mucosa is quite plausible (27). However, its
role in the primary site of hematopoiesis (bone marrow)
may have significant immunological relevance. Long-term
innate immune memory can be apparent in either the
persistence of reprogrammed monocytes/macrophages in
different tissues or modulation of bone marrow progenitors.
This can be easily hypothesized, from the fact that LPS
treatment in germ-free mice led to an elevation in the level
of inflammatory cytokines and neutrophil recruitment and
thus imparted systemic immunity (118). Concordantly,
microbiota-derived peptidoglycan trigger NOD-1 receptor in
peripheral blood neutrophils and boosted their anti-bacterial
activity (134).

Monocytes, macrophages, and DCs that play a crucial
role in shaping the immune response fall under myeloid-
derived cells. Myeloid-derived cells originate in the bone
marrow and then populate all lymphoid and non-lymphoid
tissues. The myeloid cellular system has a non-redundant
capacity to act in concert during the elimination process of
pathogens and re-establishing tissue integrity (136). Recent
reports demonstrated that gut bacteria, especially gram-
negative bacteria, regulate granulopoietic events (137–140).
Goris et al. showed that germ-free and polymyxin-treated
mice have a lower number of bone marrow progenitor
cells (141). Further, these germ-free mice complemented
with fecal matter from wild type showed the reversion of
the myelopoiegenic capability of precursors in generating
colony-forming unit–granulocyte/macrophage (CFU–GM)
colonies (142).

Interestingly, naïve mice with bone marrow transferred from
the SFB and Clostridium spp. colonized mice demonstrated
protection from Entamoeba histolytica infection. This is
due to the expansion of marrow GMPs and increased
expression of the epigenetic mediator JMJD3 in GMPs.
SFB also altered the bone marrow DCs such that they
have an enhanced capacity to secrete IL-23 (143). Further,
adoptive transfer of DCs from SFB-supplemented mice
to SFB-deficient mice was sufficient to protect against E.
histolytica infection (143). Additionally, IL-1β and GM-CSF
cytokines released from peripheral sites have been shown
to confer the innate memory trait to the bone marrow
cells (40, 65, 144).

The F4/80hi macrophages have an embryonic origin, while
F4/80lo leukocytes have a hematopoietic origin (145, 146).
To test the contribution of gut microbiota in the promotion
of myelopoiesis, germ-free and specific pathogen–free (SPF)

mice were administered a thymidine analog, 5-ethynyl-2
′

-
deoxyuridine (EdU). In comparison to SPF mice, germ-free
mice showed reduced uptake of EdU in both F4/80hi and
F4/80lo phagocytes (61). This observation highlighted that
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commensals play a prominent role in the preservation of both
the HSC-derived myeloid and splenic yolk sac–derived cells
along with the inflammatory monocytes (145, 147). Further,
NOD-1 is known to be responsible for mediating myeloid
cell longevity. A study has shown decreased levels of NOD-
1 ligand (DAP) in mice with antibiotic-altered microbiota,
and upon NOD-1 stimulation, they found an abundance of
IL-17–secreting lymphocytes in the intestine, which relay the
microbial detection for systemic control of the phagocyte life
span (148).

CROSS TALK OF GUT MICROBIOTA AND
ILCs

ILCs are known as the subset of innate leukocytes of lymphoid
morphology that are mainly located in the mucosa. They lack
antigen-specific rearranged receptors and have been grouped
into NK cells and three classes as ILC1, ILC2, and ILC3
based on the type of cytokines they produce (149). Non-
specific memory NK cells generated upon cytokine stimulation
have been shown to exhibit a strong immune response
to infections.

Amongst ILCs, group 3 ILCs have a key role in the innate
immune response to invading pathogens in the gut. They
are the prominent source of IL-22 and other antimicrobial
proteins (AMPs) in the lamina propria of the intestine. IL-
22 binds to receptors present on the intestinal epithelial cells
(IECs) and induce the secretion of AMPs (RegIIIγ and RegIIIβ),
which eventually limit the colonization of pathogens such
as Citrobacter rodentium (150–152). Further, the functions of
ILC3 are influenced by the gut microbial metabolites (153).
Gut microbiota also aids in the conditioning and development
of ILCs (154, 155). Further, germ-free and antibiotic-treated
mice have a relatively diminished subset of NCR+ RORγt+
ILC population (156–158). A recent study revealed that TLR-
2 agonists can directly bind to human RORγt+ ILC, inducing
the secretion of IL-2, which further triggers the release of IL-
22, a cytokine known to be implicated in antimicrobial defense
(159). It would be interesting to see whether the interaction
between gut microbiota and these ILCs imparts them the
memory traits.

IECs AS A MEDIATOR OF MICROBIOTA
AND IMMUNE CELL INTERACTION

IECs stand as a single-cell barrier between the intestinal
microbiota and the submucosal immune cells. When the IEC
barrier senses microbial pathogens, it reinforces its integrity
and thus protects against pathogen invasion (160). IECs
expressing TLRs are stimulated by commensal-derived ligands,
triggering the release of proinflammatory cytokines such as IL-
6 and TNF-α (14). Further, gut-derived metabolite butyrate
binds the IECs and triggers the innate sensors such as
NLRP3 inflammasome to secrete IL-18 (112, 161). Commensal
bacteria–derived peptidoglycan has been shown to trigger

NOD-1 receptor in IECs. This event is accompanied by
the production of defensin molecule and chemokine CCL20
secretion, which compel the generation of isolated lymphoid
follicles (ILFs), which are the site of B cell recruitment
and immune response generation (162). Moreover, there are
intestinal mononuclear phagocytes (iMPs), residing in the
intestinal sub-epithelium (163). Although the ontology of iMPs
is still in debate, they comprise macrophages and DCs that
regulate intestinal homeostasis (164). It is possible that these cells
with copious expression of several PRRs upon stimulation by
gut microbial components get memory signatures and persist in
secondary organs.

Intestinal epithelial stem cells (IESCs) are crucial cells in
the gut that have the capacity to differentiate into IECs. Gut
microbiota composition has a significant impact on the IESC
activity and renewal of intestinal epithelium, which is located
at proximity to the lumen (165). Interestingly, SCFAs such as
butyrate serve as a source of energy for IECs in metabolic
processes and act to inhibit HDAC activity in IESCs (166, 167).
Although it not very conclusive as of now to state the particular
species of bacteria that is specifically responsible for such
regulation, it is clear that some microbial metabolites stimulate
the Wnt/β-catenin pathway and maintain the IESCs (168). Other
signaling pathways, namely the JAK and STAT pathways, are very
important in the bacteria-modulated epithelium homeostasis
via stem cell regulation (165, 169, 170). These cells may
serve as the potential niche for the generation of long-term
innate memory.

FUTURE DIRECTION AND CONCLUDING
REMARKS

The development of non-specific innate immune memory
appears to be a crucial evolutionary phenomenon to
benefit and protect the host against a variety of pathogens.
Gut microbiota performs the intricate function of
immune system maturation in neonates (171). Thus,
the induction of memory in innate cells during this
process appears to be a part of the host–microbiome
co-adaptation to mediate a prompt response to the
infectious stimulus.

It is evident that there would be circumstances in which
the innate memory can lead to the deleterious systemic
inflammatory response. If that persists for a long time, and
activates innate cells in conditions such as sepsis, it can lead
to tissue damage or immune paralysis. Further, the differential
generation of innate memory in various organs, its duration
in various immune cells, and the signaling pathways induced
by gut microbial components need to be investigated in
the future.

In conclusion, the process of innate memory generation
should be considered as an effective approach to boost
host defense and well-managed to minimize side effects
while being favorable to the host. Beneficial commensals
or derived products that induce the effective innate
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memory with regulated inflammatory response can be
utilized as potential novel therapeutics to treat infections
and diseases.
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