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C-C motif chemokine ligand 2 (CCL2) is a chemoattractant for leukocytes including

monocytes, T cells, and natural killer cells and it plays an important role in maintaining

the integrity and function of the brain. However, there is accumulating evidence that

many neurological diseases are attributable to a dysregulation of CCL2 expression.

Acquired immune deficiency syndrome (AIDS) encephalopathy is a severe and frequent

complication in individuals infected with the human immunodeficiency virus (HIV) or the

simian immunodeficiency virus (SIV). The HIV and SIV Nef protein, a progression factor in

AIDS pathology, can be transferred by microvesicles including exosomes and tunneling

nanotubes (TNT) within the host even to uninfected cells, and Nef can induce CCL2

expression. This review focuses on findings which collectively add new insights on how

Nef-induced CCL2 expression contributes to neurotropism and neurovirulence of HIV

and SIV and elucidates why adjuvant targeting of CCL2 could be a therapeutic option

for HIV-infected persons.

Keywords: AIDS, astrocyte, autophagy, chemokine, dementia, inflammation, neuron, virus

INTRODUCTION

Acquired immune deficiency syndrome (AIDS), caused by the human immunodeficiency virus
(HIV) (1, 2), has to date resulted in the deaths of over 32 million people. According to the
2019 UNAIDS Global AIDS Update, 1.7 million people became newly infected with HIV in 2018
resulting in a total number of 37.9 million people living with HIV worldwide. To date, there is no
effective protective vaccine against HIV or even a feasible cure available for HIV-infected patients
(3, 4).

In the mid-1990s combined anti-retroviral therapy (ART) was introduced, which considerably
reduced the mortality of HIV-infected patients. However, since then, the prevalence of
HIV-associated diseases has increased. A major obstacle toward the development of therapies
against these diseases that affect a number of organs such as the heart, lungs, kidneys, and the
brain is due mainly to the fact that the disease pathogenesis is poorly understood (5–8). In
the meantime, there exists at best a consensus that a systemic and persistent activation of the
immune system plays a major role in the disease pathogenesis (9–11). Moreover, it is difficult to
accurately differentiate between age-related neurodegeneration, other neurodegenerative diseases
and HIV-associated neurocognitive disorders (HAND) (12). However, attempts have been made to
identify biomarkers to diagnose neurocognitive impairment in HIV-infected persons and activated
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monocytes/macrophages and C-C motif chemokine ligand 2
(CCL2) appear to be the most promising amongst them (13).

CCL2, also named monocyte chemoattractant protein 1, is a
chemotactic cytokine for monocytes (14) and T cells (15), which
are the main target cells of HIV-1. CCL2 decreases interferon-
alpha expression (16), and promotes HIV/SIV replication by
up-regulation of surface C-X-C motif chemokine receptor 4
expression (17).

CCL2 binds to the C-C motif chemokine receptor 2 (CCR2),
which is expressed by neurons (18), human fetal astrocytes
(19) and brain microvascular endothelial cells (BMECs) (20).
CCL2 also binds to the D6 chemokine decoy receptor, which is
expressed on adult human astrocytes (21).

The CCL2-CCR2 axis has been shown to play a key
role in multiple sclerosis and in experimental autoimmune
encephalomyelitis (22), in addition to exacerbating neuronal
damage after status epilepticus (23), eliciting itch- and pain-like
behavior in allergic contact dermatitis (24), as well as mediating
alcohol-induced neuroinflammation and neurotoxicity (25).

HIV AND SIV ASSOCIATED DEMENTIA,
ENCEPHALITIS AND NEURONAL DAMAGE

Without combined ART, HIV causes dementia which is
characterized by deficiencies in cognition, motor disorders,
and behavior abnormalities (26). Pathological manifestations
of HIV-associated dementia (HAD) appear as meningitis,
encephalitis and vacuolar myelopathy (27). A similar clinical
picture has been observed in the SIV/macaque model (28,
29). Even after the introduction of combined ART, HAND
remain (8), and, in fact SIV-infected macaques treated with
suppressive ART also show ongoing neurodegeneration and
inflammation (30). The reason for this phenomenon is unknown
although several explanations have been proposed, e.g., that
anti-retroviral drugs cannot access the central nervous system
(CNS), are not effective in eliminating viral reservoirs, or
themselves contribute to HAND (31, 32). However, since specific
CNS-targeted ART failed to improve neurocognition in HIV-
infected patients compared to non-CNS-targeted (33), it has
been hypothesized that early events after primary infection
with HIV/SIV are critical for initiating the development of
HAND (8).

Indeed, SIV was detected in the brains of macaques within
a few days after intravenous infection (34, 35). Further, HIV
nucleic acid was detected in the brain of an HIV naïve patient
who died 15 days after intravenous inoculation of indium-111-
labeled white blood cells, which originated from an HIV-infected
individual (36). Additionally, a more recent study showed that
HIV RNA is present in the cerebrospinal fluid (CSF) of humans
as early as 8 days after HIV infection (37). This suggests that
HIV/SIV is capable of exploiting a distinct mechanism to enter
the brain rapidly.

Entry of SIV into the brain and induction of neuropathology
does not appear to depend on a sustained high viral load because
the SIVmac32H(pC8) strain, whose replication is attenuated
in vivo (38, 39), was detected in the brain 3 days after infection

of macaques where it caused persisting neuroinflammation
(40). The attenuated phenotype of SIVmac32H(pC8) is most
probably due to a 12 base-pair deletion in its nef gene, which
results in an in-frame deletion of the amino acids 143–146 of
the translational product (38). Although this Nef variant was
detected at lower levels in vitro compared to other variants
(41), it was definitely detected in the brain of macaques infected
with SIVmac32H(pC8) (42). However, SIV strains containing
nucleotide deletions in the nef long-terminal repeat (nef /LTR)
overlap region, analogous to the HIV strain of the Sydney blood
bank cohort (SBBC), could not be detected in the brains of
macaques despite viral replication in the periphery (43). Of
note, members of the SBBC who had become infected with an
HIV strain containing the nucleotide sequence deletions in the
nef /LTR region that results in a truncated Nef protein of 24
amino acids (44), did not or only slowly progressed to AIDS
including HAD (45).

THE NEF PROTEIN OF HIV/SIV:
IMPORTANCE FOR AIDS PROGRESSION
AND ITS INTERCELLULAR TRANSFER

The importance of Nef for AIDS progression was confirmed
in SIV-infected rhesus monkeys and HIV-transgenic mice (46,
47). Additionally, it was shown that Nef is required for high
viral load in vivo (47). These findings have stimulated a series
of studies aiming to identify the mechanistic background with
the ultimate goal to exploit the knowledge for therapeutic
intervention. Indeed, numerous cellular interaction partners and
pathophysiological functions of Nef have been detected (48, 49),
and several models of how Nef executes its role in HIV/SIV
replication and immunopathogenesis have been proposed (50).
In 2009, Kyei et al. showed that HIV Nef inhibits autophagic
maturation in human macrophages and thereby provided a
convincing explanation of how Nef acts at the molecular
level to enable efficient replication of HIV (51). Inhibition
of autophagy increases the production of proinflammatory
cytokines (52, 53) including CCL2 (54, 55). Thus, Nef also seems
to contribute to chronic inflammation, which occurs in HIV-
infected persons (56).

HIV Nef was found in supernatants of nef -expressing BHK
cells (57), yeast (58), andHEK293 cells (59), which was surprising
at the time of these discoveries because nef does not code for an
N-terminal signal sequence that would direct the protein to the
cell secretory pathway leading to export. Thus, the mechanism
by which Nef is released from infected cells was regarded as
an open question. In the past, on analyzing the supernatants of
BHK cells infected with recombinant vaccinia virus expressing
HIV Nef, it was assumed that Nef could be released by vesicles
(57). Today, it is recognized that not only proteins but also
lipids and RNA can be released from a cell by extracellular
vesicles (60).

In 2003, it was shown that HIV Nef induces an accumulation
of multivesicular bodies (MVBs) and that Nef itself is present
in MVBs (61). MVBs can fuse with the cell plasma membrane,
leading to the release of 40–90 nm diameter vesicles, termed
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exosomes, into the extracellular environment (62). Consequently,
it was tempting to speculate that Nef could be released from cells
by exosomes. However, it was challenging to test this hypothesis
in HIV-infected cells because Nef is incorporated in virions
(63, 64).

The astrocytoma cell line TH4-7-5 is persistently infected
with the HIV isolate TH4-7-5 which has a mutation in the nef
gene (GenBank accession number: L31963.1), resulting in a
myristoylation-deficient Nef (65). However, myristoylation
of Nef is required for optimal HIV replication in vitro
(66). Thus, a myristoylation-deficient Nef and a block
in HIV Rev function most probably effected a very low
production of infectious virus but a high production of Nef
in astrocytoma TH4-7-5 cells (65, 67). We took advantage
of the astrocytoma cell line TH4-7-5 and examined whether
Nef is present in the supernatants of these cells. Application
of a two-step centrifugation protocol, previously shown to
enable the enrichment of microvesicles including exosomes
from cellular supernatants (68), resulted in the detection
of Nef in the pellets of centrifuged supernatants of these
cells (69).

It was later confirmed that Nef is released from HIV-infected
cells (70, 71) by microvesicles and it was even claimed that this
occurs via exosomes (72). However, there is still an ongoing
debate regarding the type of vesicle by which Nef leaves the
cell (73, 74). Further, Nef was detected in microvesicles and
exosomes isolated from the plasma of HIV-infected persons
despite them receiving ART, and it has been shown that exosomes
derived from HAD patients can transfer nef mRNA to cells,
leading to Nef expression and subsequent induction of cellular
genes (75, 76).

Nef was also found in uninfected human peripheral blood
mononuclear cells (PBMCs), which can transfer Nef to human
umbilical cord vein endothelial cells (77). A recent study not
only reported that Nef is released by vesicles from HIV-
infected cells, but also confirmed the result for SIV-infected
cells and has additionally shown that extracellular vesicles
containing Nef circulate in the blood of SIV-infected macaques
(78). Meanwhile, the process of protein and mRNA transfer
by exosomes and other extracellular vesicles even between
different types of cells is well understood (79). In summary,
irrespective of the type of extracellular vesicle from which Nef
is released by HIV/SIV infected cells, Nef is present in the
extracellular environment independently of virions and can
enter uninfected cells where it affects cellular functions and
gene expression.

Additionally, cells can exchange molecules and organelles
directly via tunneling nanotubes (TNTs), which are about 50–
200 nm long thin actin rich membrane conduits, even between
different types of cells (80). Nef can induce TNT formation
(81, 82), and it can also be transferred to B cells via TNTs
from HIV-infected macrophages (83), from macrophages to
T cells (82), from nef -expressing T cells to hepatocytic cells
(84) and also between macrophages (81). Importantly, Nef is
transferred from T cells and monocytes to human coronary
arterial endothelial cells via TNTs, leading to apoptosis and CCL2
expression (85).

NEF-INDUCED CCL2 EXPRESSION AND
THE FUNCTION OF THE
BLOOD-BRAIN-BARRIER

CCL2 increases the blood-brain barrier (BBB) permeability (86,
87), andmuch progress has beenmade in revealing the molecular
mechanism of how leukocytes, governed by CCL2, pass the
BBB (88). Therein, astrocyte and BMEC-derived CCL2 play
complementary roles (89).

A natural repair mechanism to restore damaged brain
tissue after experimentally-induced ischemia starts with the
recruitment of CCR2+Iba1+ monocytes from the periphery,
which then differentiate into brain Iba1+NG2+ cells within the
brain parenchyma (90, 91). Transmigration of CCR2+Iba1+

monocytes through the BBB is enabled by a transient expression
of CCL2 in astrocytes and endothelial cells that lasts for only 2
days (92). Indeed, under normal physiological conditions, the
BBB is impermeable for circulating monocytes (93, 94), and
therefore invasion of a healthy brain by HIV/SIV should not
happen as fast as it has been observed. But a specific HIV/SIV-
triggered mechanism leading to CCL2 expression in BMECs
may enable HIV/SIV to get access to the brain either in the
form of free virions or via infected CCR2+ cells. In this respect,
it was significant to observe that Nef (i) can be transferred
from human PBMC to human endothelial cells (77), (ii) was
detected in endothelial cells of nef -transgenicmice andmacaques
infected with SHIV-nefSF33, and (iii) induces CCL2 expression
in endothelial cells (85).

Invasion of the brain by leukocytes would additionally require
an upregulation of adhesion molecules on both endothelial and
infected cells. Indeed, it has been shown that HIVNef upregulates
the intercellular adhesion molecule 1 (ICAM-1) in vascular
endothelial cells (95). ICAM-1 interacts with the lymphocyte
function-associated antigen 1 (LFA-1), and its subunits, CD11a
and CD18, are upregulated in HIV-infected monocytes (96, 97).
Endothelial-derived CCL2 activates CD11a, leading to a firm
arrest of monocytes on endothelial cells (98, 99), and mediates
the subsequent transendothelial migration (100).

In summary, the findings collectively result in a model in
which Nef-containing PBMCs and extracellular vesicles carrying
Nef attach to and transfer Nef into endothelial cells, leading to
CCL2 production that can cause BBB leakiness and subsequent
entry of HIV/SIV by infected cells into the brain (Figure 1). Of
note, this provides a simple explanation of why SIVwith a deleted
nef gene cannot enter the brain (43).

NEF-INDUCED CCL2 EXPRESSION AND
NEURONAL DYSFUNCTIONS

Once in the brain, HIV/SIV cannot be eliminated by ART.
The virus persists and triggers a chronic inflammation leading
to sustained leukocyte infiltration, astrogliosis and neuronal
degeneration (102, 103). In brain tissues of HIV-infected patients,
HIVDNAwas detected in the cells of themacrophage lineage and
in astrocytes, the most abundant cell type in the brain. However,
it was not found in neurons (104), which is in accordance with
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FIGURE 1 | Contribution of Nef-induced CCL2 expression to HIV/SIV neurotropism. HIV/SIV infected monocytes release microvesicles and exosomes that transfer

Nef into brain endothelial cells (a), where Nef induces a signaling pathway (b) that leads to release of CCL2 at the luminal side of the BBB (c) and upregulation of

ICAM-1 (d). CCL2 binding to CCR2+cells triggers a conformational change of LFA-1 that enables their firm adhesion to brain endothelial cells via LFA-1–ICAM-1

interaction (e). Endothelial CCL2 expression enables transendothelial migration of HIV/SIV-infected CCR2+monocytes into the brain parenchyma (101) (f). There

HIV/SIV infects astrocytes and microglia (g).

the finding that perivascular macrophages and microglia, but
not neurons, can be productively infected with HIV/SIV (105,
106). These findings indicate that an indirect mechanism causes
neuronal dysfunction and damage, and microglia that release
exosomes and microvesicles containing Nef (107) may play an
important role therein. It has long been known that HIV and
SIV antigens are present in astrocytes of primary infected tissues
(106, 108). Recently, a hypothesis was proposed that explains this
finding (109) and challenges the consensus that HIV/SIV can
infect astrocytes (110).

Significantly, Nef is highly expressed in astrocytes (111),
promotes replication of HIV (112), and is also released by
exosomes (113) or any other extracellular vesicle (114). Human
astrocytes infected with recombinant Sindbis virus vector
encoding HIV nef produced elevated CCL2 mRNA levels, which
was independent of the nef variant tested (115). Induction of
CCL2 expression by HIV Nef was confirmed in U-251MG
astroglioma cells transfected stably with nef (116), in primary

rat astrocytes in vivo (117), and in primary murine macrophages
and microglia (118). Animal models have provided evidence that
there is a direct link between Nef-induced CCL2 expression and
neuronal dysfunction and damage. Macrophages expressing HIV
Nef, which were implanted into the rat hippocampus, triggered
immigration of monocytes/macrophages, tumor necrosis factor
expression, and astrogliosis, a hallmark of HIV encephalitis
(HIVE). In addition, the neurotoxicity triggered by Nef was
associated with cognitive deficits (119). Cognitive deficits in
particular spatial and recognition memory were observed in
rat brains in which primary astrocytes were implanted that
expressed HIV Nef. This was associated with Nef-induced CCL2
expression, which resulted in immigration of macrophages in
the hippocampus and loss of hippocampal CA3 neurons in
these animals (117). In transgenic mice, in which HIV Nef was
expressed specifically in macrophages and microglia, CCL2 was
increased in the brain, and the dopamine system was affected,
leading to mania-like behavior, especially in males (118).
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There are several studies demonstrating that increased CCL2
concentrations correlate with HAD/HAND. Elevated levels of
CCL2 were detected in the CSF of HIV-infected individuals
positively diagnosed with HAD (120, 121). Microglia and
astrocytes of HIV-infected persons suffering from HIVE produce
CCL2 (122), which was confirmed for SIV infected macaques
(123). Additionally, a specific small nucleotide polymorphism in
the CCL2 promoter, which leads to increased CCL2 expression
and infiltration of mononuclear phagocytes into tissues correlates
positively with the risk of HAD (124). Cocaine, known to

exacerbate neurodegeneration in persons infected with HIV,
induces CCL2 expression in microglia and leads to increased
transmigration of monocytes into the brain (125).

It is now also known that CCL2 affects neurons directly in
addition to enhancing the transmigration of infected leukocytes
through the BBB (126). For example, over-induction of CCL2
in astrocytes causes dopaminergic neurodegeneration in 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice (127), and an
inhibition of CCL2 expression protects neurons against amyloid-
beta-induced toxicity (128). Indeed, CCL2 mediates cell death

FIGURE 2 | Contribution of Nef-induced CCL2 expression to HIV/SIV neurovirulence. (A) HIV/SIV-infected microglia and astrocytes infect uninfected microglia and

astrocytes (a), and disseminate Nef via exosomes (b), microvesicles (c) and TNTs (d) to uninfected cells. Nef harboring astrocytes and microglia express CCL2 (e).

CCL2 stimulates CCR2 signaling in neurons leading to their dysfunction (f) and death (g). (B) CCL2 produced by Nef harboring astrocytes and microglia (h) is

transported transcellularly across BMEC (136) to act on CCR2+cells along the luminal side of the BBB (i). CCL2 binds to CCR2 on BMEC and mediates disruption of

endothelial junctions (86, 87) to foster invasion of CCR2+cells into the brain (j).
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in neurons of the hippocampal CA3 region after kainic acid-
induced seizures in mice. Neuronal degeneration was associated
with behavioral impairment, memory decline, and anxiety (129),
all characteristics which have been observed early after infection
of humans with HIV and even in HIV-infected persons receiving
ART (130–132).

CCR2, the receptor of CCL2, is present on neurons (18), and
its absence reduced brain damage as well as BBB permeability
in an experimental stroke model in mice (133). Similar to the
process in an HIV/SIV infection, CCR2 plays a key role in the
accumulation of myeloid cells in the brain and the activation
of hippocampal myeloid cells upon infection with Theiler’s
murine encephalitis virus (TMV). Notably, CCR2 deficient mice
had almost no hippocampal damage during TMV infection
(134). Thus, CCL2 represents a convincing candidate to explain
neuronal dysfunction and damage (135) which occur in HIV/SIV
infected humans and animals (Figure 2). Additionally, CCL2 is
major mediator of pain (137), and chronic pain is a common
burden in people living with HIV/AIDS (138).

SUMMARY

The findings summarized herein not only integrate well into
the “Trojan horse” model that states that a cell infected with
HIV/SIV enters the brain leading to a persistent infection and
consequently HAND (139) but also add to this model the fact
that the transfer of Nef by microvesicles into endothelial cells and
the subsequent induction of CCL2, mimics a pathophysiological
state of the brain to which monocytes are recruited normally.
Nef, in combination with other HIV/SIV proteins and even anti-
retroviral drugs, possibly work together more efficiently to enable
a rapid entry of HIV/SIV-infected cells into the brain (140).
This interplay presumably plays a general role in HIV-associated
diseases (141).

In the brain, HIV/SIV-infected cells such as astrocytes and
microglia distribute Nef to uninfected cells via microvesicles and
TNTs. Thereby, there is a steady increase in the number of Nef-
bearing, non-infected cells which produce CCL2. HIV Tat in
astrocytes seems to contribute to an increase in the levels of

CCL2 in the brain (142, 143). The persistent non-physiological
expression of CCL2 leads to sustained cell infiltration into the
brain and a disturbance of neuronal functions. If a person is
infected with HIV subtype B then Tat could enhance CCR2
activation through its acidic region (144, 145). Moreover,
when present in sufficiently high concentrations in the brain,
Tat could definitely exacerbate neuronal dysfunctions through
its basic region (146). Moreover, besides CCL2, the C-X-
C motif chemokine 10 (CXCL10) has also been identified
as a biomarker for HAND (13), especially in HIV-infected
women (147) and this chemokine can also be induced by
Nef (115).

CONCLUSION

The findings summarized here classify HIV/SIV Nef-induced
CCL2 expression in the complex pathogenesis of HAND, and
once again highlight the special role which the CCL2-CCR2
axis can play in a neurological disease. Consequently, drugs
which have been developed to target this chemokine or its
receptor could also be an option for an adjuvant therapy in
HIV-infected persons.
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