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Glucocorticoids (GCs) are known to have a strong impact on the immune system,

metabolism, and bone homeostasis. While these functions have been long investigated

separately in immunology, metabolism, or bone biology, the understanding of how GCs

regulate the cellular cross-talk between innate immune cells, mesenchymal cells, and

other stromal cells has been garnering attention rather recently. Here we review the

recent findings of GC action in osteoporosis, inflammatory bone diseases (rheumatoid

and osteoarthritis), and bone regeneration during fracture healing. We focus on studies of

pre-clinical animal models that enable dissecting the role of GC actions in innate immune

cells, stromal cells, and bone cells using conditional and function-selective mutant mice

of the GC receptor (GR), or mice with impaired GC signaling. Importantly, GCs do not only

directly affect cellular functions, but also influence the cross-talk between mesenchymal

and immune cells, contributing to both beneficial and adverse effects of GCs. Given

the importance of endogenous GCs as stress hormones and the wide prescription of

pharmaceutical GCs, an improved understanding of GC action is decisive for tackling

inflammatory bone diseases, osteoporosis, and aging.

Keywords: glucocorticoids, glucocorticoid receptor, osteoporosis, arthritis, inflammation, fracture healing,

conditional knockout mice

INTRODUCTION

Glucocorticoids (GCs) form one major axis of the stress response (1) and are used as
immunosuppressive therapeutics in a variety of inflammatory bone diseases (2, 3). Strong impact
on innate immune cells, namely macrophages, dendritic cells, and mast cells, contribute to the
inhibition of inflammation. On the other hand, GCs are known to cause the most frequent
secondary osteoporosis at conditions of high GC exposure. In this processmyeloid cells, osteoclasts,
and mesenchymal cells and their derivatives, chondrocytes, osteoblasts, and osteocytes are affected.
Whereas, the cell-autonomous roles of GCs acting via the nuclear glucocorticoid receptor (GR)
had been investigated intensively, the knowledge about the influence of GCs on cross-talk
between innate immune cells, mesenchymal cells, and bone cells is scarce. How GCs act on
cellular interactions in the osteo-immunological network is currently unraveled and is subject to
this review.
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GLUCOCORTICOIDS (GCs), STRESS
HORMONES AND ANTI-INFLAMMATORY
AGENTS

Two different axes initiate the human physiological reaction
to stress. While the activation of sympathetic-adrenal medulla
(SAM)-axis starts a short-term stress reactions, long-term
stress responses are mediated by the hypothalamus-pituitary-
adrenal (HPA)-axis. Stress exposure results in the releases
of corticotrophin-releasing hormone (CRH) from the
hypothalamus, causing the synthesis of adrenocorticotropic
hormone (ACTH) in the anterior pituitary gland, which activates
the production of GCs in the adrenal cortex via induction of key
enzymes of steroid synthesis (4).

Under long-term stress conditions GC release from the
adrenal cortex also results in diverse physiological adaptations.
Cortisol activates gluconeogenesis in the liver, decreases
pancreatic insulin secretion, and promotes the release of
glucagon. Furthermore, blood pressure elevates, the effect
of catecholamines is potentiated, and a mild sodium/water-
retention induced (5).

Since the first successful treatment of arthritis (6), GCs
have been in frequent use and approximately 3% of the
elderly population are being treated with GCs (7, 8), to reduce
inflammatory symptoms in acute and chronic inflammatory
diseases, including rheumatoid and osteoarthritis.

Adverse side effects of GCs on the human body have been
observed upon extended treatment with daily prednisolone-
doses of 7.5mg and above. Besides the Cushingoid phenotype
and osteoporosis, metabolic side effects as peripheral insulin
resistance, type 2 diabetes and dyslipidemia are predominant (1).
In addition, atrophy of skin and impact on the central nervous
system can occur. To a similar extent, long-term GC treatment
affects the cardiovascular system, resulting in hypertension,
thrombotic stroke or myocardial infarction (9). These well-
known side effects often preclude long-term treatment and cause
occasional severe long lasting damage to the patient. Given the
strong acute action of GCs to reduce inflammation, however, side
effects are accepted to a certain extent in clinical praxis.

At the molecular level, intracellular GC-activity depends
on the enzymes 11β-hydroxysteroid dehydrogenase type 1
and 2 (11β-HSD1 and 11β-HSD2). 11β-HSD1 catalyzes the
conversion of cortisone into active cortisol, 11β-HSD2 mainly
induces the reverse reaction by inactivating cortisol (10).
A specific ratio of both isozymes is given in different
tissue types, for example 11β-HSD1 being predominant in
liver and adipose tissue (11). Molecular actions of GCs are
initiated by binding to the mineralocorticoid receptor (MR)
and the GC receptor (GR). Due to the wide expression of
GR compared to MR and the inactivation of GCs by 11β-
HSD2 in MR high expressing tissues, most of the GC effects
are mediated by the GR as evident from knockout studies.
However, the role of MR in inflammation is becoming more
recognized and is reviewed elsewhere (12). The GR belongs
to the nuclear receptor superfamily and acts as a ligand-
induced transcription factor, resulting in transactivation or
transrepression of genes (10). The GR structure is constituted

by four domains: the transactivation domain AF1/2 (docking
station for co-regulators and regulative enzymes), the DNA-
binding-domain, the ligand-binding domain (binding locus
for GCs) and the hinge-region (involved in translocation of
GR) (10). When located in the cytoplasm GR, is in a state
of high affinity to GCs and captured in a complex with
immunophilins (FKBP51), heat-shock-proteins (Hsp90) and
p23 (13). GC binding leads to an exchange of FKBP51 into
FKBP52, resulting in translocation of the protein complex via
interaction with the microtubules (10, 13). In case of nuclear
transactivation, the GR tends to dimerize and bind to specific
motives on target DNA, the GC response element (GRE).
The ability of GCs to downregulate genes is mediated in part
by GR-binding to negative GREs and consecutive recruitment
of corepressors; all leading to deacetylation of histones
and decrease of gene transcription [reviewed in (10, 14)]. A
“tethering mode” whereby a GR-monomer interacts with
DNA-bound inflammatory transcription factors (NF-κB, AP-
1, STAT3, IRF3) instead of directly binding to DNA was
observed for the repression of genes encoding pro-inflammatory
mediators, such as cytokines and matrix metalloproteases
(15). This way of cytokine-transrepression eventually leads
to immunosuppression. Furthermore, crosstalk exists between
DNA-bound GRs and NF-κB or AP-1 bound to transcription-
factor binding-sites in the vicinity. However, both mechanisms—
transactivation via dimerized GRs and transrepression via
tethering of monomeric GR—are obligatory for complete anti-
inflammatory GC actions (16). Non-genomic GR-effects can be
observed under high-dose GC-application and modulated by
GR-interaction with membranes or mitochondria (3).

Short term rise in physiological levels of GCs can stimulate
the immune function, whereas immunosuppression resulting
from chronic stress, favors infections or tumorigenesis (17).
The immunomodulatory actions of GCs are amongst other
functions achieved by priming of innate immunity. Under
physiological stress conditions macrophage phagocytosis, natural
killer-cell activity and cytokine production are increased (17).
Furthermore, a wide range of stress-effects on leukocytes is
observed: ranging from enhanced proliferation and distribution
in the lymphatic system or better endothelial adhesion, to
leukocyte margination and transmigration into the inflamed
tissue (17). In contrast, chronically elevated GCs levels impair
leukocyte proliferation and redistribution and cytokine and
prostaglandin synthesis (17).

Accordingly Frank et al. (18) showed that GCs play an
important role as an alarmin in neuroinflammatory priming.
Stress induced high GC levels result in NLRP3 inflammasome
priming, whereby the innate immune system (e.g., microglia)
switches into activation mode (18). Frank et al. describe
this paradox GC-induced neuroimmune activation under
neuroinflammatory conditions to be an adaptive way of
preparing against potential neuronal injuries or infections (18).

Thus, GCs via the GR suppress inflammatory reactions,
but may also stimulate them, depending on pharmacological
conditions. Whereas, for immune suppression several molecular
mechanisms of the GR, transactivation of anti-inflammatory
acting genes and repression of pro-inflammatory acting

Frontiers in Immunology | www.frontiersin.org 2 October 2019 | Volume 10 | Article 2460

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Ahmad et al. Glucocorticoids in Osteoimmunology

genes is required, the mode of action for immune priming
remains elusive.

How the different modes of action of the GR impact
osteoimmunological cross-talk by influencing bone and immune
cells is discussed in this review.

GLUCOCORTICOID (GC) ACTION ON
BONE: DIRECT EFFECTS AND THE
MODULATION OF THE CROSSTALK OF
BONE CELLS

Cell Autonomous Effects of GCs on Bone
Cells
Previous research focused on cell-autonomous effects of GC
and GR action within bone cells toward bone homeostasis and
insights were provided by the use of cell type specific mutant
mouse strains compromising GC signaling.

Intriguingly, GCs at the physiological levels have anabolic
effects on bone. They promote the formation of osteoblasts from
mesenchymal progenitor cells and are essential for maintaining
bone homeostasis (19). This is evident from patients (20),
since fracture risk is increased during adrenal insufficiency (21)
and was shown experimentally through the use of mice that
have either impaired GC metabolism in the osteoblast lineage
or a selective deletion of the GR. Overexpression of the GC
inactivating enzyme 11β-HSD2 in mice in early differentiated
osteoblasts (22–24), but not at late differentiation stages (25)
led to a reduction of cortical and trabecular bone mass in adult
mice. Furthermore, a defective mineralization in the calvaria was
observed which was associated with diminished Wnt Signaling
(26). A reduced trabecular bone mass was also seen in mice
lacking the GR in the osteoblast lineages using the Runx2 as
a driver for the cre expression in the cre-loxP system (27).
Furthermore, GR deficient cells displayed strongly diminished
differentiation potential in vitro. Since osteocytes are also mutant
in GRRunx2Cre mice, currently it remains unclear how much the
GR in osteocytes contributes to the bone mass at physiological
conditions. Taken together, endogenous GC signaling via the GR
promotes osteoblastogenesis. However, the GR is not essential for
osteoblast generation. The embryonic lethal GR knockout mice
(27) and mesenchymal specific GR knockout mice (28) displayed
no absence of calcification in late stage embryos. Thus, GR is a
positive modulator of osteoblastogenesis, but not a crucial factor.
In contrast to the GR deletion in mesenchymal cells, deletion
of GR in myeloid cells including macrophages, neutrophils, and
osteoclasts, does not affect bone in adult mice in the absence of
inflammation, indicating that osteo-immunological cross-talk in
the absence of inflammation at physiological GC levels plays a
minor role in controlling bone mass (27).

This becomes strikingly altered at conditions with high
exposure of GCs as it occurs in steroid therapy. GC-
induced osteoporosis is among the most common so-called
secondary osteoporosis (29), when bone loss is induced as side
effects by medication. Here exogenous GCs have contrasting
effects to endogenous GCs on osteoblasts, which decreases
their proliferation (30), differentiation, and induce apoptosis

and modulate autophagy (25, 31–35). Whereas, induction of
autophagy seems not to be decisive for inhibition of osteoblast
and osteocyte function in vivo (36), an impaired differentiation
and induction of apoptosis likely lead to decreased bone
formation rate (27, 33). The molecular mechanisms of the
pharmacological effects on osteoblast function are partially
understood. The inhibition of proliferation and differentiation
is supposed to be due to inhibition of growth factors (IGF-1,
WNT proteins, BMPs), expression and inhibiting the activity
of their downstream signaling pathways [reviewed in (10, 19)].
The molecular mechanisms of this inhibition involves in part
the induction of inhibitory molecules such as DKK1, Sclerostin,
secreted frizzled and WIF1, all antagonizing Wnt signaling (19,
37). Furthermore, negative interference of the activity of the
transcription factors AP-1 andNotch had been proposed (27, 38).
Recently, the involvement of miRNAs was suggested (39, 40).
This was challenged by a study showing that the abrogation
of dicer dependent processing of miRNAs did not inhibit
decreased bone formation by GCs in osteoblast specific mutant
Dicer mice (41). The induction of osteoblast and osteocyte
apoptosis, another cellular phenotype associated with decreased
bone formation was attributed to suppression of the pro-survival
gene Bcl-XL and increase of pro-apoptotic genes BIM and BAK
(42–44). Additionally the generation of reactive oxygen species
by rapid activation of pro-active kinases Pyk2, and JNK were
suggested (45) (Figure 1).

GCs also directly act on osteoclasts stimulating initial
resorption after high GC exposure (46), which then declines
with prolonged GC exposures. These effects are known to
be mediated through the stimulatory actions of GCs on
proliferation and differentiation of osteoclast precursors as well
as by prolongation of their longevity (47–49). In contrast,
early progenitors are attenuated by GCs (48, 49). This latter
effect might explain the decline of resorption at very long GC
treatments. Nonetheless, once the osteoclasts had been formed
GCs lead to enhanced longevity (46, 50), apoptosis could be
suppressed, and the effects of receptor activator of nuclear factor
kappa-B ligand (RANKL) potentiated. Importantly, this was
abrogated in osteoclasts from GRA485T (GRdim) knock-in mice,
with impaired GR dimerization (50, 51). This indicates that in
contrast to GC-mediated suppression of bone formation for the
increase of resorption, GR dimer dependent genetic programs
are required.

GCs Affecting Cellular Cross-Talk of Bone
Cells
Since the observation that bone formation and bone resorption
are functionally coupled at the bone remodeling unit (52), cross-
talk of cells in bone was considered as a hall mark of bone
metabolism. This observation was supported by the discovery
that osteoblasts and osteocytes are regulating bone resorption
by triggering osteoclastogenesis via the induction of the pro-
osteoclastogenic factor RANKL (53, 54) following exposure
to M-CSF. This occurs in response to systemic hormones,
such as PTH. RANKL on the other hand is counteracted
by OPG. GCs seem to affect this cross-talk in part as well,
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FIGURE 1 | GCs affect cross-talk of bone cells and their communication with muscle, vasculature and myeloid cell-derived osteoclasts. GCs act directly and indirectly

on bone, hematopoietic and mesenchymal cells and tissues that affect bone integrity. Endogenous GCs (green) rather favour differentiation of osteoblasts, whereas

exogenous (red) rather decrease proliferation, differentiation and enhance apoptosis and autophagy of osteoblasts and osteocytes by differential regulation of

signalling molecules of the Wnt and BMP pathway and pro- and anti-apoptotic molecules. Direct effects on osteoclasts are differential concerning longevity, apoptosis,

osteoclastogenesis (for details see text) and indirect by altering RANKL/OPG ratio. GCs regulate cross-talk of vasculature toward bone and muscle toward bone by

exerting modulatory effects on both systems (muscle atrophy) and likely impairing H-type vessels, since respective signalling molecules (VEGF and PDGF-BB are

regulated by GCs).

since GCs induce RANKL and suppress OPG in osteoblastic
cells, affecting bone resorption (27, 55–57) (Figure 1). RANKL
inhibition by Denosumab in humanized mice improved some,

but not all parameters of bone loss to GC effects (57). For
the increase of osteoclasts in cortical bone, RANKL expression
in osteocytes is decisive as shown by Piemontese et al. using
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mice with a conditional deletion of RANKL using RanklDmp1Cre

mice (58).
Besides, the crucial soluble factors RANKL and M-CSF, TNF

and TREM2 ligands play a decisive role in commitment, fusion
and maturation of osteoclasts (59). Of these, TNF expression
is strongly reduced by GCs at a transcriptional and post-
transcriptional level. GM-CSF itself is reduced by the GR via
interaction with NF-AT/AP-1 binding sites in the enhancer of
the GM-CSF gene (60) (Figure 1). This is consistent with the
observation that the onset of osteoclastogenesis is inhibited by
GCs, which depends on cell autonomous effects (48, 49) and
the down regulation of extracellular mediators. The latter was
shown by coculture experiments where GCs strongly suppressed
osteoclastogenesis dependent on the GR in osteoblasts despite the
GR deficiency in osteoclast progenitors (27). This might play in
particular a role during inflammation, where osteoclastogenesis
and resorption is usually enhanced, and might be beneficially
counteracted by GCs. Whether other osteoclast regulatory
extracellular factors are under the control of GCs and whether
this matters for osteoclastogenesis and activity is still unexplored.

Even less is understood, whether GCs affect osteoclast signals
toward osteoblasts or osteocytes. This is still due to the paucity
of knowledge of osteoclast-derived factors influencing osteoblasts
and osteocytes. Among these identified are ephrinB2, the D2
isoforms of vacuolar (H+) ATPase (v-ATPase) V0 domain
(Atp6v0d2), the complement component 3a, semaphorin 4D and
microRNAs [reviewed in (61)]. It is not known whether any
of these are regulated by GCs to our knowledge. Regulation
of microRNAs had been shown for cell-autonomous effects
in osteoblasts and osteoclasts, respectively, but whether the
osteoclast-osteoblast communication or vice versa is affected is
unknown. Thus, for this type of cross talk there is tremendous
scope for research.

GCs Influencing Cross-Talk of Vasculature
and Bone Cells
Bone is highly vascularized and previous work demonstrated that
vascularization and angiogenesis is coupled with bone growth
and bone homeostasis (62–64). GCs have a profound inhibitory
action on vasculogenesis in bone accompanied by inhibition of
HIF-1α and its target gene vascular endothelial growth factor
(VEGF) (65). This is accompanied by edema formation in
the femoral head in mouse bone, an area with considerable
amount of vessel remodeling. In OG2-11β-HSD2 transgenic
mice, overexpressing the GC inactivating enzyme 11β-HSD2 in
osteocalcin expressing cells, the decrease of vasculature volume
was in part prevented (62, 65). Recent studies identified the
presence of a subtype of vessels, so-called H-Type vessels, positive
for CD31 and endocmucin being associated with bone formation
(63). These H-Type vessels were found to be reduced by GC
excess, a process that could be prevented by addition of platelet-
derived growth factor-BB (PDGF-BB) (66). Since PDGF-BB is in
part derived from osteoclast progenitors (67), PDGF-BB could be
a factor targeted by GCs.

Taken together, the precise contribution of GC signaling in
cells of the vasculature vs. osteoclasts, osteoblasts and osteocytes

remain to be determined, which will be of importance to decipher
the effects of GC excess on bone integrity.

GCs Influencing Cross-Talk of Muscle and
Bone
Since GC excess does not only influence bone strength, but
also leads to muscle atrophy, this increases the risks of falls
and reduces load on bone, thus accelerating bone loss and
increasing fracture risk (68). GCs induce protein degradation
in muscles associated with induced FoxO-dependent expression
of E3 ubiquitin ligases atrophy F-Box [MAFbx/atrogin and
muscle RING finger 1 (MURF1)], which is mediated in part
through the GR in muscle (69–71). Surprisingly, some of these
genes are also regulated in bone by excessive GC amounts
(68), suggesting that some deleterious pathways might be shared
between bone and muscle. The cross-talk between muscle and
bone exist beyond the mechanical load. Kim et al., discovered
that the muscle derived hormone Irisin binds to alphaV class
of integrins in osteocytes and might stimulate resorption and
increased sclerostin expression (72). Whether further soluble
factors participate in this muscle bone cross-talk and whether
they or Irisin signaling itself, are a target of GCs remains to be
investigated. Nonetheless, both direct effects on muscle and on
bone cells accelerate weakness of bone.

Interestingly, in the absence of inflammation, models of
GC induced osteoporosis so far provide no clear evidence
of regulation of the cross-talk between bone cells such
as osteoblast/osteocytes with innate immune cells, except
osteoclasts and their progenitors. This does not mean that
GC mediated regulation of this cross-talk does not exist.
However, this has not been addressed so far with appropriate
cell conditional mouse models. This is completely different for
conditions of inflammation in bone described below, where
regulation of cross-talk emerges as a major theme for limiting
inflammation at least in arthritis.

GC EFFECTS ON INFLAMMATORY BONE
DISEASES—DIRECT EFFECTS AND
EFFECTS ON STROMAL-IMMUNE CELL
CROSS-TALK

Effects of GCs on Innate Immune Cells
Innate immune cells, in particular mast cells, tissue macrophages,
neutrophils and other cell types secrete inflammatory mediators
(cytokines and vasodilator agents) during chronic inflammation,
as it occurs e.g., during tissue damage. GCs are known to suppress
the production of inflammatory mediators partially by acting
on Toll-like receptor (TLR) signaling (73, 74). They also act on
macrophages to inhibit the production of eicosanoids, which are
lipid mediators that promote vascular dilation and permeability
(75, 76). GCs also reduce the blood flow to inflammatory sites by
sensitizing endothelial cells to vasoconstrictors and by inhibiting
the production of vasodilators (77). In addition, GCs attenuate
leukocyte extravasation by inhibiting transcription of integrins
and their ligands, intercellular adhesion molecule 1 (ICAM1)
as an example (78, 79). Finally, GCs inhibit the expression of
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many pro-inflammatory cytokines and chemokines. Mice with
conditional GR ablation in macrophages or dendritic cells (DCs),
produced higher levels of IL-1β, IL-6, TNF, and IL-12, and
exhibited greater mortality during experimentally induced sepsis
(80–82). Whereas, downregulation of chemokines, such as CC-
chemokine ligand 2 (CCL2), CCL3, CCL5, restrains leukocyte
migration, and deficiency of macrophage-recruiting molecule
MCP-1 in mice (also known as C-C motif chemokine receptor
2 [CCR-2]), led to compromised fracture healing (83).

Interestingly, GCs reduce mast cell number, maturation and
activation (84–87) and stabilize mast cells dose-dependently by
inhibiting their exocytotic process. This effect is ascribed to
the non-genomic actions of GCs, acting via the GR present in
the plasma membrane of mast cells, and directly influencing the
intracellular Ca2+ signaling pathway (88). In a mouse model of
11β-HSD1 deficiency, reduced intracellular GC action in mast
cells correlated with increased activation demonstrating a clear
influence of 11β-HSD1 on mast cell degranulation (89).

Despite suppressing inflammatory activity of immune cells,
the concept emerges that GCs terminate inflammation by
polarizing cells toward an anti-inflammatory phenotype. This
has been thoroughly investigated in macrophages. Several
studies demonstrated that GCs induce specific differentiation of
monocytes with an anti-inflammatory phenotype and promote
their survival, contributing majorly to the resolution of
inflammation (90–93).

The induction of anti-inflammatory acting immune cells is
decisive for resolution of inflammation during fracture healing
and arthritis and is subject to GC action.

GLUCOCORTICOIDS (GCs) AND
FRACTURE HEALING

Cells Involved in Fracture Healing
The role of GCs during fracture healing, a process that requires
multiple communication steps between different cell types, is
not well-understood. Fracture healing involves close interaction
between bone cells and immune cells. Bone injury causes
the onset of inflammation. A fracture hematoma is formed
containing DAMPs and PAMPs (danger/pathogen-associated
molecular patterns), erythrocytes, inflammatory cytokines and
cells of the innate immunity. The inflammatory phase is followed
by the repair phase where a cartilaginous callus is formed and
then remodeled by osteoblast and osteoclasts (94).

Several innate immune cells are present in the early fracture
hematoma such as neutrophils, macrophages and mast cells
(95–98). Activated mast cells release inflammatory mediators,
including histamine, KC, IL-1β, TNF, and IL-6, as well as various
chemokines attracting other immune cells (99, 100). Neutrophils
and macrophages migrate to the injury site in response to
inflammatory mediators to phagocytose debris and pathogens
(96, 97, 101, 102) (Figure 2).

Depletion of neutrophils, leads to impairment of fracture
healing in mice (95, 103), and a reduction of mesenchymal tissue
repair in a rat model of growth plate injury (104). Macrophages
persist during all phases of fracture repair (96, 97), where they are

important for bone healing (105). In a mouse model of femoral
fracture, Raggatt et al. showed that inflammatory macrophages
were required for the initiation of the fracture repair, while
both inflammatory and osteomacs, specialized resident bone
macrophages, promoted anabolic processes during endochondral
callus formation (106). Mast cell deficiency in mice, however,
causes a reduction of the inflammatory response after fracture
and disturbed callus remodeling. In the same study, in vitro
investigation suggested histamine as a major mediator of mast
cells action on osteoclastogenesis (98) (Figure 2).

During the repair phase, mesenchymal precursors, close to
the site of the fracture, differentiate into chondrocytes and start
the process of endochondral ossification. A cartilaginous soft
callus is formed in order to stabilize the fracture (107). Under
stable mechanical conditions the vascularization of the callus is
initiated and subsequently followed by its mineralization and its
conversion into bone (108). Finally, the callus is remodeled by
osteoclasts and osteoblasts and the original bone architecture is
restored (109).

Cells of the immune system influence the process of
endochondral ossification. Tissue resident and infiltrating
macrophages, in particular M2 macrophages enhance
vascularization by secreting VEGF at the fracture site (97).
They also release TGF-β that plays a pivotal role in chondrogenic
differentiation of mesenchymal stem cells for callus formation
(110). Monocytes, neutrophils, DC, and B and T lymphocytes
produce RANKL and subsequently influence osteoclast and
osteoblast activity (111, 112) (Figure 2).

Effects of GCs on Fracture Healing
The injury represents a stress stimulus that triggers endogenous
GC release to control the inflammation. We have previously
shown, in a mouse model of fracture, that mice with an induced
global deletion of the GR, including bone and immune cells,
had an impaired fracture healing. The presence of the GR
had a protective role in our model partially by shaping the
inflammatory response (113).

Few studies investigated the effects of synthetic GCs on
fracture healing. It was shown that short-term treatment with
GCs had minor effects on bone repair (114) while long-term
treatments significantly impaired the healing process (115, 116).
In a medaka fish fracture model, although both chronic and acute
GC treatment affected osteoclast recruitment and osteoblast
accumulation, only chronic GC treatment significantly delayed
the healing (117).

The role of GCs on endochondral ossification in fracture
healing hasn’t been widely investigated. In a model of
glucocorticoid-induced osteoporosis, endochondral ossification
was impaired after fracture as chondrocyte hypertrophy was
delayed (118). In a tibial metaphyseal fracture model, GR
deletion in chondrocytes attenuated endochondral bone healing
by momentarily increasing the cartilage content of the callus,
but didn’t impact negatively on the healing outcome (119).
In contrast, treatment with dexamethasone had an inhibitory
effect on healing in the femur shaft fracture in comparison to
metaphyseal fracture, suggesting a more important role of GCs in
endochondral rather than intramembranous ossification (120).
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FIGURE 2 | Effects of GCs on the cross-talk between cells of the innate immunity, bone cells, and vascularization during fracture healing. During fracture healing, cells

of the innate immunity such as neutrophils, macrophages and mast cells produce pro-inflammatory cytokines and attract other phagocytes to remove debris. GCs act

on these cell types to control the inflammation and resolve it partially by polarizing macrophages toward an anti-inflammatory phenotype that will in turn promote

tissue repair by increasing vascularization. Presumably GCs also inhibit M1 macrophages and cytokine expression, which is not proven yet. On the other hand, GCs

have counterbalancing effects by inhibiting the production of vasodilators in order to control the inflammation. Innate immune cells act on bone cells by secreting

factors such as RANKL affecting then osteoblast and osteoclast activity. Also, tissue resident and infiltrating macrophages play a role in endochondral ossification by

promoting chondrocyte differentiation for callus formation. Chronic GCs treatment delays chondrocyte hypertrophy and attenuates endochondral bone healing.

Given the distinct roles of GCs on cross-talk of immune,
bone and stromal cells, and on vasculature and muscle during
osteoporosis and arthritis, it is very likely that GCs shape different
aspects of fracture healing positively and negatively. The exact
interplay requires intensive investigations.

GLUCOCORTICOIDS (GCs) IN
OSTEOARTHRITIS

GC Effects on Osteoarthritis
Osteoarthritis (OA) is the most common form of arthritis and
the leading cause of pain and disability in elder people (121). The

clinical picture includes not only a process of “wear and tear”
but also an unbalanced remodeling of the joint associated with
inflammatory processes (122). Among the main risk factors for
OA are obesity, gender and age (123).

Degeneration of joints occurs as damage in articular cartilage
and subchondral bone, accompanied by ectopic bone formation,
so-called osteophytes. The slow turnover of extracellular matrix
is dramatically enhanced in OA due to secretion of degrading
proteinases and consequent loss of proteoglycans and collagen
(124). This process is likely triggered by a vicious cycle of
cross-talk of inflammatory cells and stromal cells, such as
chondrocytes and synovial cells.
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The role of endogenous GCs in this process is obscure, a recent
study of Tu et al., however, showed that overexpression of the
GC inactivating enzyme 11β-HSD2 in osteoblasts in transgenic
mice attenuates OA in a model of destabilization of the medial
meniscus (DMM) in older mice (125). This indicates that in
bone cells GCs might trigger the inflammatory and erosive
process (Figure 3).

Administered GCs are accepted as short term, but not as long
term agents for intra-articular injections of kneeOAwith few side
effects [reviewed in (10)]. In the literature, the mechanisms are
attributed to effects on stromal cells, by increasing the expression
of ECM molecules and reduction of degradative proteases. This
had been investigated in OA models, cartilage explant cultures
and in cartilage cell lines [reviewed in (10, 126)] (Figure 3).

Macrophages are part of the inflammatory infiltrate in OA
(127). Interestingly, a depletion of synovial macrophages led to
the augmentation of OA in a model of destabilization of the
medial meniscus (DMM) combined with high fat diet (128).
The absence of macrophages caused intriguingly an increased
numbers of T cells indicated a hyperinflammation. This indicates
that anti-inflammatory polarized macrophages are essential to
prevent aberrant progression of OA.

The precise contribution of GR in immune cells for GC
effects on OA has not been addressed mechanistically so far.
Furthermore, the suppression of VEGF by GCs (129), strongly
suggests that effects on the vasculature, could be beneficial to
facilitate repair processes during acute GC exposure. Long term
effects on the vasculature could also be non-favorably and trigger
further OA progression.

Overall, the GC action in OA is not completely understood
and requires further elucidation given that GCs are frequently
used for treatment, and that obesity, stress and age are known
risk factors for the development of this pathology.

GC Effects on Osteophytes in Arthritis
Beside the effects of GCs on joint erosion, not much is known
about their protective effects against ectopically grown bone,
so-called osteophytes. In both, inflammatory and osteoarthritis,
osteophytes can be observed (130, 131) and result in pain and
loss of function of joints (132). Osteophytes arise from periosteal
mesenchymal stem cells (MSCs) that undergo chondrogenic
differentiation, mature and produce a cartilaginous scaffold that
is replaced by bone in the end-stage of osteophyte formation
(133), a process closely related to endochondral ossification
(130, 134–137). GCs are shown to suppress osteophyte formation
(138–140), as well as endochondral ossification (141), however,
it is uncertain whether the same mechanisms are involved.
Interestingly, besides MSCs and chondrocytes, cross-talk with
components of the innate immunity are shown to play an
important role in the initiation of osteophytes (142–144).
Osteophytes often develop in close proximity to synovial lining
(144) and synovial inflammation is considered a key contributor
to osteophyte formation (145). In this regard, it was shown that
a single low-dose of avidin-conjugated dexamethasone (Dex)
suppress synovial infiltration and osteophyte formation in post-
traumatic OA (138). Especially, synovial macrophages, as part of
the synovial infiltrate, are considered key players in osteophyte

formation as their depletion significantly suppress osteophytes
in two different mouse models of OA (142, 144) and GC-
mediated inhibition of synovial macrophages might be beneficial
to prevent osteophyte formation. Interestingly, inhibition of TNF
does not result in the reduction of osteophytes in patients with
psoriatic arthritis or mouse models of inflammatory arthritis
(146, 147). Thus, GC-mediated suppression of pro-inflammatory
cytokines alone might not be sufficient to suppress osteophyte
formation. On the other hand, damage-associated molecules
derived from degrading cartilage (142) can also activate synovial
macrophages and depending on dosage and duration, GC
treatment can protect against this cartilage degradation in
OA (140, 148) and inflammatory arthritis (149). In this
regard, experimental reduction of cartilage degradation reduces
formation of osteophytes in mouse models of OA (150, 151).

The most prominent pathways involved in synovial
macrophage activation and osteophyte growth are transforming
growth factor β (TGFβ) and bonemorphogenetic proteins (BMP-
2/-4) (142, 144, 152, 153). TGFβ and BMPs initiate chondrogenic
differentiation from periosteal MSCs and co-cultures of MSCs
and macrophages enhanced spheroid formation after TGFβ
treatment when compared to MSCs alone (144). Interestingly,
macrophage-specific delivery of liposomal packed prednisolone
results in down regulation of TGFβ in inflammatory arthritis
(154) and Dex treatment was shown to suppress BMP-signaling
and induce BMP-antagonists at least in osteoblast cell lines
(155, 156). In addition, blockage of the hedgehog-signaling
pathway also resulted in the suppression of TGFβ and BMPs and
completely prevented osteophyte formation without affecting
synovial inflammation (157). Thereby, GC-mediated control
of TGFβ and BMPs might counteract osteophyte formation.
Surprisingly, intra-articular injections of triamcinonone
acetonide (TA, another GC) were associated with a higher
macrophage activity, using folate-based radiotracers, but also
resulted in a significant reduction of osteophytes (158). In vitro
results of Siebelt et al. (158) suggested that the induction of
CD163, folate receptor-β and interleukin-10 by TA might play
a role in osteophyte suppression (158), however, this needs
to be validated in vivo. Besides TGFβ and BMPs, dickkopf-1
(Dkk1), a master regulator of bone remodeling is strongly
regulated by GCs (159) and is involved in osteophyte formation
(160). Inhibition of Dkk1 results in osteophyte formation in
an inflammatory mouse model that does not initially develop
osteophytes (160). In addition, patients with spondylarthritis
(SpA) arthritis that do develop osteophytes, show lower levels of
Dkk1 (161), whereas rheumatoid arthritis (RA) patients that do
not develop osteophytes have higher levels of Dkk1 (162). GCs,
however, strongly induce Dkk1 expression and thereby inhibiting
osteoblast differentiation and bone formation (163, 164), which
might be beneficial to suppress osteophyte growth. Accordingly,
overexpression of Dkk1 in the osteoblast-lineage significantly
reduces osteophyte size in OA (165).

In contrast to exogenous GCs, disruption of endogenous GC
signaling in the osteoblast-lineage reduces osteophyte formation
in an age-related OA mouse model suggesting an osteophyte-
promoting role of endogenous GC (125). Further experimental
work is needed to discriminate the endogenous vs. the exogenous
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FIGURE 3 | GCs administration in the treatment of OA and RA exert direct effects on different cell types and influence stromal-immune cell crosstalk. Actions of GCs

on neutrophils and mast cells lead to an attenuated inflammation and an induction of anti-inflammatory mediators. GCs operate on macrophages either directly,

causing increased levels of GILZ and decreased inflammation, or indirectly via FLS through a cross-talk between both, leading to a shift of macrophage polarization

toward an anti-inflammatory phenotype and an increased efferocytosis activity. Further effects on stromal cells, in particular chondrocytes are a reduction of

degradative protease levels and an increase of ECM molecules. Concerning cross-talk between osteoclasts and chondrocytes in OA or in RA the influence of GCs are

unknown. Strikingly, in RA osteoblasts GC effects might lead to inflammatory and erosive processes, since the overexpression of the GC inactivating enzyme

11β-HSD2 in osteoblasts, results in an attenuated disease severity by a non defined cross-talk.

effects of GCs on osteophyte formation and to validate potential
pathways involved in GC-mediated suppression of osteophytes
to better understand the crosstalk of bone and immune cells
involved in this process.

RHEUMATOID ARTHRITIS (RA)

Rheumatoid arthritis (RA) is a chronic, autoimmune disease with
a worldwide prevalence of 0.5–1% (166). It affects all types of
patients with the highest occurrence in elderly women and a
female to male ratio of 3:1 (167). RA is associated with several
contributing factors, such as genetics, smoking, obesity and the
environment (168). A hallmark of RA is synovial inflammation
and the destruction of cartilage and bone, which makes RA
a bona-fide disease of osteo-immunological interactions. The
etiology is still to a certain extend unclear, but involves
rheumatoid factor and anti-citrullinated peptide antibodies
(ACPAs), which are at least predictive for the development of
RA. The expression of pro-inflammatory mediators, like TNF
and IL-6 activating the innate immune system concomitant with

aberrant T- and B-Cell regulation finally leads to the development
of autoantibodies (169). In the joints, osteoclasts activated by
citrullinated autoantibodies, lead to bone damage. This further
results in cytokine release by local cells and activation of
synovial fibroblasts andmacrophages (170, 171), exaggerating the
inflammatory and destructive response.

Since the discovery of their anti-inflammatory action 70 years
ago, GCs are still one of the most frequently used medications to
treat the acute inflammatory response in RA.

Our knowledge of the mechanisms of action of GCs rely
on different animal models that comply with certain aspects of
the inflammatory phase in arthritis, such as collagen-induced
arthritis (involving aspects of T-cells, mast cells and macrophage
functions), antigen-induced arthritis (strictly T cell dependent),
serum transfer-induced arthritis (T-cell independent) and TNFα
transgenic mice (involving multiple cell types).

In the serum transfer-induced arthritis (STIA) and TNF-
transgenic model of arthritis, it could be shown that a deficiency
of 11β-HSD1 leads to an increase of inflammation, suggesting
attenuation of endogenous GC action (172, 173). However, in
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another model of collagen-induced arthritis (CIA), 11β-HSD1
deletion caused an attenuation of inflammation indicating a
pro-inflammatory role of GC activation in this model.

A clear anti-inflammatory role for the GR could be
demonstrated in these models (Figure 3). For this, the capacity
of the GR for dimerization seems to be required for suppression
of inflammation in all arthritis models tested so far. GRA458T
(GRdim) knock-in mice with attenuated GR dimerization
(51), but intact monomer activity, were found refractory
in arthritis models of antigen-induced arthritis, glucose-6
phosphate isomerase (G6PI)-induced arthritis and STIA (174,
175). Thus, GR dimerization-induced gene regulation seems
to be a general mechanism and is in accordance with animal
models with disturbed GR dimer-dependent target genes of
the GR such as mitogen-activated protein kinase phosphatase
1 (MKP1), Glucocorticoid-induced leucine zipper (GILZ), and
Annexin A1 (Figure 3).

GILZ interacts with several crucial signaling pathways, such as
NF-κB signaling and T-cell activation (176). GILZ is constantly
produced in macrophages and is stimulated by GCs and IL-10,
thereby mediating the deactivation of macrophages and thus a
decrease of macrophage infiltration (177). This regulation affects
the balance between intensified immune reactions and immune
tolerance. In mice with CIA and in human patients with RA, it
could be shown that GILZ was upregulated in the synovium after
the administration of GCs. Furthermore, in cultured RA synovial
fibroblasts, an overexpression of GILZ inhibited the release of
IL-6 and IL-8 (178).

DUSP1/MKP1 is induced by the GR dimer (179), and an
important mediator of anti-inflammatory actions of the GR
(81, 180, 181). It inhibits MAP Kinase signaling and DUSP-
1 knockout mice have an earlier onset and higher score in
CIA (182).

Annexin A1 is associated with the adaptive and the innate
immunity. The anti-inflammatory effects of GCs are partly
regulated by the release of Annexin A1 and the activation of its
receptor formyl peptide receptor 2 (FPR2, also known as ALXR)
in neutrophils and macrophages (183). Annexin A1 deficient
animals render resistant to GCs in STIA (184), indicating a
pivotal role for inhibition of inflammation.

Cell Type Specific GC Action and Crosstalk
Between Immune— and Stromal Cells
Depending on the model used different cell type specific
requirements for GC signaling and the GR were suggested
to attenuate arthritis. For the T-cell dependent antigen-
induced arthritis indeed the GR in T cells is absolutely
essential for GC-mediated immune suppression in part by
suppressing the generation of IL-17 producing T-cells (174).
In contrast in the STIA model the deletion of GR in T-
cells does not attenuate the response toward GCs (175).
Strikingly, in both models GR deletion in macrophages in
GRLysMCre mice hardly affected the efficiency of suppression
of inflammation (174, 175). This is surprising, since there is
multiple evidence for macrophages to respond to GCs during
inflammation in general and the requirement of the GR in

models of systemic inflammation, contact allergy and acute
lung injury (80, 81, 185). In addition in STIA the presence of
alternative activating macrophages is decisive for resolution of
inflammation (186).

Despite other immune cells, such as type 2 innate lymphoid
(ILC2) cells or others, have not been exploited yet for their
functional relevance of anti-inflammatory efficacy, a new theme
is emerging demonstrating the role of GR in non-immune cells.

Genetic inhibition of GC signaling in osteoblasts by
overexpression of 11β-HSD2 lead surprisingly to an attenuated
STIA (187). The mechanism is not clear yet, but maybe in
accordance to the global 11β-HSD1 deletion in CIA.

In contrast, deletion of GR in chondrocytes in GR
Col2a1CreERT2 mice leads to an accelerated inflammation
in both CIA and STIA model (188). This was accompanied
by an increased CXCR2 expression in the joint suggesting
that GR controls chondrocyte-immune cell cross-talk on
the level of CXL2/5 CXCR2 chemokine axis involved in
leukocyte recruitment.

A recent study showed that GC actions in stromal cells
are decisive and GR expression in immune cells alone is not
sufficient to suppress inflammation in STIA (175) (Figure 3).
Experiments in bone marrow chimeric mice lacking the GR in
the hematopoietic compartment showed no differences in the
onset or progression of STIA, nor the responsiveness to GC
treatment compared to chimeric mice with a functional GR in
immune cells. Furthermore, a reverse approach with chimeric
mice lacking the GR globally except for the hematopoietic system
revealed that GR expression in stromal cells is essential for the
anti-inflammatory actions of GCs. More precisely, the study
showed that for these anti-inflammatory actions, the homodimer
form of the GR in stromal cells is critical. Interestingly,
deficiency of GR dimerization in these cells had no effect on
the suppression of inflammatory cytokines upon GC treatment.
This indicates that their decrease alone is not sufficient to
suppress inflammation. Additionally, GR dimers in stromal cells
induce non-classical, anti-inflammatory macrophages while the
levels of classical macrophages are not altered. Several anti-
inflammatory markers, associated with enhanced phagocytosis
and efferocytosis activity, are increased only in wildtype (wt)
but not in GR dimer deficient stromal cells. This suggests
an insufficient clearance of apoptotic cells after GC treatment,
which leads to a persisting inflammatory condition. Finally,
the study suggests that the induction of anti-inflammatory
macrophages may be indirectly guided by actions of stromal cells,
in particular fibroblast-like synoviocytes (FLS), since cocultures
of macrophages and FLS showed an elevated efferocytosis
competence when compared to cocultures of macrophages and
GR dimer-deficient FLS. In addition to that, the levels of
macrophage associated chemokines macrophage inflammatory
protein−1α and−1β (Mip-1α / Mip-1β) are decreased in
wt but not in GR dimer-deficient FLS after GC treatment.
Taken together, this indicates a GC-mediated, GR dimer-
dependent cross-talk between FLS and macrophages that induces
an increase in the anti-inflammatory macrophage population
and thereby a suppression of inflammation and STIA itself
(175) (Figure 3).
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OVERALL CONCLUSION/OUTLOOK

Overall GCs and the GR have complex actions in bone diseases.
The power of conditional mouse genetics demonstrated that
GC signaling and GR action in distinct cell types of the
immune system, stromal cells and bone cells have different
contributions to the overall effects of GCs. Moreover, going
away from this simplistic approach of interpreting cell type
specific—cell autonomous effects, the field is nowmoving toward
understanding the impact of GCs on interactions of distinct cell
types or even organs.

Other issues that remain unexplored are the interplay
of GC triggered immune cells in the normal pathology of
postmenopausal and age-related osteoporosis. This is striking
since the immune cells from the bone marrow need the bone as
a niche, therefore strong interactions of immune and bone cells
occur as a normal physiological process.

Given that GCs are part of the neuroendocrine regulatory
network that also control inflammation and healthy

bone homeostasis, a more holistic view will be needed.
With the technologies of high content analysis, single
cell sequencing and systemic approaches in combination
with organoid models and carefully interpreted animal
models, our understanding will substantially increase
about the influence of these versatile hormones on the
immune-metabolic crosstalk.
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