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Somewhat counterintuitively, the tyrosine phosphatase SHP-2 (SH2 domain-containing

protein tyrosine phosphatase-2) is crucial for the activation of extracellular

signal-regulated kinase (ERK) downstream of various growth factor receptors,

thereby exerting essential developmental functions. This phosphatase also deploys

proto-oncogenic functions and specific inhibitors have recently been developed.

With respect to the immune system, the role of SHP-2 in the signaling of cytokines

relevant for myelopoiesis and myeloid malignancies has been intensively studied. The

function of this phosphatase downstream of cytokines important for lymphocytes is

less understood, though multiple lines of evidence suggest its importance. In addition,

SHP-2 has been proposed to mediate the suppressive effects of inhibitory receptors

(IRs) that sustain a dysfunctional state in anticancer T cells. Molecules involved in IR

signaling are of potential pharmaceutical interest as blockade of these inhibitory circuits

leads to remarkable clinical benefit. Here, we discuss the dichotomy in the functions

ascribed to SHP-2 downstream of cytokine receptors and IRs, with a focus on T and

NK lymphocytes. Further, we highlight the importance of broadening our understanding

of SHP-2′s relevance in lymphocytes, an essential step to inform on side effects and

unanticipated benefits of its therapeutic blockade.

Keywords: SHP-2 phosphatase, SHP-2 inhibitors, PTPN11 gene, lymphocytes, cytokine, inhibitory receptors of

lymphocytes, PD-1, cancer

INTRODUCTION

Protein phosphorylation is a post-translationalmodification fundamental for intracellular signaling
cascades and is therefore tightly regulated by kinases and phosphatases. SHP-2 (SH2 domain-
containing protein tyrosine phosphatase-2, encoded by the PTPN11 gene) is a broadly expressed,
cytoplasmic phosphatase highly relevant for human health (1–4). In fact, PTPN11 mutations
cause the polymalformative Noonan and LEOPARD syndromes, two developmental disorders
characterized by manifestations such as craniofacial abnormalities, growth defects, cardiac
malformations, and—in some cases—mental retardation (5, 6). To understand the biological
function of SHP-2, genetic mouse models have been generated. Full-body deletion of Shp-2
resulted in embryonic lethality due to multiple defects in mesoderm patterning (7), whereas
inducible Shp-2 deletion in adult mice led to death within 6–8 weeks and was accompanied
by bone marrow aplasia and anemia (8). Further, conditional Shp-2 deletion revealed the
role of this phosphatase in the development of various organs and tissues, including in
the nervous system, the heart, the mammary gland, the kidney, and the intestine (8–14).
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In most instances, the effects of SHP-2 have been ascribed to
its positive function in regulating extracellular signal-regulated
kinase (ERK) signaling downstream of a number of growth factor
receptors (1–4). Overactivation of SHP-2 is also involved in
multiple cancers, a notion that encouraged the development of
small molecule inhibitors (2, 15–20). As discussed later, SHP-
2 blockade markedly suppressed cancer growth in preclinical
models and specific inhibitors are currently tested in clinical
studies (19, 21–26).

In this review, we focus on the role of SHP-2 in T and natural
killer (NK) lymphocytes, which are crucial players in immunity
and in anticancer immunotherapy. Regrettably, the role of SHP-
2 in these immune subsets remains incompletely understood.
Whereas, SHP-2’s function in activating ERK downstream of
multiple growth factors has been firmly established, it is less well-
characterized downstream of cytokines relevant for lymphoid
cells. Further, a role for this phosphatase in “immune checkpoint”
signaling cascades has been reported. Here, we discuss recent
advances in the understanding of how SHP-2 shapes these
pathways and highlight open questions that—with the advent of
inhibitors for clinical use—are becoming increasingly pressing.

MOLECULAR FUNCTION OF SHP-2

SHP-2 possesses two N-terminal SH2 domains (N-SH2 and C-
SH2) and a central protein tyrosine phosphatase (PTP) core
(Figure 1) (3, 4, 27–30). The PTP domain is highly conserved
among classical PTP phosphatases and is responsible for the
catalytic activity of these enzymes. It is characterized by the
[I/V]HCSXGXGR[S/T] sequence, with the invariant cysteine
being responsible for the nucleophilic attack of the phosphate
group to be removed (31, 32). The C-terminal tail of SHP-2
contains tyrosine residues that can become phosphorylated and
modulate the phosphatase activity (3).

In the inactive state, the N-SH2 domain interacts with the
PTP region, limiting access of substrates into the active site
(Figure 1A) (33–35). The auto-inhibition is relieved upon SH2
binding to phosphotyrosine residues on targets (Figure 1B). The
importance of this autoinhibitory mechanism is confirmed by
studies on the mutations of PTPN11 associated to LEOPARD
and Noonan Syndromes. The latter genetic disorder is caused
by PTPN11 gain of function mutations, whereas the clinically
similar LEOPARD Syndrome is linked to mutations reducing the

FIGURE 1 | Structure of SHP-2. (A,B) A schematic representation of the phosphatase SHP-2 (SH2 domain-containing protein tyrosine phosphatase-2) is illustrated.

The functional domains of SHP-2 comprise two SH2 domains [N-terminal SH2 (N-SH2) and C-terminal SH2 (C-SH2)] and a protein tyrosine phosphatase (PTP)

domain. (A) In the absence of a tyrosine-phosphorylated substrate, the N-SH2 domain interacts with the PTP domain and blocks the catalytic site. (B) Interaction of

SH2 domains with tyrosine-phosphorylated (pY) residues on targets enables phosphatase activity.

catalytic activity of SHP-2. Recent findings started unraveling
this paradox, showing that mutations found in LEOPARD
Syndrome, besides decreasing the phosphatase activity, affect
the intramolecular interaction between the N-SH2 and the PTP
domain, favoring the transition to its active conformation and
producing a gain of function-like phenotype (36, 37).

Through the interaction of the SH2 domains with
phosphotyrosine residues on targets, SHP-2 is recruited to
various receptors, directly or indirectly through docking
proteins such as Insulin Receptor Substrate 1 (IRS1) and
GRB2-associated-binding protein 1 or 2 (GAB1/2) (Figure 2)
(3, 38, 39). Upon recruitment, SHP-2 is found in a signaling
complex comprising growth factor receptor-bound protein 2
(GRB2) and the associated Son of Sevenless (SOS) (38, 40–43).
By promoting the conversion of RAS-bound GDP to GTP, SOS
activates the mitogen-activated protein kinase (MAPK) pathway
involving RAF-MEK (mitogen-activated protein kinase kinase
or MAPKK)-ERK. The expression of a catalytically-inactive
SHP-2 and the use of specific inhibitors demonstrated the
importance of the phosphatase activity for ERK activation
(16, 25, 44–46). Thus, SHP-2 is an atypical phosphatase involved
in positively regulating intracellular signaling pathways through
its catalytic function.

To explain how the phosphatase activity of SHP-2 stimulates
the RAS-ERK pathway, five mechanisms have been proposed.
First, SHP-2 was shown to dephosphorylate specific positions
of the receptor (e.g., PDGFR) or GAB thus preventing the

recruitment of the RAS-GTPase activating protein RAS-GAP

(Figure 2A) (47–51). Opposite to SOS, RAS-GAP terminates the
activation of theMAPK signaling pathway by inducing hydrolysis
of RAS-bound GTP. Second, RAS tyrosine phosphorylation
at position 32 negatively impacts on downstream signaling,
possibly by favoring the interaction with RAS-GAP; by removing
this modification, SHP-2 promotes ERK activation (Figure 2B)
(52). Third, SHP-2 was found to eliminate phosphorylated
docking sites on the scaffolding proteins Paxillin (PXN)
and PAG1 (phosphoprotein associated with glycosphingolipid
microdomains 1) (Figure 2C). These phosphorylation sites are
involved in recruiting/modulating the activity of CSK (c-src
tyrosine kinase), which suppresses receptor tyrosine kinase
(RTK)-activated Src kinases and, indirectly, ERK signaling
(53, 54). Fourth, Sprouty (SPRY) 1 and SPRED1 (Sprouty-
related ena/vasodilator-stimulated phosphoprotein homology 1-
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FIGURE 2 | SHP-2-mediated activation of ERK. Upon cytokine binding, a complex including SHP-2, growth factor receptor-bound protein 2 (GRB2), and Son of

Sevenless (SOS) is formed at the receptor. Four molecular mechanisms linking the phosphatase activity of SHP-2 to the activation of the RAS-RAF-MEK

(mitogen-activated protein kinase kinase or MAPKK)-extracellular signal-regulated kinase (ERK) pathway are schematically illustrated (A–D). CSK, c-src tyrosine

kinase; GAB, GRB2-associated-binding protein; PAG1, phosphoprotein associated with glycosphingolipid microdomains; RAS-GAP, RAS-GTPase activating protein;

SHC, Src homology 2 domain containing; SPRED1, Sprouty-related ena/vasodilator-stimulated phosphoprotein homology 1 domain-containing protein1.

domain-containing protein1) are known to inhibit ERK signaling
and have been proposed to do so by multiple mechanisms
acting at the level, downstream, or upstream of RAS (55).
Interestingly, the function of SPRY1 and SPRED1 requires
specific phosphorylations, which can be removed by SHP-2
(Figure 2D) (13, 56–58). Finally, two recent publications support
a model whereby SHP-2’s catalytic function is necessary for
the assembly of the complex including SHP-2 itself, GAB, and
GRB2 at the receptor. This model is attractive, as it suggests that
the action of SHP-2 might involve more general mechanisms
than interfering with specific inhibitory proteins. However, the
underlying molecular events remain to be defined and might
integrate the mechanisms described above (25, 59).

In addition to the ERK cascade, SHP-2 has been involved
in the Phosphoinositide 3-kinase (PI3K)-AKT pathway. The
adaptor GAB has been found to associate with SHP-2 and
the PI3K p85 regulatory subunit, indirectly modulating PI3K
signaling in response to selected cytokines (Figure 3) (38,
60–64). However, studies assessing PI3K/AKT activity or the
phosphorylation of AKT at position 308, which is controlled
by the PI3K-phosphoinositide-dependent kinase 1 (PDK1)
axis (65), show negative as well as positive roles for SHP-
2 on this pathway. For example, insulin- and epidermal
growth factor (EGF)-dependent PI3K activation were found

to be negatively influenced by SHP-2, most likely through
the dephosphorylation of the p85 binding sites on the
adaptor proteins GAB or IRS1 (64, 66–68). Conversely, SHP-
2 interaction with p85 has been shown to be required for
the association of the PI3K catalytic subunit p110 and for full
PI3K activity downstream of insulin-like growth factor 1(IGF-
1) (69). Similar effects were observed downstream of additional
growth factors including insulin, PDGF, and granulocyte-
macrophage colony-stimulating factor (GM-CSF) (63, 69–72).
We therefore lack a unified view on the effects of SHP-2 on the
PI3K pathway.

Along the same lines, SHP-2 has been reported to modulate
the phosphorylation of signal transducers and activators of
transcription (STAT) transcription factors downstream of
various cytokines (Figure 3) (73). Upon engagement, cytokine
receptors initiate signaling through Janus kinases (JAKs),
which phosphorylate multiple residues in their cytoplasmic
portions forming docking sites for STATs, that are themselves
phosphorylated by JAKs to translocate to the nucleus and exert
central transcriptional functions (73). On the one hand, SHP-2
was found to promote the dephosphorylation of different STATs,
including downstream of interleukin (IL)-3, leukemia inhibitory
factor (LIF), or IL-10 in cells of various origin (73–76). On the
other hand, no effect or even the opposite outcome has been
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FIGURE 3 | SHP-2 in cytokine receptor signaling. Cytokine binding to the receptor induces formation of the SHP-2-containing complex. Besides being involved in the

activation of ERK, SHP-2 can modulate phosphoinositide 3-kinase (PI3K) activity. PI3K mediates the conversion of phosphatidylinositol 4,5-bisphosphate (PI4,5P2 )

into phosphatidylinositol 3,4,5-trisphosphate (PI3,4,5P3), which leads to phosphoinositide-dependent kinase 1 (PDK1) recruitment, AKT phosphorylation, and

mammalian target of rapamycin (mTOR) activation. Residues phosphorylated by janus kinases (JAKs) in the cytoplasmic portion of the receptor act as binding sites for

signal transducers and activators of transcription (STAT) proteins, that are further phosphorylated by JAKs, allowing dimerization and nuclear translocation. This

pathway can also be modulated by SHP-2.

observed, as for instance in response to transforming growth
factor-β (9, 73, 77–79). SHP-2 acts therefore downstream of
several receptors to activate the ERK pathway and can modulate
PI3K-AKT and JAK-STAT axes.

SMALL MOLECULAR WEIGHT INHIBITORS
OF SHP-2 FOR CANCER TREATMENT

Several cancers rely on overactive MAPK signaling. Indeed,
activating mutations of PTPN11 have been identified in juvenile
myelomonocytic leukemia (JMML) (2, 20, 80–82). In many
other cancer types, enhanced MAPK signaling is achieved
through alternative mechanisms, such as alterations of RTKs
like EGFR. Despite mutation of SHP-2 in tumors, particularly
in solid ones, is an infrequent event, its key role in RTK-
triggered signaling cascades renders it an attractive target for
pharmacological intervention.

The identification of small molecule inhibitors for SHP-2 has
however been a challenging endeavor, and no SHP-2 inhibitor
has yet reached advanced stages of clinical trials (19, 83). A
SHP-2 inhibitor, PHPS1, has been identified early and further
developed into GS493 (17, 84). GS493 acts on purified SHP-
2 in the nanomolar range, and was shown to inhibit breast
cancer upon administration in mice (21). This and other SHP-
2 inhibitors bind to or close to the active site of the enzyme. This
straightforward approach is however potentially complicated by
the high degree of homology across PTP catalytic domains,
in particular with respect to Src Homology 2 (SH2) domain-
containing tyrosine phosphatase 1 (SHP-1), the closest homolog
of SHP-2 (85–87). More recently, inhibitors of SHP-2 have been
reported, which act by new allosteric mechanisms (16, 25, 88).
Two such compounds are SHP099, which stabilizes the inactive
conformation of SHP-2 by occupying a tunnel-like binding site
between the two SH2 and the PTP domain, and RMC-4550,

which inhibits by a similar mode of action. SHP099 blocks SHP-
2 in the nanomolar range, whereas RMC-4550 acts at even
lower doses, with an IC50 of 0.58 nM. Both drugs were shown
to limit the growth of xenografted cancers driven by oncogenic
mutations of the RAF kinase and RASmember BRAF and KRAS,
respectively (16, 22–26). Taken together, these data indicate that
SHP-2 inhibition can be of use as a monotherapy.

However, cancer drug resistance is a massive clinical problem
(89). Tumor cells often evade inhibition of proteins targeted by
molecular therapies by re-activation of the signaling pathways
via elaborate feedback mechanisms. This is the case for KRAS-
or BRAF-driven cancers treated with MEK and BRAF inhibitors.
The phosphatase SHP-2, being a crucial component in the signal
transduction cascade between growth factor receptors and these
downstream pathways, is an excellent potential target to battle
drug resistance mediated by such cascades. This principle has
been shown to work for BRAF inhibitor-resistant BRAF-mutant
colon cancers (90). Treatment with BRAF inhibitor concomitant
with genetic ablation or pharmacological inhibition of SHP-
2 by the inhibitor GS493 prevented re-activation of MAPK
signaling by feedback activation of the EGF receptor, inducing
synthetic lethality of the transformed cells. In addition, in MEK
inhibitor-resistant KRAS-mutant pancreatic, lung epithelial,
and gastric cancer cell lines, simultaneous blocking of MEK
and SHP2 acted synergistically, substantially hindering cell
proliferation in vitro and tumor growth in xenograft models
(23–26). Importantly, the combination treatment was well-
tolerated, as evidenced by the similar body mass these mice
maintained over time compared to vehicle-treated animals.
Collectively, these works have provided proof-of-principle that
small molecule inhibitors of SHP-2 can prevent resistance to
MAPK pathway-targeting drugs in BRAF and KRAS mutant
tumor cells. Together, these results establish SHP-2 blockade as
a potentially powerful option to treat inhibitor refractory tumors
in human patients.
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Whereas SHP-2 is a central node in the commonly altered
RTK/MAPK pathways, this phosphatase is mutated in few
cancers, such as JMML (2). Nearly half of patients with SHP-
2-mutated cancers bear strongly activating mutations that are
thought to perturb its autoinhibited conformation, such as the
common mutation of the position D61 and E76 in the N-
SH2 domain. As the currently available allosteric inhibitors
interact simultaneously with the C-SH2, N-SH2, and PTP
domains, it is uncertain that successful suppression of such SHP-
2 mutants is achievable in a clinical setting. This encourages
further investigation to develop inhibitors targeting the catalytic
site or the most common mutants, which might find broader
application in patients with activating SHP-2 mutations (16, 25,
26, 91).

SHP-2 IN CYTOKINES’ SIGNALING IN T
AND NK LYMPHOCYTES

PTPN11 mutations found in JMML confer increased sensitivity
to the growth factors GM-CSF and IL-3 (2, 15, 20, 92). These two
cytokines share the β subunit of the receptor, which is common
also to the receptor for IL-5, a cytokine important for the B
cell and the eosinophil lineages. Upon cytokine stimulation, this
receptor subunit recruits SHP-2, leading to the activation of the
MAPK pathway and the interaction with the p85 subunit of
PI3K (93–98). Lending support to the role of SHP-2 in these
signaling cascades, a recent study demonstrated that Shp-2-
deficient eosinophils failed to induce ERK activation upon IL-
5 exposure, exhibiting reduced airway hyper-responsiveness in
allergic models (99). Further to its role in pathways favoring
myelogenous leukemias and normal myelopoiesis, SHP-2 is
involved in the signaling by cytokines promoting hematopoiesis
more broadly. Its function in the maintenance of hematopoietic
stem cells and lineage progenitors has been attributed to the
signaling downstream of multiple growth factors including stem
cell factor (SCF), thrombopoietin (TPO), Fms-like tyrosine
kinase 3 ligand (FLT3L), and interleukin (IL)-3 (8, 94, 95,
100–104). SHP-2 has also been implicated downstream of the
receptors for cytokines important in mature immune cells,
including lymphocytes (8).

Two decades ago, SHP-2 has been found to participate in
the signaling induced by IL-6, a pleiotropic cytokine regulating
inflammation, B cell responses, and T cell differentiation (105).
An interaction between SHP-2 and the IL-6 receptor (IL-
6R) subunit gp130 has been reported and mutation of the
SHP-2 recruitment site suggested that this phosphatase was
important to engage ERK and dampen STAT3 activation, limiting
autoimmunity (106–113). Later studies showed that the same
gp130 binding site recruited the JAK inhibitor Suppressor of
cytokine signaling 3 (SOCS3), attributing to the latter the
antagonism with STAT3, and confounding the role of SHP-2
(113, 114). These data indicate that, whereas SHP-2’s function in
activating the ERK pathway is widely accepted, the mechanisms
underlying its effects on STAT activation shall be carefully
evaluated. Therefore, the function of SHP-2 downstream of
IL-6R and other less characterized gp130-containing receptors,

such as the ones of IL-11, LIF, oncostatin M (OSM), and
IL-27, which is of great relevance for T cells, await further
experimental investigation.

SHP-2 has also been implicated in the response to IL-2 and
IL-15 (60–62, 115–117). IL-2 is essential for regulatory, effector
CD4+, and effector CD8+ T cells. IL-15 is important for the
survival of memory CD8+ T cells and for development, survival,
and activation of NK cells, two cytotoxic subsets which are central
to immunity against intracellular pathogens and cancers. The
receptors for IL-2 and IL-15 share the γc and the CD122 subunits
(also known as IL-2 receptor β subunit). Phosphorylation of
SHP-2, a phenomenon occurring upon receptor recruitment, was
found to be largely dependent on the latter receptor subunit (62,
116). In agreement with what has been observed for other growth
factor receptors, IL-2 and IL-15 stimulation led to the formation
of a complex comprising SHP-2, GAB2, GRB2, and the PI3K p85
subunit (60, 61). Downstream of the IL-2R in T cells, SHP-2 has
been involved in ERK engagement, while no or a positive effect
was observed on STAT5 activation (79, 117, 118). Recently, we
investigated the role of Shp-2 downstream of IL-15 stimulation
in primary murine NK cells. While STAT5 phosphorylation
was largely unaffected, Shp-2 was essential for ERK engagement
(78). Interestingly, genetic ablation of Shp-2 also impaired
phosphorylation of AKT (position 308), metabolic raise, and
NK cell expansion in response to IL-15, suggesting a significant
connection to cell metabolism (78). The family of γc-dependent
cytokines comprises other members, which are instrumental
for the lymphocytic compartment and have receptor subunits
different from CD122. While stimulation with IL-4 and IL-7 did
not induce phosphorylation of GAB2 or SHP-2 itself, IL-21 and
the related thymic stromal lymphopoietin (TSLP) were shown
to engage ERK and AKT and lead to phosphorylation of SHP-2
or other components typical of the SHP-2-containing complex
(119–121). These results reveal therefore a role for SHP-2 in
regulating the response to several cytokines and suggest a broader
involvement, encouraging future studies.

SHP-2 AND INHIBITORY RECEPTOR
SIGNALING IN T AND NK CELLS

SHP-2 is considered a central molecule downstream of inhibitory
receptors (IRs). IRs are expressed by immune cells and regulate
their function in diverse contexts. The cytoplasmic portion
of IRs contains inhibitory motifs, such as immunoreceptor
tyrosine-based inhibition motifs (ITIMs) and tyrosine-based
switchmotifs (ITSMs). Bothmotifs bear tyrosine residues that are
phosphorylated upon IR engagement and recruit SH2 domain-
containing phosphatases to antagonize activating cascades (122).
During NK cell development, specific IRs interact with major
histocompatibility complex (MHC) class I molecules, preventing
a state of anergy (123–127). This process known as “NK cell
education” mainly depends on SHP-1, the closest homolog of
SHP-2. Biochemical evidence demonstrated SHP-1 recruitment
to the ITIMs in the cytoplasmic portion of these IR, whereas
elegant genetic approaches showed its essential function in
maintaining NK cell responsiveness (126, 127). Notably, SHP-2
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has also been shown to interact with NK cell IRs, suggesting a
role in these suppressive signals (123, 124, 128). Through in vivo
genetic approaches, we could however rule out a major role for
this phosphatase in this pathway (78).

On T cells, transient IR expression is observed upon
T cell receptor (TCR) triggering. Instead, constitutive IR
display is associated and contributes to a dysfunctional state—
known as “exhaustion”—that impairs T cell proliferative
and effector capacities in cases of chronic antigen exposure
(129–131). In particular, T cell exhaustion has been described
in the context of chronic infections and cancer. Blockade
of IR-mediated inhibitory circuits has recently transformed
cancer immunotherapy, enabling to reactivate anti-tumoral
T cell responses, and better control disease (131–133).
Therefore, it is important to define the molecular events
mediating IR effects, which might represent novel targets for
pharmacological intervention.

Earlier studies showed interaction of SHP-2 with the
intracellular tail of IRs and this correlated with the inhibition
of T cell activation pathways (134–141). For instance, SHP-2
has been shown to interact with the cytoplasmic tail of the IR
B- and T-lymphocyte attenuator (BTLA), whose blockade shows
promise in immunogenic cancer treatment (142–144). Further,
one of the most relevant IR is programmed cell death 1 (PD-
1), whose blockade reinvigorates T cells against various cancer
types. Its engagement has been shown to affect both TCR and co-
stimulatory signaling (136, 141, 145). SHP-2 has been reported to
robustly interact with the cytoplasmic tail of PD-1 and to exert a
negative effect on interleukin (IL)-2 production, a surrogate read-
out for TCR signaling (135, 138, 146, 147). This was observed in
T cell hybridomas and in the Jurkat T cell line upon TCR and
PD-1 engagement (138, 146). Of note, one of the effects of PD-1
engagement is the impairment of ERK activation (136, 138, 146,
148). The possibility that SHP-2 inhibits this cascade downstream
of PD-1 is difficult to reconcile with its well-documented role in
promoting it downstream of growth factor receptors. Moreover,
despite the role of SHP-2 in TCR signaling remains controversial
(79, 149–157), a positive effect on ERK engagement has been
observed also in this context (149, 152, 153). The dichotomy in
the effects of SHP-2 could be explained by a model in which
IRs reduce the availability of the phosphatase, thus preventing its
contribution to the ERK cascade, or by a very distinct regulation
of SHP-2 activity downstream of IRs and growth factor receptors.

To evaluate whether the absence of SHP-2 reverted T cell
exhaustion in more physiological conditions, we generated mice
lacking this phosphatase in T cells. In the context of chronic
viral infection, we found that antiviral Ptpn11-knockout T cells
presented typical signs of exhaustion, exhibiting compromised
cytokine production and tolerable immunopathology (156, 158,
159). In addition, immunogenic cancers developed in these mice
with kinetics similar to the ones observed in the control groups
(156). Along these lines, studies by others showed that the growth
of immunogenic tumors in mice lacking Shp-2 in T cells was
moderately retarded or accelerated, but even in the former case
the effects on tumor growth were distant from the ones of
PD-1-deficiency (154, 160, 161). One interpretation is that the
therapeutic effects of PD-1 blockade are not largely mediated

FIGURE 4 | SHP-2 and redundant mechanisms in T cell inhibitory receptor

signaling. Recent in vitro data indicate that SHP-2 and SHP-1 are engaged by

programmed cell death 1 (PD-1) and possibly other inhibitory receptors

involved in T cell exhaustion. Notably, these two phosphatases exert

redundant functions in limiting T cell receptor (TCR)/CD28 signaling and

interleukin-2 (IL-2) production in Jurkat T cells.

by T cells, a quite unlikely hypothesis in light of cytotoxic T
cell depletion results (131, 162). With respect to this question,
conditional PD-1 deletion will be informative. Most importantly,
genetic deletion or pharmacological inhibition of Shp-2 did
not prevent the therapeutic benefit of antibody-mediated PD-1
blockade (156, 161). These results challenge the possibility that
IRs antagonize TCR and co-stimulatory signaling by reducing
the availability of this phosphatase and imply that PD-1 signaling
occurs in the absence of Shp-2 activity.

Intriguingly, SHP-2 has been shown to dephosphorylate the
cytoplasmic tail of PD-1 as part of a feedback loop (138, 141),
even suggesting a role in the termination of the inhibitory
function of this IR and the possible accumulation of other
SH-containing proteins and phosphatases in its absence. In
addition to SHP-2, SHP-1 has been shown to interact with PD-1
and other IRs, albeit to a lesser extent (136, 137, 143, 144).
Given their homology, a recent study explored the possibility
that these two phosphatases exert redundant functions in PD-1
signaling. This work showed how only the abrogation of both
phosphatases robustly relieved the inhibitory effects of PD-1 on
TCR- and CD28-induced signaling, including ERK, in Jurkat
T cells (Figure 4) (147). This important study paves the road
to evaluate SHP-1 and SHP-2 redundancy in anticancer T
cells in vivo.

DISCUSSION

On the one hand, detailing IR signaling in exhausted T cells
is of high clinical value. Yet, the lack of definite knowledge
on the molecular events downstream of IRs delays the
design of small molecule inhibitor-based interventions.
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Better understanding the mechanism of action of SHP-2 in
these cascades is therefore relevant and timely. On the other
hand, our understanding of SHP-2 function downstream of
important growth factor receptors remains incomplete from
a mechanistic viewpoint and in immune cells, lymphocytes
in particular. Investigation in this direction would help
answer the long-standing question of how a phosphatase
enhances selected signaling and suggest novel targets for
immunomodulation. Furthermore, currently available genetic
models allow detailing the physiological contribution of
SHP-2 in vivo with unprecedented accuracy. In the future,
the study of tissue-specific and inducible knockout mice
will be essential to define the immune subset-specific
functions of SHP-2, while limiting the confounding effects
of compensatory mechanisms.

Preclinical and clinical studies assessing the efficacy of SHP-
2 inhibitors in cancer therapies raise the question on possible
side effects, and immune cells shall be carefully examined in
this respect. We deem that studies mapping SHP-2’s functions
are a prerequisite for evaluating these aspects, which will
be highly relevant if immunotherapeutic approaches would

be used in complement to SHP-2 inhibitors. Besides, these
investigations might suggest unanticipated benefits of SHP-2
inhibitor therapies, as for instance in normalizing deregulated
immune responses, such as in autoimmunity, and atopy.
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