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The liver is an immunologically tolerant organ that is uniquely equipped to limit

hypersensitivity to food-derived antigens and bacterial products through the portal vein

and can feasibly accept liver allografts. The adaptive immune response is a major branch

of the immune system that induces organ/tissue-localized and systematic responses

against pathogens and tumors while promoting self-tolerance. Persistent infection of

the liver with a virus or other pathogen typically results in tolerance, which is a key

feature of the liver. The liver’s immunosuppressive microenvironment means that hepatic

adaptive immune cells become readily tolerogenic, promoting the death of effector cells

and the “education” of regulatory cells. The above mechanisms may result in the clonal

deletion, exhaustion, or inhibition of peripheral T cells, which are key players in the

adaptive immune response. These tolerance mechanisms are believed to be responsible

for almost all liver diseases. However, optimal protective adaptive immune responsesmay

be achieved through checkpoint immunotherapy and the modulation of hepatic innate

immune cells in the host. In this review, we focus on the mechanisms involved in hepatic

adaptive immune tolerance, the liver diseases caused thereby, and the therapeutic

strategies needed to overcome this tolerance.

Keywords: liver tolerance, T cell dysfunction, innate cell dysfunction, immune regulation, liver-draining lymph

node, liver diseases

INTRODUCTION

As the largest organ in the body, the liver has a rich circulatory supply, receiving blood from
both the hepatic artery and the portal vein. As a result, the liver comes into contact with a large
proportion of microbial products, as well as harmless food-derived antigens, via the intestines.
A high level of exposure to these antigens endows the liver with a distinctive form of immune
privilege. This so-called immunotolerance ensures that the liver does not mount a strong immune
response against gastrointestinal tract-derived molecules and pathogens. This tolerance effect is
also evidenced by the fact that the liver readily accepts allografts, despite a major histocompatibility
complex (MHC) mismatch, as seen early on in the pig model of transplantation (1).

Later studies have shown that the liver can accept subsequent non-hepatic allografts from the
same donor by inducing systemic immune tolerance (2). Similarly, the tolerance induced via the
liver-mediated expression of exogenous proteins is used in gene therapy for hemophilia, metabolic
disorders, lysosomal storage disorders (3), and even autoimmune diseases (4). However, the hepatic
immune tolerogenic environment is also exploited by hepatitis viruses, parasites, and tumors and
can lead to persistent infection and rapid cancer progression.
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Adaptive immunity plays a key role in defending the
host against pathogens and tumors. The liver determines
organ/tissue-localized and systematic adaptive immune
responses, highlighting the link between adaptive immune
responses and the hepatic microenvironment (5). Evidence
also suggests that relationships exist between adaptive immune
responses and the hepatic tolerogenic microenvironment
(6). This tolerogenic microenvironment leads to liver T cell
dysfunction, including clonal deletion, anergy, senescence,
deviation, and exhaustion. The liver is home to large numbers of
hepatocytes, nonparenchymal cells, and lymphocytes (7). This
means that complex interactions between these cells contribute
to the induction of adaptive immune tolerance in the liver. For
example, parenchymal and nonparenchymal cells suppress the
adaptive immune response, leading to hepatic T cell dysfunction,
partially as a result of inhibitory receptor and anti-inflammatory
cytokine expression (8).

Here, we describe hepatic adaptive immune cell-related
dysfunction in the context of liver-mediated adaptive
immune tolerance. We focused on: (i) T cell dysfunction,
including anergy, exhaustion, and apoptosis, (ii) the regulatory
mechanisms involved in the induction of T cell dysfunction,
(iii) the current understanding of the role of T cell dysfunction
in liver disease, and (iv) the therapeutic strategies developed
to counteract adaptive immune tolerance, to illustrate the
complexity of and challenges related to liver-mediated adaptive
immune tolerance.

THE ADAPTIVE IMMUNE TOLERANCE
MECHANISMS

How does the liver tolerize adaptive immune cells? Since adaptive
immune cells are easier to render tolerant in the liver than
in other organs, the liver has been classically referred to as a
“graveyard” for effector T cells and a “school” for regulating
cells. In this regard, several reports demonstrate that local antigen
presentation in the liver results in T cell apoptosis (9, 10).

The Liver Acts as a T Cell “Graveyard”
The classic hypothesis that the liver functions as a “graveyard”
for T cells suggests that the liver represents a specific site for
the apoptosis of activated T cells (11) that become trapped and
eventually destroyed in the liver by clonal deletion, clonal anergy,
clonal deviation, and T cell exhaustion.

Clonal deletion is a process whereby T and B cells expressing
antigen-specific receptors with self-reactive specificities are
deleted during their development. Huang and colleagues used
T cell receptor (TCR) transgenic mice to show that activated
T cells could be programmed to undergo apoptosis in the liver
through peptide injection (12). Another study suggested that the

Abbreviations: TCR, T cell receptor; LSECs, Liver sinusoidal endothelial cells;

pDCs, Plasmacytoid dendritic cells; LCMV, Lymphocytic choriomeningitis virus;

HCV, Hepatitis C virus; APCs, Antigen presenting cells; HSCs, Hepatic stellate

cells; MHC, Major histocompatibility complex; Tregs, Regulatory T cells; NKT,

Natural killer T; HBV, Hepatitis B virus; LNs, Lymph nodes; HCC, Hepatocellular

carcinoma; (m)DCs, Myeloid; iMATEs, Intrahepatic myeloid-cell aggregates for T

cell expansion.

liver trapped and passively sequestered activated CD8+ T cells
(13). In line with these findings, another transgenic mouse model
indicated that hepatocyte-activated CD8+ T cells with increased
expression of Bim were associated with premature death (14).
A landmark study by the Bertolino group demonstrated that
CD8+ T cells undergoing emperipolesis were endocytosed and
deleted by hepatocytes, suggesting that “suicidal emperipolesis”
is a unique mechanism of peripheral deletion (15). Thus, this
“suicidal emperipolesis” plays an important role in liver-activated
autoreactive CD8+ T cell clearance and immune homeostasis in
the liver (16).

Clonal anergy refers to a state of inactivation experienced
by self-reactive lymphocytes. Anergic lymphocytes cannot
induce strong immunity in healthy individuals. Liver sinusoidal
endothelial cells (LSECs), acting as antigen-presenting cells, in
the absence of accessory signals reportedly induce anergy in T
cells within the hepatic microenvironment (17). Another study
supports the idea that plasmacytoid dendritic cells (pDCs) may
also lead to the inhibition of T cell activity in the liver, resulting
in the anergy or deletion of antigen-specific T cells (18).

Clonal deviation is the process whereby naïve CD4+ T cells
preferentially assume the Th2 but not the Th1 or the Th17
phenotype during differentiation in the liver. The priming of
naïve CD4+ T cells by liver sinusoidal endothelial cells (LSECs)
fails to promote their differentiation into Th1 cells, even with the
exogenous administration of the cytokines IL-1β, IL-12, and IL-
18 (19). Thus, LSECs suppress the IFN-γ-producing Th1 cells in
favor of the IL-4-expressing Th2 cells, contributing to the process
of immune T cell deviation in the liver (20).

Another form of T cell dysfunction, T cell exhaustion,
is often associated with chronic infection and tumorigenesis
(21). An exhausted T cell is characterized by impaired
effector functions and proliferative capacity, as well as altered
transcriptional, epigenetic, and metabolic signatures, including
the overexpression of inhibitory receptors and a dysregulated
cytokine milieu (22, 23). The first report of T cell exhaustion
occurred in a mouse model of noncytopathic lymphocytic
choriomeningitis virus (LCMV) infection, in which exhausted
CD8+ T cells displayed impaired effector functions compared
to functional CD8+ T cells (24). This begs the question of what
causes T cell exhaustion in the first place.

Firstly, persistently high levels of antigen contribute to T
cell exhaustion (25). A threshold of intrahepatic antigen levels
tunes the fate of cytotoxic T lymphocyte (CTL) function,
and high levels of antigen maintain an exhausted T cell
phenotype (26). Secondly, altered inflammatory and tissue
microenvironments play an important role in inducing T cell
tolerance (22). In such circumstances, T cells lose their robust
effector functions, accompanied by an increase in the expression
of multiple inhibitory receptors, such as PD-1, CTLA-4,
LAG-3, and TIM-3.

In addition, T cells receive inhibitory signals from various
immunosuppressive cytokines. The phenomenon of T cell
exhaustion has been reported both in chronic infections
and cancer of the liver. Exhausted hepatic T cells are closely
related to inefficient clearance of persisting pathogens and
tumorigenesis in chronic liver diseases, including hepatitis
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B and C, malaria, schistosomiasis, and liver cancers.
Thus, T cell exhaustion is considered to be associated with
hepatic tolerogenic characteristics in liver diseases. Recently,
the signal-regulatory protein α was shown to act as an
inhibitory receptor when expressed on CD8+ T cells during
chronic exhaustion in chronic hepatitis C virus (HCV)
infection (27).

The Liver Acts as a School to Educate
T Cells
The coordination between innate and adaptive immune cells
often occurs when confronting liver disease, as the unique
structure of this organ facilitates interactions between these
cells. There are several hepatic antigen presenting cells (APCs)
including resident hepatocytes and non-parenchymal cells like
DCs, LSECs, Kupffer cells, and hepatic stellate cells (HSCs)
involved in antigen presentation, which facilitate adaptive
immune tolerance in the liver (28). During the induction
of liver immune tolerance, cytokines like IL-10, TGF-β, and
IFN-γ are thought to be involved in the development of
chronic liver disease and T cell dysfunction (29–31). In the
liver environment, multiple factors, including APCs, the site of
primary T cell activation, and altered inflammation, dictate the
immune outcomes of intrahepatic T cells (32, 33).

Hepatocytes, which do not normally express MHC class
II molecules, acquire the ability to express MHC II and
activate CD4+ T cells during hepatitis (34). Under specific
circumstances, however, antigen presentation by hepatocytes can
promote immune tolerance. For instance, MHC II-expressing
hepatocytes seem to be associated with defective CD4+ and
CD8+ T cell function and higher LCMV titers in class II
transactivator molecule (CIITA)-transgenic mice compared with
nontransgenic mice (35). Furthermore, the adeno-associated
viral vector-mediated expression of a single MHC I allele in
hepatocytes induced tolerance toward an allogeneic graft in a
transfer experiment involving liver-generated CD8+ regulatory
T cells (Tregs) (36).

A recent study showed that Qa-1 expression in hepatocytes
with NKG2A+ natural killer (NK) cells induced CD8+ T
cell exhaustion and persistent HCV infection in humanized
C/OTg mice (37). Interestingly, hepatocytes are also capable of
converting CD4+ T cells into Foxp3+ Tregs in vitro, resulting in
the Treg-mediated suppression of the CD4+ T cell response via
the Notch signaling pathway (38). Together, these observations
indicate that hepatocytes mediate T cell dysfunction in the liver.

The DCs are professional antigen-presenting cells (APCs) that
migrate to the draining lymph node and present antigens to T
cells (39, 40). Hepatic DCs exhibit an immature phenotype, thus
maintaining liver tolerance (41). More importantly, tolerogenic
DCs, associated with low MHC class I and II levels and a high
expression of T cell coinhibitory ligands, mediate tolerogenic
effects, including T cell deletion, anergy, Th2 polarization,
and the induction of Tregs (42). Tolerogenic DCs also show
considerable promise in the control of autoimmune diseases
and allograft rejection (43, 44) by promoting tolerance within
the hepatic microenvironment. Liver DCs secrete IL-10 and

are associated with reduced T cell proliferation and function
compared to blood DCs (45).

Kupffer cells account for the largest population of
macrophages in the liver. Under many circumstances, Kupffer
cells play an important role in antigen uptake and pathogen
clearance. However, during homeostasis, Kupffer cells secrete
anti-inflammatory soluble factors, such as IL-10, to maintain
hepatic tolerance (46, 47). In addition, Kupffer cells reportedly
mediate T cell suppression, without the need for cytokines like
IL-10, TGF-β, and nitric oxide (48).

The hepatic stellate cells (HSCs) and LSECs are well-
characterized liver-resident APCs that are capable of tolerizing
T cells. For example, TGF-β1 produced by HSCs inhibits
T cells via glycoprotein A repetitions predominant (GARP)-
dependent expression on HSCs (49). Moreover, the expression
of B7-H1 on HSCs contributes to the regulation of T cell
responses by promoting their apoptosis (50). Within the hepatic
microenvironment, LSECs can also tolerize both CD4+ and
CD8+ T cells. Furthermore, while LSECs can prime CD4+ T
cells, these CD4+ T cells do not acquire a Th1 phenotype (19).
Antigen cross-presentation by LSECs to CD8+ T cells also leads
to tolerance rather than CD8+ T cell activation (51).

The NK cells, which belong to a major group of innate
immune cells in the liver, contribute to host defense against
virally infected cells and tumors. Mice reportedly contain two
liver NK cell subsets, which are referred to as conventional NK
cells (which enter the circulation) and tissue-resident NK cells
(52, 53). The markers CD49a and DX5 can be used to subdivide
murine NK cells into conventional (CD49a+DX5-) and liver-
resident (CD49a-DX5+) NK cells (54). Similarly, human livers
are also populated with two overlapping NK cell subsets (55).

Generally, NK cell function is controlled by a diverse set of
activating and inhibitory receptors, the balance between which
also contributes to the regulation of T cells (56, 57). For example,
hepatic conventional NK cells contribute to effective anti-
hepatitis B virus (HBV) T cell responses, while liver-resident NK
cells directly suppress T cell responses through the programmed
cell death-1 ligand-receptor (PDL1-PD1) axis (58, 59). Impaired
NK cell function is accompanied by weakened cytotoxic CD8+ T
cell activity in persistent viral infections (60). Indirectly, NK cells
also diminish CD8+ T cell responses during chronic infection by
interacting with DCs (61).

Interestingly, the hepatic NK cell-associated modulation of
the effector T cell response is, in turn, regulated by the liver
microenvironment, such as the presence of IL-10 (62). In
addition, HBV-specific CD8+ T cells become susceptible to
TNF-related apoptosis-inducing ligand (TRAIL)-expressing NK
cell-mediated killing by upregulated TRAIL-R2 expression in
patients with chronic HBV infection (CHB), indicating that
NK cells downregulate HBV-specific CD8+ T cell responses
(63, 64). In this scenario, upon TRAIL and NKG2D blockade,
NK cell-mediated HBV-specific T cell function is also enhanced
in patients with CHB who are treated with a nucleos(t)ide
analog (65).

Also residing in the liver are natural killer T (NKT) cells,
innate-like T cells that modulate the hepatic immune response
by producing pro- and anti-inflammatory cytokines upon
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activation. There are two types of NKT cells, type I and type II
NKT cells. Type I NKT cells express a semi-invariant TCR and
is also referred to as invariant (i) NKT cells. By contrast, type
II NKT cells express a relatively diverse TCR repertoire. Type
II NKT cells conversely appear to be more abundant than type
I NKT cells in humans, but in liver diseases, they are similar to
type I NKT cells in phenotype and function (66).

By bridging the innate and adaptive responses, NKT cells
act as immunoregulators during immunological liver disease.
Lan et al. (67) revealed that the pyroptosis of iNKT cells
through OX40 signaling can lead to liver inflammation and
damage, suggesting that NKT cells play an important role in liver
homeostasis. On the other hand, activated NKT cells contribute
to the recruitment of Tregs via the CXCR3-CXCL10 pathway
(68). The NKT cells also reportedly promote the priming of IL-
10-producing CD8+ T cells by hepatocytes in order to limit liver
injury (69).

Similar to NKT cells, mucosal-associated invariant T (MAIT)
cells are the T cell subpopulation restricted to the MHC-
I-related (MRI) molecule MRI populated in humans that
produces a Th1 and Th17 cytokine milieu (70). The presence
of highly enriched MAIT cells in the human liver suggests
the importance of these innate cells in the control of
liver infections (71, 72). However, in patients with chronic
HCV infections, CD8+CD161++TCRVa7.2+ MAIT cells exhibit
exhausted features, thereby contributing to HCV persistence
(73). In line with these findings, MAIT cells from patients with
chronic hepatitis delta virus (HDV) are functionally impaired
and subsequently lost during HDV infection (74). In patients
with hepatocellular carcinoma (HCC), tumor-educated MAIT
cells upregulate inhibitory receptors and display functional
impairment, both of which correlate with HCC progression (75).

The Tregs negatively regulate effective T cell immune
responses via the production of immunosuppressive cytokines
(including IL-10 and TGF-β) during chronic infection and
are considered to be a potential target for the treatment of
patients with CHB (7). Through upregulated Tregs, IL-33 exerts
a negative effect on CD4+ T cell proliferation and alleviates
hepatitis (76). Similarly, it was found that Tregs orchestrate
CD8+ T cell exhaustion by engaging the PD-1 inhibitory pathway
during LCMV infection (77). However, circulating CD4+CD25+

regulatory T cells exist in patients with resolved HBV infection
(78). Furthermore, the numbers of these regulatory cells are
increased and correlate with hepatic inflammation in patients
with hepatitis B (79). Therefore, Tregs might play a role in
anti-inflammatory activity and need to be more thoroughly
assessed (80).

In contrast to T cell tolerance, antibody response to HBV
proteins does not provide evidence for B cell tolerance during
HBV infection. For example, antibodies specific to the HBV
core antigen (anti-HBc) are clearly detectable during acute
HBV infection (81). Interestingly, anti-HBc antibodies can be
elicited in patients with CHB and are more abundant in CHB
infection compared with in patients with self-limited infections
(82, 83). Furthermore, highly active B cell responses are indicated
during chronic HBV infection through gene expression profiling
(84). In contrast, hepatitis B surface antibodies (anti-HBs)

are considered to be protective and are commonly associated
with viral control and the resolution of clinical disease. A
recent study demonstrated that HBcAg-specific B cells and
HBsAg-specific B cells were different in phenotype and function
but shared an increased mRNA expression of genes linked with
the role of cross-presentation and innate immunity in patients
with CHB (85). Overall, the above results indicate that HBV-
specific humoral responses are apparently not suppressed in
the liver.

The Role of Liver-Draining Lymph Nodes
(LNs) in the Induction of Hepatic Immune
Tolerance
Although the “graveyard” and “school” models are adequate
under certain circumstances, some argue that T cell tolerance
is not the direct consequence of local antigen-presentation (86),
and that the “graveyard” theory cannot account for the existence
of efficient immune responses under different conditions (87).
Since many other factors are involved, the two models may not
present full explanations of the tolerogenic mechanisms at play
in the liver, and additional hypotheses may be required.

The liver produces considerable amounts of lymphatic fluid,
which is one of the two major sources of abdominal lymph.
Hepatic lymph is thought to originate from the filtration of the
sinusoids into the space of Disse, even before the lymph drains
from the liver through the lymphatic vessels to the draining
LN (88). Although the liver-draining LNs are well-reported in
humans, the portal and celiac liver-draining LNs in the mouse
have only recently been clearly described in studies that used
Evans blue dye or infection with an adenovirus vector carrying
the enhanced green fluorescent protein gene (Ad-EGFP) to track
hepatic lymphatic draining (89, 90). These studies also show that
DCs exit the liver and migrate to the liver-draining LNs, where
they prime and facilitate specific T cell responses.

Interestingly, portal and celiac LNs appear to be independent
liver-draining LNs, with different cellular compositions and
modes of organogenesis. Furthermore, the portal LN participates
in oral tolerance via Treg induction, while the celiac LN
facilitates effective T cell responses (91). The immune response
that occurs in liver-draining LNs is associated with the liver
microenvironment, which is considerably different from that of
the spleen. Importantly, liver-draining LNs are implicated in
chronic human disease (92, 93). Recent progress in research
studies related to the association between the liver and human
portal LNs indicates that a paucity of DCs in human portal LNs
contributes to hepatic immune tolerance (94). In addition, the
regional immunity implicated in liver homeostasis and disease
is associated with tissue-specific immune cell subsets and their
interactions with the liver (7). Thus, a major aspect of liver
function is dependent on specific hepatic immune cell subsets,
which may, in turn, be influenced by the immune responses
modulated by liver-draining LNs.

Moreover, studies indicate that liver inflammation is also
involved in liver tolerance. Patients with chronic hepatitis B have
fewer signs of inflammation than those with acute hepatitis B who
clear the viral infection and display significant inflammation (95).
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Furthermore, circulating monocytes under inflammatory stimuli
can activate autologous HBV-specific T cells during chronic HBV
infection, suggesting that inflammatory conditionsmight have an
impact on intrahepatic HBV-specific T cells (80, 96).

In a study conducted in chimpanzees with chronic infections,
agonists of toll-like receptor (TLR) 7 activated TLR-7 signaling
and reversed immune tolerance associated with significant
intrahepatic inflammation (97). Similarly, TLR 7 agonists appear
to enhance T cell and NK cell activities in patients with CHB who
are subjected to nucleos(t)ide therapy (98). The above results,
taken together, support the hypothesis that inflammatory events
in the liver might alter the features of liver tolerance. However,
liver tolerance is not absolute during viral hepatitis infection. For
example, patients with acute hepatitis elicit an effective adaptive
immune response but lack immune tolerance to hepatitis A, B,
and C (99–101).

In summary, several mechanisms are involved in the
induction of T cell dysfunction in the liver. On the one hand,
the liver is seen as a “graveyard” or killing field for activated
T cells, because it can induce T cell dysfunction in the local
microenvironment. On the other hand, the large population
of liver APCs, and cytokines like IL-10, TGF-β, and IFN-
γ lead to the negative regulation and further dysfunction
of T cells. Additionally, the celiac and portal liver-draining
LNs apparently play key roles in promoting liver-mediated
adaptive immune tolerance through the induction of Tregs and
paucity of DCs. Moreover, a lack of inflammatory events under
certain circumstances is also associated with T cell dysfunction
(Figure 1).

ADAPTIVE IMMUNE TOLERANCE IN LIVER
DISEASE

Under certain pathological circumstances, pathogens, including
HBV, HCV, malaria, and schistosomes, exploit the liver’s
tolerogenic mechanisms to establish persistent infections. For
the same reason, the hepatic immunotolerant microenvironment
further facilitates the progression of chronic infection to liver
fibrosis, cirrhosis, and cancer. Based on the mechanisms involved
in liver tolerance, the presence of dysfunctional adaptive immune
cells and immunosuppressive regulatory cells is a hallmark of
chronic liver disease, including chronic infections and HCC.

Chronic Liver Infection
Effective T cell responses mediate viral clearance in murine
models of HBV infection (58). Intrahepatic HBV-specific CD8+

T cells contribute to viral elimination and disease pathogenesis
in chimpanzees acutely infected with HBV (102). Similarly,
patients with acute HBV infection reportedly have enhanced
HBV-specific CD8+ T cell responses, which are associated with
viral control (103, 104).

Conversely, patients with chronic HBV exhibit HBV-specific
CD8+ T cell dysfunction, with increased frequencies and
intensities of PD-1 expression (105). These findings were
reported in the first study to show that HBV-specific CD8+ T cells
in humans can be exhausted. A recent study using peptide-loaded
MHC I tetramers suggests that the phenotypic and functional

differences of HBV-specific CD8+ T cells can be detected by
targeting core vs. polymerase antigen epitopes in patients with
CHB, indicating that the molecular mechanisms underlying
dysfunctional CD8+ T cell populations are not homogeneous in
patients with CHB patients (106).

Intrahepatic HCV-specific CD8+ T cells have an impaired
ability to produce IFN-γ, resulting in a failure to control
HCV infection in patients in whom the infection is chronic
(107). In addition, it is found that HBV clearance can be
achieved by the reconstitution of HBV-specific CD8+ T cells,
thereby reestablishing adaptive immune responses and reversing
HBV-specific tolerance (108). The upregulation of inhibitory
receptors on T cells in chronic infection is indicative of T
cell exhaustion during viral persistence. For instance, T cell
dysfunction is associated with the increased expression of
PD-1 and CTLA-4 in patients with CHB compared with in
healthy controls (109). Furthermore, in chronic HCV infection,
HCV-specific CD8+ T cell exhaustion is associated with high
expression of inhibitory receptors, while the population of
PD-1−TIM-3−HCV-specific CD8+ T cells outnumbers the
frequency of PD-1+TIM-3+T cells in acute resolving HCV
infection (110).

Regarding parasitic infections, malaria, and schistosomiasis
also establish pathogen persistence and liver tolerance. The
CD8+ T cells generated in the liver fail to eliminate malaria-
causing sporozoites owing to hepatic immune tolerance (111).
Moreover, the poor effector functions of exhausted parasite-
specific T cells during malaria infection are also linked to
PD-1 expression (112). During hepatic schistosomiasis, Th2
cells and Tregs dominate the immune response and release
immunosuppressive cytokines, including IL-10 and TGF-β in
the liver (113, 114). In addition, many other factors, including
the ligands of inhibitory receptors expressed on APCs, account
for the failure of dysfunctional T cells to eliminate pathogenic
infections in the liver. For example, owing to the selective
overexpression of PD-L1 on the surface of macrophages, both
CD4+ T and CD8+ T cells become anergized by the Schistosoma
mansoni parasite (115).

Liver Cancer
Antigen-specific T cells play a key role in controlling cancer,
but similar to chronic viral infections, persistent tumor cell
stimulation causes T cell exhaustion (25). A single T cell
database revealed that exhausted tumor-infiltrating CD8+ T cells
preferentially accumulate in the HCC tumor microenvironment
(116). In addition, the epigenetic profile of exhausted T cells
is distinct from that of functional effector and memory T cells
(117). In the context of the tumor microenvironment, exhausted
CD8+ T cells exhibit reduced effector functions and proliferative
capacity. Furthermore, in HCC tissue, CD4+ and CD8+ T cells
display increased expression of inhibitory receptors such as PD-1,
TIM-3, LAG-3, and CTLA-4 (118).

Moreover, HCC specimens reportedly harbor exhausted
CD8+ T cells with varying levels of PD-1 expression. The PD-
1High CD8+ T cell subset co-expresses high levels of TIM-3 and
LAG-3, as is characterized by low IFN-γ and TNF production,
indicating that the expression of PD-1 on CD8+ T cells arises
as a result of the HCC microenvironment (119). A previous
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FIGURE 1 | Mechanisms involved in liver-mediated adaptive immune tolerance. The diagram outlines that the liver acts as a “graveyard” or killing field for activated T

cells, leading to the apoptosis of activated T cells through clonal deletion, clonal anergy, clonal deviation, or exhaustion (a). Alternatively, the liver can act as a school to

educate T cells, which means that T cells can be subjected to regulation by liver APCs, including dendritic cells (DCs), hepatocytes, Kupffer cells, liver sinusoidal

endothelial cells (LSECs), regulatory T cells (Tregs), and NK cells, and cytokines like IL-10, TGF-β, and IFN-γ, which promote T cell dysfunction (b). Furthermore,

dysfunctional T cells may be induced by the liver-draining LN environment through antigen presentation. The liver-draining portal and celiac lymph nodes (LNs) play an

important role in regulating hepatic immune tolerance (c). Moreover, mild or absent signs of liver inflammation, as evidenced by reduced levels of IFN-α, IL-12, and

TNF-α cytokines, are also associated with the scenario of liver tolerance.

study has shown that the upregulation of Lnc-TIM-3, which
specifically binds to TIM-3, can result in CD8+ T cell exhaustion
in HCC (120). During chronic liver diseases, CD8+ T cells
with upregulated TIM-3 expression contribute to CD8+ T cell
exhaustion. The membrane-bound TIM-3 can be cleaved from
the cell membrane and yield serum soluble TIM-3, which is
associated with liver dysfunction in patients with HCC (121).

Professional or conventional APCs, which can negatively
affect T cell function, also play important roles in the regulation
of the immune response. Recently, myeloid (m)DCs were found
to be functionally impaired in patients with HCC (122), while
PD-1 expression onmDCs contributed to the inhibition of CD8+

T cell function (123). Kupffer cells also mediate the suppression
of CD8+ T cells in human HCC, via the B7-H1/PD-1 axis,
whereby tumor-associated IL-10 production contributes to the
increased B7-H1 expression on Kupffer cells (124).

An important subset of innate immune cells, dysfunctional

NK cells are also associated with tumor development

(125) and are implicated in the development of HCC.

For example, the high expression of NKG2A on NK cells
contributes to NK cell exhaustion, which correlates with a

poor prognosis for patients with HCC (126). Similarly to
NKG2A+ NK cells, the HCC microenvironment harbors high
numbers of functionally exhausted CD96+ NK cells and a

few functionally active CD160+ NK cells in patients with
HCC (127, 128).

Liver-infiltrating CD11b−CD27−NK cells represent another
dysfunctional subset, closely associated with HCC progression
(129). In line with the above findings, dysfunctional DCs, Kupffer
cells, and NK cells are associated with T cell dysfunction in the
HCC microenvironment. Further study is required to delineate
the molecular mechanisms involved in the induction of T cell
dysfunction, since the heterogeneity of various innate immune
cell phenotypes and functions have been well-described.

STRATEGIES FOR REVERSING T CELL
DYSFUNCTION IN LIVER DISEASE

In the liver, T cell-mediated immune tolerance is associated
with chronic liver disease. Therefore, reversing immunotolerance
is thought to be an effective strategy for restoring effective T
cell function, and several approaches have been proposed. For
example, novel T cell-based vaccines counteract T cell anergy and
restore normal CD8+ T cell function, contributing to therapeutic
immunity in chronic infection (130). A promising report showed
that human redirected T cells with HBV-specific TCR can
induce antiviral effects in HBV-infected human liver chimeric
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mice (131). Furthermore, TCR-redirected T cells exhibited the
potential for functional degranulation and reduced HBsAg levels
in a patient with HBV-related HCC (132).

Interestingly, clinical evidence supports the theory that
leukemia recipients with HBV infection undergoing bone
marrow transplantation can be cured of functional HBV after
bone marrow transfer from naturally HBV-immune or actively
immunized donors (133, 134). Using IL-12-based vaccination to
counteract liver-induced immunotolerance is also an effective
strategy for eliciting robust HBV-specific T cell immunity in
an HBV-carrier mouse model (135). Moreover, the blockade
of inhibitory signaling pathways to reinvigorate exhausted
T cell immune responses is thought to be a promising
therapeutic strategy, with the blockade of PD-1 signaling
proving the most effective to date in the context of HBV
infection (136). Notably, IL-12, as the third signal cytokine,
enhances the ability of PD-1 signaling blockade to promote the
recovery of functional HBV-specific CD8+T cells in patients
with chronic HBV (137). The addition of CTLA-4 blocking
antibodies can partially lead to the rescue of the effective HBV-
specific CD8+T cell response in patients with persistent HBV
infection (138).

The year 2013 marked a major breakthrough for
cancer immunotherapy (139). Among effective cancer
immunotherapies, blockage of the checkpoint inhibitors,
CTLA-4 and PD-1, has shown the most promise, with many
HCC patients increasingly benefiting from more treatment

options and combinatorial immune checkpoint inhibitor
blockade (140). For instance, blocking NKG2A potentiates
tumor-infiltrating CD8+ T cell immunity but not NK cells (141).
However, this immunosuppressive strategy is hindered by some
immunological obstacles, thus resulting in only a minority of
tumor patients achieving durable immune responses. Moreover,
under certain conditions, CD8+ T cell exhaustion may occur
in the absence of PD-1 upregulation (142). Therefore, other
viable strategies for reversing T cell dysfunction are required to
supplement immunotherapy in the context of liver disease.

Several types of parenchymal and nonparenchymal cells
also exhibit immunomodulatory functions through their
association with T cells in the liver. Therefore, the targeting
of immune regulation between APCs or innate immune cells
and dysfunctional T cells is expected to have a positive effect
on the treatment of liver disease. Evidence suggests that the
impairment of DC function is associated with exhausted T cell
responses and that CD40-mediated mDC activation rescues
intrahepatic anti-HBV CD8+ T cells from PD-1-mediated
exhaustion (143).

In patients with HCC, both the peripheral and blood DCs co-
express PD-1, while the intratumoral transfer of PD-1-deficient
DCs elicits tumor-specific CD8+ T cell immune responses and
restricts tumor growth (123). In chronic HBV infection, HBV-
induced monocytes educate NK cells to produce IL-10 via
the PDL1/PD-1 pathway, which then contributes to autologous
CD4+ and CD8+ T cell inhibition (144). This suggests that

FIGURE 2 | Potential strategies for reversing adaptive immune tolerance in chronic infection or cancer of the liver. During chronic pathogenic infection or tumorigenesis

in the liver, dysfunctional adaptive immune responses may be associated with dysfunctional antigen-presenting cells (APCs), natural killer (NK) cell subsets, or T cells.

Moreover, mild or absent inflammation may also result in a failure to clear/restrict pathogenic infection or tumor formation. Potential strategies for reversing adaptive

tolerance might include checkpoint inhibitor blockade, modulation of specific immune subsets, intrahepatic myeloid-cell aggregates for T cell expansion (iMATES)

formation, or liver-draining lymph nodes (LNs) to shape antigen presentation. As a result of these interventions, the restoration of effective immune responses may help

to clear or restrict pathogenic infections or tumors with effective T cell function, efficient regulation by specific APC or NK cell subsets, and moderate liver inflammation.

Frontiers in Immunology | www.frontiersin.org 7 November 2019 | Volume 10 | Article 2525

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Zheng and Tian Adaptive Immune Tolerance in Liver

NK cells could be targeted for CHB therapy. Furthermore,
the blockade of the checkpoint receptor, TIGIT, promotes NK
cell-based tumor-specific T cell immunity, further highlighting
the contribution of NK cells to the restoration of tumor-
specific CD8+ T cell immune responses (145). In particular, the
blockade of the inhibitory receptor NKG2A increases NK cell
effector function and the associated anti-viral and anti-tumor
immunity in chronic liver diseases, such as CHB infection and
HCC (126, 146).

Interestingly, the same anti-NKG2A blocking mAb was
recently reported to enhance anti-tumor immune responses
by unleashing both NK and T cell effector functions (147).
In patients with CHC, TRAF1lowHCV-specific CD8+ T cell
function is restored through IL-7 plus 4-1BBL and PD-1 blockade
treatment, indicating a promising immunotherapy for patients
with CHC (148).

CONCLUDING REMARKS

The liver has developed various mechanisms for the
induction and maintenance of immune tolerance. Hepatic
immunotolerance is associated with the presence of
dysfunctional T cells, and the processes of clonal deletion,
anergy and exhaustion, dysfunctional regulatory cells, and
altered liver inflammatory processes. During chronic liver
disease, this tolerogenic state prevents the mounting of an
effective adaptive immune cell response against pathogens or
tumor cells.

In addition to the immunotherapeutic strategies employed to
overcome tolerance in liver disease, several approaches have been
developed to reverse T cell dysfunction. For instance, Knolle and
colleagues found that even in chronic viral infection, antigen-
activated intrahepatic CD8+ T cell proliferation was induced
by intrahepatic myeloid-cell aggregates for T cell expansion
(iMATEs) without causing liver immune pathology via the TLR
pathway (149). Although it has not been determined whether

iMATEs have a similar structure to that of tertiary lymphoid

tissue in local presentation and priming of CD8+ T cells, such
findings may provide a new way to break T cell tolerance and
induce effective anti-pathogen immune responses.

Furthermore, as secondary lymphoid organs, the liver-
draining LNs help to shape immune responses in the liver and
may play a role in reversing T cell dysfunction by modulating
antigen presentation. Moreover, liver-resident NK cell subsets
also inhibit T cell function via the PD-L1/PD-1 pathway, while
the blockade of PD-L1 abrogates the suppression of T cell
function (59). Recent advances in the field of innate immune cell
biology, focusing on specific innate immune cell subsets and their
different phenotypes and functions, will likely further clarify the
regulatorymechanisms andmolecular regulators needed to break
liver-mediated immune tolerance and reverse adaptive immune
cell dysfunction in liver disease. The questions of where and
how hepatic immune subsets interact to generate dysfunctional
T cells in the context of hepatic immunotolerance remain to be
addressed. In summary, additional research is required to identify
the innate immune subsets that are involved in inducing T cell
dysfunction, the site of their interaction with T cells to render
them dysfunctional, and the specific molecular mechanisms that
are involved in this complex process (Figure 2).
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