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Blood monocytes develop in the bone marrow before being released into the peripheral

circulation. The circulating monocyte pool is composed of multiple subsets, each

with specialized functions. These cells are recruited to repopulate resident monocyte-

derived cells in the periphery and also to sites of injury. Several extrinsic factors

influence the function and quantity of monocytes in the blood. Here, we outline the

impact of sex, ethnicity, age, sleep, diet, and exercise on monocyte subsets and their

function, highlighting that steady state is not a single physiological condition. A clearer

understanding of the relationship between these factors and the immune system may

allow for improved therapeutic strategies.
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INTRODUCTION

Adult blood leukocytes can be separated into two broad categories: lymphoid or myeloid. The
lymphoid lineage consists of T, B, innate lymphoid and natural killer (NK) cells, while the
myeloid compartment comprises of functionally and morphologically discrete cell types, including
mononuclear phagocytes (monocytes and dendritic cells), granulocytes (neutrophils, basophils,
and eosinophils), and platelets. Injured or infected tissue releases chemoattractants that rapidly
recruit these myeloid cells to the site of injury. Once at the inflamed site, these cells coordinate
and carry out key effector functions. Nearly 100 years ago, Alexander Maximow suggested that
hematopoiesis was an extremely organized stepwise process arising from a common precursor cell
(1). Indeed, hemopoietic stem cells that reside in the bone marrow undergo multiple differentiation
stages, becoming progressively more restricted and eventually give rise to a heterogeneous
population of leukocytes. Commitment to themyeloid lineage downstream of the commonmyeloid
progenitor (CMP) (2) results in the generation of erythrocytes, platelets, granulocytes, monocytes,
and dendritic cells. Nevertheless, several extrinsic factors influence leukocyte generation. Here, we
will outline several studies that highlight how age, ethnicity, diet, exercise, sleep, and sex modulate
human monocyte numbers under healthy homeostasis.

Circulating blood monocytes were initially believed to be a single population of cells with the
potential to repopulate terminally differentiated resident mononuclear phagocytes in the periphery
(3). In addition, blood monocytes act as an emergency squad recruited to sites of injury where
they perform pro-inflammatory and pro-resolving functions (4–8). Blood monocytes were initially
defined by their morphology. Later, with the introduction of flow cytometry, monocytes were
shown to express high levels of the lipopolysaccharide (LPS) binding protein receptor, CD14 (9).
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These CD14+ monocytes were subsequently discovered to be
a heterogeneous population that could be further divided into
discrete subsets based on CD14 and CD16 (FcγRIII) expression
in humans (10). Monocyte heterogeneity was later observed to
be conserved among other species (11). Human CD14+ CD16−

monocytes, also known as classical monocytes, are analogous to
the murine Ly6CHi CX3CR1int classical monocytes. Intermediate
and non-classical monocytes are identified as CD14+, CD16+,
and CD14loCD16+ cells, respectively, where the latter subset
mirror Ly6CLow CX3CR1Hi non-classical monocytes in mice (12,
13). The expression of several membrane adhesionmolecules and
chemokine receptors can also be used to discriminate between
these monocyte subsets (13–15).

Blood monocytes begin their life in the bone marrow,
following a similar developmental fate to dendritic cells where
they both arise from the macrophage/dendritic cell precursor
(MDP) (16). In mice, the MDP was initially proposed to give
rise to monocytes and dendritic cells but not granulocytes (17).
Downstream of the MDP, the common monocyte progenitor
(cMoP) was identified, which gives rise exclusively to classical
monocytes (18). The human equivalent of the murine cMoP
was recently identified within the bone marrow granulocyte-
monocyte progenitors (GMP) fraction (19). This human
cMoP gives rise directly to pre-monocytes, and subsequently,
monocytes. Investigations into the developmental stages between
the cMoP and mature monocytes uncovered in mice a
Ly6C+ CXCR4+ monocyte subset that resides in the bone
marrow termed pre-monocytes (20). These pre-monocytes show
proliferative potential and downregulate CXCR4 upon entry into

FIGURE 1 | Human monocyte subsets. Circulating monocytes arise in the bone marrow from a common monocyte progenitor (cMoP) before being released into the

peripheral circulation. The circulating monocyte pool is composed of multiple subsets. Human CD14+ CD16− classical monocytes (gray), CD14+ CD16+ intermediate

monocytes (blue), and CD14loCD16+ non-classical monocytes (red). Several external lifestyle factors can impact on these monocyte subsets.

the circulation (20). The egression of murine classical monocytes
from the bone marrow follows a circadian rhythm, regulated in
part by CXCR4 (20) and the circadian gene Bmal1 (21). It is
widely accepted that classical and non-classical monocyte subsets
are related developmentally, with classical monocytes having the
potential to give rise to non-classical monocytes over time (14,
22–27) (Figure 1). While recent advances demonstrate monocyte
development to be a highly regulated process under steady state,
here we summarize the influence of inherited traits and lifestyle
choices have on human monocyte homeostasis.

LIFESTYLE AND GENETIC FACTORS
AFFECTING MONOCYTES

Our knowledge concerning the development and function
of monocytes and monocyte-derived cells during pathology
continues to expand. It is also necessary to appreciate the
behavior of these cells under healthy physiological conditions.
However, healthy homeostasis is not a solitary state, rather
several factors—often overlooked—including sex, diet, exercise,
and age influence the immune system. Whether genetic traits
prevail over environmental cues regarding the immune response
remains a matter of debate (28, 29).

The earliest accounts of the cell originate with Robert Hooke’s
seminal observations in 1665 (30). Cellular analysis began with
microscopy, then progressed to flow cytometry and is currently
enjoying a renaissance in the form of single-cell RNA analysis.
Every advancing stride has led to a greater appreciation regarding
the complexity and diversity of monocytes, their subsets, and
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function (31–34). Here, we consider if and how, lifestyle choices
imprint on this diversity. This review will focus on our current
understanding of human monocyte adaptations observed due
to genetic and environmental factors; for a comprehensive
review on monocyte biology, see Guilliams et al. (5) and
Jakubzick et al. (6).

As a word of caution, the monocyte nomenclature was
recently codified by Ziegler-Heitbrock et al. and approved by
the International Union of Immunological Societies (35, 36).
Nevertheless, complexity remains an issue within the historical
literature and is further confounded by subsets conveyed
sometimes as a proportion of total monocytes or in absolute
numbers. Here, we have retold studies as originally described
to avoid confusion.

SEX

Several physiological differences exist between the sexes, the
most apparent being their role in reproduction. Another
obvious difference is hormone concentration. Over three
quarters of patients with autoimmune disease are female (37).
Systemic lupus erythematosus (SLE), Sjögren syndrome,
fibromyalgia, and rheumatoid arthritis afflict females
more than males (38, 39), whereas ankylosing spondylitis,
vasculitis, and Goodpasture syndrome predominantly occur
in males (40). This sexual dimorphism of autoimmune-
driven disease begs the question, do male and female
immune systems differ?

Under physiological conditions, monocyte counts have
consistently been reported to be elevated in males at all
stages of life (41–43). This difference is most profound during
adolescence (44). Curiously, one study examining over 400
individuals reported that monocytes are higher in Caucasian
men than those in women; this difference was absent in the
Afro Caribbean population (41). The proportion of non-classical
monocytes has also been reported to be different amongst men
and women (45). These differences in monocyte subsets may
be attributed to the effect of estrogen and other sex hormones.
To test this, researchers have turned to the menstrual cycle
and menopause. During the menstrual cycle, 17 β-estradiol,
and progesterone concentrations are consistently increased
during the luteal phase in comparison to the follicular phase.
Around 40 years ago, an elevated monocyte count was reported
during the luteal phase (46). With our growing knowledge on
monocytes, it would be worthwhile to revisit the impact of
the menstrual cycle on monocyte subpopulations, especially as
the identification of monocytes subsets remains inconsistent
throughout the literature. Interestingly, postmenopausal women
exhibit lower concentrations of estrogen and tend to have
an increased blood monocyte count; nonetheless, following
estrogen replacement therapy, monocyte numbers were restored
to levels seen in younger females (47). These data suggest an
increase in estrogen decreases monocyte numbers, supporting
the observation that males tend to have a higher monocyte
count. An exception to this would be the increase in
monocytes observed during the luteal phase of the menstrual

cycle. Together, this may suggest other endogenous factors
affect monocyte composition.

Sex differences may become conspicuous in the disease
setting. Both healthy males and females have equivalent number
of intermediate monocytes; however, only male sarcoidosis
patients exhibit an elevated number of intermediate monocytes
compared to female sarcoidosis patients who had equivalent
numbers to healthy female controls (48).

Sexual dimorphism has been reported in monocyte cytotoxic
activity (49) and cytokine production. Male monocytes produce
more inflammatory cytokines than females when stimulated with
LPS (42); however, female sex hormones were not responsible
for this effect as demonstrated in vivo by oral contraceptive
use (50). It is important to note that these studies used LPS.
PBMCs co-cultured with estrogen had altered expression of
TLR3, TLR7, TLR8, TLR9, but not TLR2 and the LPS receptor,
TLR4 (51). Therefore, the impact of estrogen on monocyte
function may only become apparent in response to particular
stimuli. These diverse responses on monocyte function between
the sexes are discussed in detail (52). Further studies will
help define the cytokines and/or hormones responsible for the
divergence observed in monocyte count and function between
males and females.

ETHNICITY

Ethnic diversity is reflected in disease susceptibility across
different human populations (53). This has been identified
in patients with tuberculosis (TB) infection (54), autoimmune
hepatitis (55), and systemic lupus erythematosus (SLE) (56). A
groundbreaking study by Nédélec et al. proposes that different
environmental pressures on our immune system may explain
why African ancestry is associated with a stronger inflammatory
response compared to Europeans (57).

Ancestry has been shown to influence leukocyte counts,
including neutrophils, lymphocytes, eosinophils, and monocytes
(41, 58, 59). A trans-ethnic meta-analysis study revealed that
those of a European ancestry tend to have a higher monocyte
count compared to African-American and Japanese individuals
(59). As expected, the interplay of ethnicity and other variables
is likely to influence monocyte count. Caucasian males were
observed to have a significantly higher count compared to
African males, while no difference was noted for females (41),
demonstrating the interaction of sex and ethnicity.

Regarding individual monocyte subsets, recently, a single
study has shown that Caucasian populations tend to have a
higher percentage of classical monocytes and conversely a lower
percentage of non-classical monocytes than those sampled from
an African population (58). In this study, Caucasians had a
trend for increased CX3CR1 expression; this could explain
the difference in monocyte proportions. CX3CR1 is involved
in non-classical monocyte retention to the endothelium (60,
61), as well as a survival factor for this monocyte population
(62); therefore, this increased expression might result in
lower representation of free circulating non-classical monocytes
due to their increased adherence. Of note, ethnic differences
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are possibly reflected in monocyte function, as monocyte-
derived cells from Filipino, Chinese, and non-Hispanic whites
challenged with Mycobacterium tuberculosis produced varying
quantities of cytokines from 137 volunteers (>44 from each
background) (63). As ethnicity can influence the immune
response, this may implicate the need for a more personalized
take regarding therapeutics.

DIET

Diet varies from individual to individual—from what they eat
to the quantity and frequency. A balanced diet is a basic
requirement for a healthy lifestyle. This fine balance goes
awry during surplus calorie intake, which contributes to many
diseases, including atherosclerosis, type 2 diabetes, and non-
alcoholic fatty liver disease (NAFLD). These western diet-related
diseases are associated with systemic chronic inflammation (64).

Monocytes play a central role in several diet-related
pathologies. In recent years, it has become evident that a high-
fat western diet triggers a number of functional modifications
in monocytes. Mice fed a western diet for 4 weeks led to an
elevation in circulating and splenic monocytes compared to
those fed on a standard chow diet (65). Further examination
into how a western diet prompts myelopoiesis was described to
be due to an increase in GMP in the bone marrow that also
functionally reprograms myeloid cells through NLRP3. Upon
reverting to a chow diet, monocyte numbers returned to baseline,
although an increased activation status became imprinted in
classical monocytes. Collectively, these data suggest that diet
leads to innate immune training within the monocyte pool
in mice. In a human study, 3 h after the consumption of a
high-fat (McDonald’s) meal resulted in an increased monocyte
count, specifically an elevation in non-classical monocytes (66).
Similarly, this observation is consistent with a study where
CD16+ monocytes (intermediate and non-classical) positively
correlated with increased body weight (67). Interestingly, in these
subjects, dietary intervention or gastric bypass surgery resulted
in a decrease in the absolute number and percentage of these
cells (67). Immediately following a high-fat meal, Khan et al.
demonstrated a higher percentage of lipid-laden monocytes (66).
These foamy monocytes increase their expression of CD11c,
which is thought to lead to monocyte arrest via vascular cell
adhesion protein (VCAM-1). While these are short-term effects,
recurrent chronic exposure of a high-fat diet may lead to diet-
related diseases.

Although a high-fat dietary intake increases peripheral
monocyte numbers, the opposite is true in fasted individuals
(68). Dietary restriction for 19 h in humans or 4 h in mice
led to a significant reduction in both circulating classical and
non-classical monocytes. This reduction in blood monocytes
was due to the inhibition of monocyte egress from the
bone marrow. This elegant study from the Merad group
demonstrated that carbohydrate and protein consumption
rescues monocyte numbers via the liver activated protein
kinase-peroxisome proliferator-activated receptor alpha (AMPK-
PPARα) pathway that regulates the monocyte chemoattractant

protein, CCL2 (68). Furthermore, dietary restriction during
experimental autoimmune encephalomyelitis (EAE), a mouse
model of multiple sclerosis, improved disease outcome and
reduced myeloid cell infiltrate compared to animals with access
to food ad libitum (68, 69). Similar findings have been observed
in humans, where fasting diets have shown to improve the quality
of life for patients with multiple sclerosis (69, 70).

In an experimental setting, a single macronutrient or
micronutrient alters the monocyte composition and function.
It is more realistic that it is a combination of several dietary
nutrients in varying amounts that will alter the phenotype
of monocytes.

SLEEP/WAKE CYCLE

Cortisol is the archetypical neuroendocrine anti-inflammatory
hormone that regulates immune cell gene expression (71, 72).
Cortisol follows a diurnal pattern where it peaks 30min after
waking in the morning and falls throughout the day. Cortisol
is the endogenous member of the glucocorticoid family of
immunosuppressive and anti-inflammatory drugs that acts on
many leukocytes, including monocytes, where they induce a
rapid decrease in circulating monocytes (73). Therefore, it would
be interesting to know if monocytes also follow a diurnal pattern.

Meuret et al. performed to the best of our knowledge one of
the earliest studies on monocyte kinetics. Meuret and colleagues
observed a monocyte cycle occurring around every 5 days in
humans. They proposed this due to a homeostatic loop within
the bone marrow with transit time being the prevailing factor
(74). Recently, we observed a population of CD14+ CD16− cells
resembling classical monocytes that reside in the human bone
marrow (14); these cells exhibit a postmitotic dwell period of
∼1.5–2 days before being released into the circulation (14, 75).
It is possible that this maturation period, in addition to the time
taken to differentiate into these cells, and the regulatory signals
account for this monocyte cycle.

While long-term monocyte oscillations have been described,
diurnal patterns are also present in both mice (20, 21) and
humans, where monocyte numbers decrease during sleep and
begin to gradually rise upon waking (76, 77). Cuesta et al.
were able to stratify individuals into two categories, one where
monocyte numbers peak during the morning, and another
group where the monocyte count peaked in the evening (77).
The reason behind the existence of these two groups remains
unclear—all subjects except one were male, of a similar age
who maintained comparable levels of activity, equivalent calorie
intake, and exposure to light. Inmice, CXCR4 and Bmal1 regulate
the circadian rhythm of circulating monocytes (20, 21).

Functional changes such as cytokine production, surface
membrane protein expression, and phagocytic ability have been
reported to follow a diurnal pattern (77–80). Cuesta et al.
conclude that cytokine production follows a bimodal rhythm,
where monocytes are more responsive at night, whereas during
the day, a higher production results from the increased numbers
of monocytes (77). In addition, while TLR1, 2, 4, and 9 expression
does not differ throughout the day, activation of these receptors
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results in the dampened expression of costimulatory molecules in
the morning (78).

Sleep-deprived individuals who remain awake during the
night gain a higher monocyte count compared to those who
slept at this period (76). Congruent with these findings, mice
with disrupted sleep also have an increase in peripheral blood
classical monocytes (81). Uninterrupted sleep enables the release
of hypocretin from the hypothalamus, which in turn regulates
CSF1 production from bone marrow pre-neutrophils regulating
monopoiesis (81). Although an increase in monocyte count
occurs during sleep deprivation, a diurnal oscillation pattern
remains (82). Furthermore, in night shift workers who are active
at night, no phase shift was detected in monocyte numbers
(77). Taken together, these studies establish that both internal
and external body clocks influence monocyte behavior and
emphasize the importance of appropriate time controls when
conducting experiments.

Circannual or seasonal rhythms have also been detected
in monocyte function. Monocyte counts remain stable
throughout the year, yet phagocytosis, cytokine production, and
prostaglandin metabolism vary (83, 84). Specifically, a higher
proportion of monocytes phagocytose in winter compared to
spring and autumn. In response to LPS, monocytes isolated
during the autumnal period produce lower concentrations
of both inflammatory [tumor necrosis factor (TNF)-α and
interleukin (IL)-6] and anti-inflammatory (IL-10) cytokines.
There are several possible explanations for the fluctuation
in human monocyte function throughout the year; seasonal
changes may be influenced by a myriad of factors including
increased periods in crowded places (i.e., indoor contagion
theory), reduced exposure to sunlight (vitamin D deficiency), or
even temperature changes. Despite the reason for these changes,
these seasonal changes may be relevant when performing
long-term clinical trials and should be taken into consideration.

EXERCISE

Over 120 years ago, Schulte described that exercise impacts the
human immune system and induces leukocytosis (85). Therefore,
the question arises, do monocytes fluctuate during exercise?
Studies have reported a rise in intermediate and non-classical
monocytes immediately following exercise (86), while others
have described a change in classical monocytes (80), classical
and non-classical monocytes (87), and even all three populations
(88, 89). At first glance, this can appear confusing however;
not all exercise is equal as the intensity, duration, and the
type of exercise (aerobic or anaerobic) influence monocytes (90)
and may account for these different findings. Maximal oxygen
consumption, a readout of an individual’s fitness, negatively
correlated with the percentage change in intermediate monocytes
(89). Therefore, the larger the maximal oxygen consumption, the
smaller the percentage change in intermediate monocytes. The
majority of non-classical monocytes are constantly crawling on
the endothelium in an LFA1-dependent manner (60, 61). This
may be overcome during intense exercise by the increase in shear
blood flow. Patrolling monocytes that previously were crawling

on endothelial cells are now able to be isolated, providing a more
genuine picture of blood monocyte subsets. While these effects
are transient, long-term alterations in monocyte composition
have also been observed following exercise. A 12-weeks exercise
regime reduced the percentage of CD16+ monocytes (91). This
decline in intermediate monocytes could be associated with fat
loss (67), as described above. In addition, TNF-α production was
significantly reduced following this 12-weeks exercise program,
while monocyte phagocytosis increased, suggesting that long-
term exercise may promote a more anti-inflammatory monocyte
while improving its phagocytic capacity.

AGE

At birth, monocytes are three times higher compared with
those of adults (92). Christensen and colleagues analyzed over
63,000 hospital records and found that monocyte counts increase
linearly with gestational age (93). This monocyte expansion
continued into the first 2 weeks after birth. As an organism
ages, so does its immune system. The term inflamm-aging
was coined by Franceschi 20 years ago (94) to describe the
progressive increase in the organism’s proinflammatory status
as it matures. Inflamm-aging includes adaptive immunity,
immunosenescence, and dysregulation of the innate immune
response. While some studies have reported no changes in the
mononuclear phagocyte count in different age cohorts (43, 95),
others have noticed a decrease in dendritic cells (96) and an
increase in monocyte subsets in the older aged cohort (45, 96–
99), particularly in intermediate and non-classical monocytes.
Plasma CCL2 is elevated in older individuals (99), which may
result in monocyte mobilization from the bone marrow, resetting
the dynamic equilibrium of bloodmonocyte subsets. However, in
advanced old age (81–100 years), fewer classical and intermediate
monocytes have been detected (100).

Coincidently, CD16+ monocytes have been reported to
expand in inflammatory conditions, also increased in older
individuals. These monocytes, in particular, non-classical
monocytes, produce higher basal levels of TNF-α and is thought
to account for the increase in plasma TNF-α levels in aged
individuals (45, 97, 101). A consequence of this inflammatory
environment results in dysregulated innate immunity, such
as impaired phagocytosis (45). The pharmacological blockade
of TNF-α in aged mice improved bacterial clearance and
returned classical monocytes to levels in young mice (102).
Therefore, the accumulation of monocytes in the elderly
may account for age-related inflammatory conditions. While
plasma TNF-α changes with age, hormonal changes also occur.
Therefore, it is important to consider age and environmental
and genetic factors, as all interact with the immune system.
There are as many “young” 85-year-olds running marathons as
“old” sedentary 75-year-olds.

CONCLUSION

Recently, new monocyte subsets have been described in mice
(35, 103–105) and humans (32, 34). The identification of
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these new populations demonstrates how recent technological
advances have changed the mononuclear phagocyte landscape.
Future insight to these subsets will provide therapeutic strategies
to enhance these cells when they are beneficial and block
the detrimental effects. In the quest for novel therapeutics,
it is critical to remember how sex and environmental and
lifestyle choices lead to physiological variations within a
leukocyte population as discussed here for monocytes. It
is important to examine these variables from a holistic
stance using defined objective criteria to avoid bias that
may have crept into previous studies. Historically, research
into the impact of lifestyle choices was performed on a
limited cohort with certain subjective evaluations. The
adoption of electronic health records will provide greater
insight into how sex and environmental and lifestyle choices

impact monocytes and additional leukocyte populations on a
previously unimaginable scale.
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