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The link between cancer development or progression and immune system dysregulation

has long been established. Virtually every cell type belonging to both the innate and

adaptive immune system has been reported to be involved in a complex interplay that

might culminate into either a pro- or anti-tumorigenic response. Among the cellular

components of the innate immune system, cells belonging to the monocyte/macrophage

lineage have been consistently shown to play a key role in the tumorigenic process.

The most advanced human tumors are reported to be strongly infiltrated with

Tumor-Associated Macrophages (TAMs) endowed with the ability to contribute to

tumor growth and dissemination. However, given their widely acknowledged functional

plasticity, macrophages can display anti-tumor properties as well. Based on these

premises, experimental approaches to promote the in vivo macrophage shift from

pro-tumor to anti-tumor phenotype represent one of the most promising research field

aimed at developing immune system-mediated tumor suppressive therapies. In this

context, the human RNASET2 oncosuppressor gene has emerged as a potential tool

for macrophage-mediated tumor suppression. A growing body of experimental evidence

has been reported to suggest a role for this gene in the regulation of macrophage activity

in both in vitro and in vivo experimental models. Moreover, several recent reports suggest

a role for this gene in a broad range of cell types involved in immune response, pointing at

RNASET2 as a putative regulator of several functional features within the immune system.

Keywords: T2 RNases, innate immune response, tumor suppression, stress response, tumor microenvironment,

targeting immunotherapy

INTRODUCTION

The innate immune system represents an evolutionary conserved host defense tool, with many key
features being shared between plants, invertebrates, and vertebrates (1).

However, dysfunction of this defense system is also involved in a wide range of pathologies,
which include cancer and autoimmune disease in humans (2, 3).

In cancer, key cellular components of the innate immune system undergo a significant
alteration in their effector functions, whose final result is the expression of tolerant or pro-tumor
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functions (4). By contrast, autoimmune diseases are usually
associated with an abnormal, excessive response of CD4+ T
helper (Th) cell subsets in cooperation with myeloid innate
immune cells (5, 6). Despite recent significant progresses have
been achieved in understanding cancer biology, the diagnosis
and treatment of cancer still represent one the leading cause
of death in western countries, whereas autoimmune diseases
still strike millions of people worldwide. In cancer, tumor cells
make themselves invisible to the adaptive immune system,
by up-regulating self-defense mechanisms which promote
immunological self-tolerance (7). The discovery of immune
check-point molecules that limit autoimmunity, and their
blockade in cancer treatment, has been recently exploited as an
anti-cancer therapeutic approach (8, 9).

Among the cellular components of the innate immune system,
macrophages represent key effector cells (10). These cells display
direct effector roles in the control of pathogen infections and
cancer cells destruction, regulate the inflammatory response and
modulate the adaptive immune cells. However, their role in
cancer control is controversial, since they can also carry out
roles whose final effect is to promote, rather than hinder, cancer
growth (11).

These alternative functions reside in the ability of
macrophages to display phenotypes endowed with specific
functional roles, as exemplified by the two opposite polarization
states (the M1-like anti-tumor and M2-like pro-tumor
phenotypes, respectively) that macrophages can experience
in response to different microenvironmental stimuli (12, 13).
However, it has been recently established that macrophage
polarization in several physiologic and pathologic conditions
actually represents a continuum, in which these cells display
a spectrum of distinct polarization states that do not fit to the
oversimplified M1/M2 classification (14).

Reflecting their plasticity, within the tumor
microenvironment (TME) macrophages acquiring distinct
phenotypes and functions (resulting in the attenuation of
their antitumor activity and induction of tumor-supporting
functions) have been defined as tumor-associated macrophages
(TAMs) with M2-like features. TAMs represent a mixed cell
population with heterogeneous phenotypes and functions, which
includes resident macrophages, infiltrating blood monocytes,
and monocyte-related myeloid-derived suppressor cells, known
to be involved in tumor initiation, growth, angiogenesis,
metastasis, immunosuppression, cancer-related inflammation,
and resistance to therapy (15).

Besides the widely acknowledged role of macrophages in
the control of cancer growth in vivo, other components of the
TME also strongly affect cancer progression, such as extracellular
matrix (ECM) molecules, fibroblasts, endothelial cells, and other
types of innate and adaptive immune cells (16).

Abbreviations: dNK, decidua-like Natural Killer cells; ECM, Extracellular Matrix;

GWAS, Genome wide association studies; LPS, lipopolysaccharide; MM, Multiple

Myeloma; MMSET, Multiple myeloma set domain; NK, Natural Killer cells; SNPs,

Single nucleotide polymorphisms; TAMs, Tumor-associated macrophages; TME,

Tumor microenvironment; TRAF2, Tumor necrosis factor receptor-associated

factor 2.

For instance, natural killer (NK) cells are known to be altered
under hypoxic conditions (a typical stress condition experienced
by cancer cells) by assuming a uterine/decidua-like NK (dNK)
cell phenotype (17) which display low cytotoxicity and is involved
in angiogenesis and blastocyst implantation (18–20). NK cells
are effector lymphocytes of the innate immunity endowed with
cytotoxic activity and Th1 cytokine production (17). However, in
cancer patients NK cells display very low cytotoxicity (21, 22) and
a pro-angiogenic phenotype (23–26).

The involvement of the innate immune system in the control
of cancer growth thus entails a complex crosstalk between most
of its cellular components, whose interplay is just beginning to
be defined. In fact, escaping the immune surveillance is now
widely accepted as the seventh hallmark of cancer (27) and
a widely pursued task in current cancer research is aimed at
“reinstructing” the immune system to restore or enhance its
anti-cancer activity (13).

Elucidating the roles and mechanisms of action of the
molecular effectors within the TME which impact on the
balance between the pro- and anti-tumor roles of the innate
immune system thus represents a key topic in current
cancer research, since it may open new opportunities for
therapeutic interventions. In this context, several members
of the T2 ribonuclease enzyme family have recently emerged
as potential key players in innate immunity-mediated cancer
growth control, by acting as stress-response, “alarmin”-like
tumor suppressor genes.

T2 RIBONUCLEASES: AN EMERGING
FAMILY OF EVOLUTIONARILY
CONSERVED, HIGHLY PLEIOTROPIC
PROTEINS

Ribonucleases (RNases) represent RNA-processing or degrading
enzymes found in almost all organisms. They participate in many
key cellular functions, such as DNA replication, control of gene
expression, extracellular signaling and host defense (28).

Being RNAs involved in key biological processes (29), proteins
affecting RNA turnover have been thoroughly investigated to
better understand their role in basic cellular processes, such as
cell proliferation, differentiation, apoptosis, and migration. Of
note, dysregulation of these biological processes are known to be
involved in cancer development.

Among ribonucleases that hydrolyze single-stranded
RNA (30), transferase-type represent an important subclass,
epitomized by the extensively investigated RNase A protein
family (31). A key feature of these enzymes is their secretion in
the extracellular milieu or their localization in several subcellular
structures. Despite these ribonucleases have been classified
in several ways, in broad terms they are classified as alkaline
ribonucleases (T1 and A families) and acid ribonucleases (T2
family) (32).

T2 ribonucleases were originally classified by their similarity
to the first acid ribonuclease purified from Aspergillus oryzae
(33). T2 ribonucleases can be distinguished from A and T1
family members based on their preferential acidic pH for optimal
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catalytic activity and their impressively wide evolutionary
conservation (unlike T1 and A ribonucleases, T2 ribonucleases
have been widely reported among taxa) (Figure 1A) (36). Such
striking pattern of evolutionary conservation suggests a very
ancient and key role for this class of ribonucleases. All members
of the T2 ribonucleases family are also characterized by two
characteristic catalytic sites (CAS) I and II motifs, endowed with
the catalytic function (Figure 1B).

The extremely wide evolutionary conservation of T2
ribonucleases is coupled to their involvement in several
physiological functions, ranging from scavenging phosphate
for nutritional needs to neural development, prevention of
self-pollination in plants, cell cytotoxicity, modulation of the
cytoskeleton, angiogenesis, and stress response (36).

Noteworthy, many of these biological processes are implicated
in cancer development. For instance, the T2 ribonucleases
from Aspergillus niger has been reported to display both
anticarcinogenic and antiangiogenic properties (37, 38).

Moreover, like several vertebrate ribonucleases A family
members (39), T2 ribonucleases from different species have
been recently reported to be involved in immune response
modulation, another biological process tightly linked to cancer
growth control. For instance, the RNASET2 protein secreted
by the parasite Schistosoma mansonii has been reported to
prime host dendritic cells to trigger a Th2 polarization of
CD4+ T lymphocytes during infection (40–42), although the
reported effect of the Schistosoma T2 RNase on the host innate
immune response was different from that later described in
mammalian experimental models, being dendritic cells rather
than macrophages the main target of the protein. This apparently
different roles of T2 ribonuclease family members might reflect
the evolutionary distant experimental models used (i.e., a
trematode parasite and mammalian species).

Moreover, transcriptional profiling of human MEC-1
cells-derived leukemic tumors developing in vivo in a murine
experimental model where host macrophages were depleted
showed a marked downregulation of human RNASET2
expression in actively growing tumors only (43). The last
report suggested an oncosuppressive role for human RNASET2
mediated by the involvement of the host innate immune system.

HUMAN RNASET2: AN ALARMIN-LIKE
TUMOR SUPPRESSOR GENE ACTING ON
CELLS FROM THE
MONOCYTE/MACROPHAGE LINEAGE

The RNASET2 gene represents the only human member of
the T2 extracellular ribonucleases family and has been mapped
on human 6q27, a region which has been frequently found
to be rearranged in a wide range of cancers (44–50). The
RNASET2 protein includes 256 aminoacid residues, encoding
a signal peptide at the N-terminal and the two canonical I/II
catalytic sites (Figure 1B) (34). A putative Tumor necrosis
factor Receptor-Associated Factor-2 (TRAF-2) binding site was
also predicted in the C-terminal part and has been suggested
to play a role in RNASET2-mediated apoptosis in both

human melanocytes and keratinocytes (35). T2 ribonucleases
are normally extracellular proteins, but intracellular isoforms
(34) have also been detected in the secretory pathway,
lysosomes, mitochondria and processing bodies, cytoplasmic
ribonucleoprotein (RNP) granules primarily composed of
translationally repressed mRNAs and proteins related to
mRNA decay (51–53).

Being localized in a chromosomal region that represents a
common target for rearrangements in a wide spectrum of cancer
types, the putative role of RNASET2 as a tumor suppressor gene
has long been investigated.

Our group initially chose human ovarian carcinoma as an
experimental model to test the role of RNASET2 as a tumor
suppressor gene. Indeed, this gene shows an expression pattern
which is compatible with a role in ovarian cancer, being expressed
in ovarian and fallopian tube surface epithelia, the structures
from which most ovarian carcinomas are thought to arise (54).
Interestingly, we showed the RNASET2 gene to be frequently
downregulated in both ovarian cancer-derived cell lines and
tumor samples (55).

To better define the function of RNASET2, both ovarian
carcinoma and malignant melanoma-derived human cell lines
were used for in vivo xenograft assays carried out in nude mice.
Strikingly, RNASET2-overexpressing clones derived from both
cell lines displayed a marked suppression of their tumorigenic
potential in vivo (56, 57).

Tumors derived from human cancer cells overexpressing
a catalytically inactive RNASET2 protein were equally
suppressed in their in vivo growth rate when compared to
their wildtype RNASET2-expressing counterpart, suggesting that
RNASET2-mediated tumor suppression is independent from
its ribonuclease activity (57). The latter was not a completely
unexpected finding, since other members of the T2 ribonuclease
family are known to carry out a particular biological process
independently of their catalytic activity (36).

A detailed histological survey showed that xenograft-derived
suppressed tumors overexpressing RNASET2 were strongly
infiltrated by murine stromal cells belonging to the M1 subclass
of macrophages, which are known to display a marked anti-
tumorigenic role (57). These data were confirmed by a further
in vivo xenograft-based assay, where in vivo depletion of
host macrophages largely restored the tumorigenic potential
of RNASET2-overexpressing human ovarian cancer cells (57).
These data strongly pointed at the monocyte/macrophage
cell lineage as a key component of RNASET2-mediated
tumor suppression.

The crucial role of host macrophages was confirmed in an
independent xenograft-based model, whereby knock-down of
endogenously expressed RNASET2 in human OVCAR3 ovarian
cancer cells was associated with amarked increase in their growth
rate in vivo, coupled with a significant decrease of M1-polarized
macrophage infiltration (58). Moreover, gene expression analysis
in two human cancer types (ovarian cancer and chronic
lymphocytic leukemia) unveiled a gradual decrease of RNASET2
gene expression with increasing stage or grade (which is an
expected pattern for an oncosuppressor gene) (59). However,
both cancer types, actually showed a marked upregulation of
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FIGURE 1 | Structural features and evolutionary conservation of T2 RNase proteins. (A) A Clustal Omega alignment of several members of the T2 RNase family,

showing the wide evolutionary conservation of this enzymes. RNA cleavage by T2 RNases is mediated by histidine residues (red boxes) embedded into two highly

conserved motifs dubbed CAS I and CAS II. The species included in the alignment are Saccharomices cerevisiae, Hirudo verbana, Danio rerio, Homo sapiens,

(Continued)
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FIGURE 1 | Macaca mulatta, Rattus norvegicus, and Mus musculus. (B) Structure of human RNASET2. The RNASET2 primary sequence includes 256 aminoacid

residues, with a predicted molecular weight of about 30 kDa. The core enzyme is colored in dark green in the figure. Among the protein’s structural features, a

24-residues long signal peptide for secretion at the N-terminal (yellow bar) and the two canonical CAS sites (CAS I/II, red bars) responsible for the enzyme’s catalytic

activity (bearing a highly conserved key histidine residue at position 65 and 118, respectively) are shown in the figure. Three N-glycosylation sites (white horizontal

lines), which increase the molecular weight of the native protein of about 6 kDa, are also shown (34). Finally, a putative TRAF-2 binding site (dark blue bar) was

predicted in the C-terminal part of RNASET2 (light blue bar, starting form residue 214), which is less evolutionary conserved throughout evolution and has been

suggested to be comprise a highly disordered loop (35). Within the cell, the RNASET2 protein is present in three forms of different sizes, namely 36, 31, and 27 kDa

(34). The 36 kDa isoform represents the full-length and secreted form, which is easily detected in cell culture supernatants from RNASET2-expressing cells, whereas

the other two isoforms represent intracellular protein isoforms originating from proteolytic cleavage of the full-length protein (B).

RNASET2 expression at early stages when compared to the
healthy tissue, followed by a gradual decrease in advanced stages.

These data strongly pointed at a non-cell autonomous
oncosuppressive role of RNASET2, by which cancer cells
secreting high levels of this protein might send a sort of “alarm”
message to monocytes/macrophages in order to promote their
oncosuppressive activity by means of their active recruitment,
activation, and polarization (Figure 2). According to this
hypothesis, RNASET2 might represent a novel member of the
“alarmin” family, molecules passively released by necrotic cells
or actively secreted by epithelial or immune cells in order to
signal to the innate immune system the occurrence of dangerous
events (60, 61).

In keeping with the alarmin hypothesis, overexpression in
human ovarian cancer cells of an engineered RNASET2 protein
bearing an endoplasmic reticulum retention signal (to prevent
protein secretion) largely restored the ability of these cells to form
fast-growing tumors in vivo, thus demonstrating the key role
of extracellular RNASET2 in tumor suppression (62). A role in
innate immune system modulation has been reported for other
extracellular ribonucleases, such as some human ribonuclease
A family members (39) and, significantly, a T2 ribonuclease
secreted by the Schistosoma mansonii parasite’s eggs during
mammalian infection (40, 41).

Furthermore, alarmins are known to work as stress
response proteins and, accordingly, several members of the
T2 ribonuclease family are known to act as stress response genes
in several species (51, 62–64).

As long as human RNASET2 is concerned, its expression and
extracellular secretion are markedly increased both in vitro and
in vivo under a wide range of stressful conditions (35, 62, 65, 66),
among which hypoxia and nutritional starvation, two stressful
conditions typically experienced by early-stage cancer cells.

Gene expression analysis based on publicly available
datasets indicates that RNASET2 is also expressed in Multiple
Myeloma (MM) cells (http://www.humanmine.org-RNASET2).
Interestingly, although expression levels RNASET2 in MM
patients does not change much from its precancerous
Monoclonal Gammopathy of Undetermined Significance
stage, recent evidence suggest that this gene is significantly
regulated by epigenetic modifications, as observed in t(4;14)+

myeloma cells overexpressing the histone methyltransferase
MMSET, a driving factor in the pathogenesis of this subtype
of myeloma.

Investigations of the T2 ribonuclease from Aspegillus niger
(ACTIBIND) based on xenograft models have confirmed the

strong, non cell-autonomous in vivo tumor suppressive activity
for this class of proteins (37, 38).

The functional nature of the crosstalk between RNASET2 and
cells from the monocyte/macrophage lineage was also recently
investigated. Strikingly, human recombinant RNASET2 was
shown to act as a potent chemokine for cells belonging to the
monocyte/macrophage lineage (58), in keeping with the previous
in vivo data (57, 58).

Furthermore, knock-down of endogenous RNASET2
expression in the human promonocytic THP1 cell line model
was shown to affect the polarization pattern of differentiated
THP-1-derived macrophages by promoting a shift form the anti-
tumor M1 to the pro-tumor M2 state (67). These data provide
a further support to the previously reported recruitment of
M1-polarized macrophages in RNASET2-overexpressing tumor
xenografts and point at RNASET2 as an alarmin-like molecule.

Given the extreme evolutionary conservation of T2
ribonucleases, their role as innate immune system modulators
has been recently investigated in non-vertebrate experimental
models. Strikingly, recombinant RNASET2 injection in the
body wall of the invertebrate medicinal leech Hirudo verbana
triggered a massive recruitment of AIF1+ host macrophages into
the injected area, again supporting the role of RNASET2 as a
chemoattractant molecule for monocyte/macrophages (68).

The recruited macrophages were shown to be functionally
activated as phagocytic cells and to actively express their
endogenous RNASET2 gene, suggesting the occurrence of a
putative RNASET2-mediated positive feedback in these cells
(68). The confirmation of a functional crosstalk between a T2
ribonuclease and tissue macrophages in evolutionarily distant
taxa is of key relevance, since it suggests a very ancient and
conserved role for T2 ribonucleases in host defense.

IS THE CROSSTALK BETWEEN HUMAN
RNASET2 AND THE IMMUNE SYSTEM
WIDER THAN EXPECTED? HINTS FROM
RECENT EXPERIMENTAL DATA

In recent years, further investigations led to the discovery of the
molecular pathways by which T2 ribonuclease family members
carry out their oncosuppressive role. Therefore, depending on
the adopted experimental system, T2 ribonucleases have been
reported to control key cellular processes such as angiogenesis,
apoptosis, cytoskeletal rearrangements, cell invasion, and innate
immune cells activation or polarization (35, 38, 62, 63, 67,
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FIGURE 2 | A model for human RNASET2-mediated tumor suppression.

(A) In physiological contexts, most human cells express low or undetectable

RNASET2 levels (https://www.ncbi.nlm.nih.gov/gene/8635), with the notable

exception of spleen, lymph nodes and colon, three tissues highly involved in

immune system function. This ubiquitous “baseline” RNASET2 expression can

be related to the execution of intracellular or extracellular roles (some yet-to-be

defined) possibly mediated by its catalytic activity. (B) When cells are locally

exposed to a wide range of stresses, some of which are typically experienced

by cancer cells (such as hypoxia, oxidative stress or nutritional starvation), they

activate a “danger-response” program which involves, besides the activation

of several endogenous stress response pathways, a massive increase in

expression and secretion of RNASET2, which acts as an alarmin-like molecule

to engage cells belonging to the innate immune system (mostly macrophages,

but possibly other cellular components such as natural killer (NKs), dendritic

cells (DCs) and granulocytes) to coordinate an immune-response-mediated

tumor suppressive response. As previously described for several biological

processes mediated by T2 RNases, the catalytic activity of the RNASET2 is

not required to trigger this marked immune system-mediated response.

Strikingly, the functional crosstalk between RNASET2 and cellular effectors of

the innate immune system has been reported in several evolutionary distant

species, suggesting an ancient key role of T2 RNases in immune-response

mediated host defense.

69). Based on these data, T2 ribonucleases are currently
considered highly pleiotropic proteins endowed with an ancient,
evolutionary conserved role related to stress response and
host defense.

In this context, granulocytes represent further key
effector cells of the innate immune system. Strikingly,
our recent investigations in the medicinal leech showed
endogenous RNASET2 overexpression in these cells following
lipopolysaccharide injection into the body wall (70) and
the RNASET2 protein was detected in the granules of these

cells, suggesting a further role in innate immunity-mediated
host defense.

Taken together, these data make RNASET2 a strong candidate
gene for innate immune response-mediated control of cancer
growth, by means of a complex multicellular network involving
other cells besides tissue macrophages.

Finally, a new piece in the puzzle has been recently added by
the results of several genome-wide association studies (GWAS),
where a few SNPs nearby the RNASET2 gene have been
strongly associated with the risk for several human autoimmune
diseases, such as Grave’s disease, vitiligo, Crohn’s disease,
rheumatoid arthritis, and type I diabetes (71–75). Some of these
polymorphisms were shown to modulate RNASET2 expression
(76), again suggesting a key a role for RNASET2 in host immune
response regulation.

Given the known functional link between autoimmune disease
and cells from the innate immune systems (77), these recent
observations further support a pleiotropic and widespread
role for T2 ribonucleases in immune system-mediated host
defense mechanisms.

CONCLUSION

The RNASET2 gene is the only human member of this
extracellular ribonuclease gene family. Unlike other
ribonucleases, T2 ribonucleases have been discovered in
most organisms and are mostly related to stress response and
host defense. Significantly, the roles assigned to T2 ribonucleases
are often mediated by biological processes tightly linked to
cancer development (36).

Despite some of these processes apparently suggest a
cell-autonomous oncosuppressor role for T2 ribonucleases,
recent experimental data point at the occurrence of a
functional crosstalk between members of this extracellular
protein family and the tumor microenvironment
as well.

Interestingly, establishing this crosstalk represents a key step
in T2 ribonuclease-mediated tumor suppression in some in
vivo experimental models. In particular, T2 ribonucleases from
evolutionary distant species such as Homo sapiens, Schistosoma
mansonii and Hirudo verbana all share a common ability to
functionally interact with and modulate one or more cellular
effectors of the innate immune system. These data suggest that
modulation of the immune system by T2 ribonucleases represent
a very ancient feature aimed at coordinating an effective host
defense response.

Beside this, in light of the growing attention for
anticancer immunotherapy approaches (78), RNASET2-
mediated regulation of the immune system might
suggest an innovative approach in clinical oncology,
based on the use of recombinant RNASET2 protein
as a wide-range, pleiotropically acting antitumor drug,
acting to fight cancer cells at both cell-autonomous, and
non cell-autonomous levels.

Finally, the recent results from a number of GWAS, pointing
at human RNASET2 gene polymorphisms as a risk factor for
several autoimmune diseases, add further support to the notion
of a complex and widespread involvement of this protein in
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immune system modulation, by indicating at the same time a
novel target for drug development for this group of devastating
human diseases.
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