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Infections are considered important environmental triggers of autoimmunity and can

contribute to autoimmune disease onset and severity. Nucleic acids and the complexes

that they form with proteins—including chromatin and ribonucleoproteins—are the main

autoantigens in the autoimmune disease systemic lupus erythematosus (SLE). How

these nuclear molecules become available to the immune system for recognition,

presentation, and targeting is an area of research where complexities remain to

be disentangled. In this review, we discuss how bacterial infections participate in

the exposure of nuclear autoantigens to the immune system in SLE. Infections can

instigate pro-inflammatory cell death programs including pyroptosis and NETosis, induce

extracellular release of host nuclear autoantigens, and promote their recognition in an

immunogenic context by activating the innate and adaptive immune systems. Moreover,

bacterial infections can release bacterial DNA associated with other bacterial molecules,

complexes that can elicit autoimmunity by acting as innate stimuli of pattern recognition

receptors and activating autoreactive B cells through molecular mimicry. Recent studies

have highlighted SLE disease activity-associated alterations of the gut commensals and

the expansion of pathobionts that can contribute to chronic exposure to extracellular

nuclear autoantigens. A novel field in the study of autoimmunity is the contribution

of bacterial biofilms to the pathogenesis of autoimmunity. Biofilms are multicellular

communities of bacteria that promote colonization during chronic infections. We review

the very recent literature highlighting a role for bacterial biofilms, and their major

components, amyloid/DNA complexes, in the generation of anti-nuclear autoantibodies

and their ability to stimulate the autoreactive immune response. The best studied

bacterial amyloid is curli, produced by enteric bacteria that commonly cause infections

in SLE patients, including Escherichia coli and Salmonella spps. Evidence suggests that

curli/DNA complexes can trigger autoimmunity by acting as danger signals, molecular

mimickers, and microbial chaperones of nucleic acids.
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INTRODUCTION

Nucleic acids and the proteins that bind to nucleic acids are
the main autoantigens (autoAgs) in the autoimmune disease
systemic lupus erythematosus (SLE) (1). In SLE patients,
autoantibodies (autoAbs) are found against lupus specific nuclear
antigens, such as double-stranded DNA (dsDNA) and the
Smith antigen (Sm), a non-histone nuclear RNA complex with
ribonucleoprotein present in spliceosomes. Other SLE autoAbs
bind different nucleic acid constituents, nucleosomes, ribosomes,
and ribonucleoproteins such as Ro60 and La, and are shared
with other autoimmune diseases (2). Of note, nucleic acids
are not only autoAgs recognized by autoAbs in SLE, but
they also represent conserved pathogen-associated molecular
patterns (PAMPs) (3) of viruses and bacteria (4–8) and host
nucleic acids are damage-associatedmolecular patterns (DAMPs)
(9–14). The immune system has evolved pattern recognition
receptors (PRRs) to detect the inappropriate presence of
these macromolecules in the cytosolic and extracellular spaces.
The compartmentalization of endogenous nucleic acids and
PRRs usually prevents the inappropriate stimulation of the
immune system by these potent danger signals in absence of
infections (15).

The main PRRs that have been found to be involved in
the pathogenesis of lupus are toll-like receptors (TLR) 7 and
9, which, respectively, recognize dsRNA and DNA rich in
hypomethylated CpGs (16, 17). TLR7 and TLR9 are localized
within the endosomes (18), suggesting that the origin of their
ligands is extracellular and prompting the question of the source
of the nucleic acids being detected. More recently, an interest
has been sparked for intracellular DNA sensors, including cGAS,
suggesting that nucleic acids may also be stimulating the immune
system in the cytoplasm (19). Nevertheless, as autoAgs, nucleic
acids have to operate in the extracellular compartment to engage
B cells and autoAbs, leaving the research field wondering about
source and nature of the extracellular nuclear autoAgs.

There is abundant evidence—mostly in murine models of
lupus—that genetic defects in cell death and clearance of
dead cells (efferocytosis) lead to release of lupus autoAgs, the
combination of which can trigger autoimmunity in the right
genetic background (20–23). These genetic defects, however,
are rarely found in SLE patients (24), indicating the need to
search for alternative causes of release of nucleic acids in the
extracellular compartment.

Infections in general are thought to play a role in
the development of autoimmune disease, contributing to
abnormal immune responses through molecular mimicry,
epitope spreading, and bystander activation (25–27). While there
are multiple theories in which infection by a pathogen is thought
to lead to lupus autoimmunity, a common thread that ties
the many mechanisms together is that infections can lead to
exposure of the immune system to nucleic acids that the host
otherwise would not be exposed to (28, 29). Infections can
be a dangerous and powerful source of extracellular nuclear
antigens because they expose nucleic acids derived from bacteria
or viruses, especially from the bacterial biofilms, which are very
rich in bacterial DNA and amyloids carrying extracellular DNA

(30–32). Moreover, infections can release host nucleic acids in
the extracellular compartment because of the different types of
cell death that can occur during infection, either as a direct
cytotoxicity of the pathogen or as a consequence of normal
immune responses, notably pyroptosis (33) and the extrusion
of neutrophil extracellular traps (NETs) (11, 34). The interplay
between infections, biofilms and cell death continues to be the
focus of much discussion in the field (35–38).

Circulating extracellular nucleic acids can be found in healthy
individuals and were first described in 1948 (39). Their role was
not associated with autoimmunity until 1966, when free DNA
was found in SLE patients (40). Since then, novel techniques have
shown that microorganism-derived and host-derived nucleic
acids can be immunostimulatory, inducing the production of
type I Interferons (I-IFNs) through both TLR-dependent and
independent pathways (19, 41–45). In this review, we present
findings from recent literature highlighting a role for bacterial
infections and bacterial biofilms in the extracellular exposure of
nuclear autoAgs, and their ability to stimulate the autoreactive
immune responses in SLE (Figure 1).

INFECTIONS ARE AN IMPORTANT CAUSE
OF MORBIDITY AND MORTALITY IN SLE

Infections are the leading cause of both morbidity and mortality
in SLE patients, accounting for up to 55% of deaths in SLE
(46–48). A large study that analyzed more than 30,000 SLE
patients found that infections were a major burden, with
many subsequent deaths correlated with immunosuppressive
drugs and lupus nephritis (49, 50). It remains unclear whether
immunosuppressive drugs and the severity of the autoimmune
disease that requires such drugs predispose to infections or
infections augment disease severity, or rather whether the two
entities create a pathogenic vicious circle. Although lupus disease
develops from an interplay between genetic and environmental
factors, infectious agents have been proposed as triggers of
lupus disease development due to compelling evidence of shared
production of SLE-related autoAbs like anti-Sm Abs in infectious
mononucleosis and cross-reactivity between SLE autoAbs and
Epstein-Barr virus (EBV) proteins, which suggest the occurrence
of molecular mimicry (27, 51). The most common type of
infection in lupus patients is bacterial, accounting for 80% of
all infections in lupus, followed by viral infections (52, 53).
Viral infections are also very common in SLE patients and
have been hypothesized to play a pathogenic role in SLE. A
large body of literature supports a role for EBV (54, 55) and
parvovirus (56–60), and most recently human papilloma virus
(61, 62) has also been implicated. In this review, we focus on
the perspectives of bacterial infections in lupus because of their
higher incidence in SLE patients, bridging new research on
biofilms and sensing of extracellular nucleic material with its
implications in autoimmunity. We recommend recent reviews
with excellent focus on viral infections (54, 55, 63, 64).

Among the bacterial infections, urinary tract infections
(UTIs), soft tissue infections, bloodstream infections, and
pneumonia are more common in SLE patients than in the general
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FIGURE 1 | Model of the contribution of bacterial infections and bacterial biofilms to the pathogenesis of autoimmunity. Infections can be a source of extracellular

nuclear antigens because they expose nucleic acids derived from bacteria and especially from bacterial biofilms, which are very rich in bacterial DNA and amyloids

carrying extracellular DNA. Amyloid curli/DNA complexes can trigger autoimmunity by acting as danger signals to activate innate immunity and as molecular

mimickers to activate autoreactive B cells. Moreover, infections can release host nucleic acids because of the different types of cell death that can occur during

infection, notably pyroptosis and the extrusion of neutrophil extracellular traps (NETs). Defective clearance of apoptotic cells and subsequent post-apoptotic necrosis

may also be a source of extracellular nucleic acids.

population (65, 66), either because of the immunosuppressive
therapy or inherent immune abnormalities. Streptococcus
pneumoniae, Escherichia coli, and Staphylococcus aureus are
the most frequently associated pathogens in these infections
(65, 66). Moreover, common pathogens, including Salmonella
enterica serovar Typhimurium and Salmonella enterica serovar
Enteritidis, appear to behave more aggressively in SLE patients;
instead of causing localized gastroenteritis, Salmonella infection
in SLE patients results in bacteremia and complications in
soft tissues with high mortality rates (66–69). Additionally,
SLE patients with bloodstream infections have a higher risk
of developing severe flares (27, 70), making it difficult to
distinguish cause and effect of the flare (27, 71–73). These
results beg the question of whether infections can trigger SLE
onset, or whether they are only associated with flares after the
disease has started, and a definitive answer is yet to be found.
Clinical studies have shown that patients with SLE who had
infection-related hospitalizations suffer a profoundly increased
risk of end-stage renal disease, suggesting that infections have
an effect on SLE disease activity (74, 75). A study of 7,326
patients newly diagnosed with SLE showed that the occurrence
of three or more infection-related hospitalizations greatly
increased risk of end-stage renal disease (ESRD), indicating

an effect of infections on SLE disease activity (75). The risk of
infection-related hospitalizations was independently associated
with ESRD following stratified analysis that adjusted for chronic
kidney diseases (CKD) and other confounding factors. In the
same article, the infections that had a higher hazard risk of ESRD
were septicemia-bacteremia, followed by pneumonia and UTI,
with soft tissue infections at the fourth place, indicating that the
infections leading to ESRD were both systemic and localized to
the kidney. UTIs were classified as any genitourinary infection,
including pyelonephritis, UTIs and perinephric abbesses,
and only patients who had infections as reason for requiring
hospitalization were enrolled in the study, therefore minimizing
the inclusion of iatrogenic infections such as catheter-induced
ones. These data suggest a role as a promoter of lupus severity
for a generalized activation of the immune system that is
induced by severe bacterial infections, even when the stimulation
derives from localized infection. In another study, the incidence
of invasive pneumococcal infections in SLE patients was
found to be 13 times higher than the incidence in the general
population, an association that did not correlate with the use of
immunosuppressants (76). Although the frequency of infection
before lupus onset has not been thoroughly documented in the
literature, some case reports suggest that it is increased, especially
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in pediatric lupus (77, 78), suggesting that infections accelerate
SLE onset in predisposed individuals.

MICROBIOME AND LUPUS

Recently, the symbioticmicrobiota in our body have gainedmuch
attention as an influential variable conditioning human health
and disease (79, 80). The gut microbiota have been subject of
intense investigation because of the intriguing findings that gut
dysbiosis has local and systemic effects on the immune system
(81–84), but microbiota also reside beyond the gut, colonizing
mucosal tissues and specific niches, from the skin to oral cavity,
vagina, or the bladder, where they are expected to exercise
major effects as well (85). Studies focused on lupus specifically
found a reduction in species diversity in the gut microbiota
that is associated with specific enteric bacteria in SLE patients
(86–88) or their first-degree relatives (89) and was present in
cohorts from different continents with different ethnicities (90).
DNA from Enterococcus gallinarum was found in the liver of
SLE patients, and colonization of autoimmune-prone mice with
these bacteria induced autoantibodies and decreased survival
(91). Ruminococcus gnavus of the Lachnospiraceae family is
another pathobiont reported to be overrepresented in SLE gut
dysbiosis and has been shown to elicit specific Ab responses
correlating with anti-DNA autoAb levels, SLE activity and lupus
nephritis in particular. Ruminococcus gnavus specific lipoglycans
are proposed as novel immunodominant antigens as well as
innate stimuli in SLE through the binding of TLR2 (83).

Studies exploring the role of gut microbiota on disease
progression in lupus-prone mice further corroborate the
importance of bacteria and infection on lupus disease
development (87, 92). Consistent with findings that germ-
free conditions do not influence disease outcome (93), treating
lupus-prone mice with antibiotics from the time of weaning
also did not impact disease activity. However, when antibiotic
treatment initiation was delayed until after disease onset, SLE
autoimmunity was attenuated. Lupus disease progression was
thought to be attenuated by targeting Clostridial strains (i.e.,
Lachnospiraceae) found to be increased in both lupus mice
and feces of human SLE patients, while allowing for beneficial
commensals found in healthy individuals (i.e., Lactobacillus
spp.) to thrive. Treatment with vancomycin, which targets
Gram-positive bacteria and thus spares Lactobacilli, also reduced
the translocation of LPS across the intestinal barrier, further
suggesting that microbial translocation from barrier dysfunction
may be an environmental trigger in SLE (94). Beside antibiotics,
another variable that affects the microbiome of experimental
mice and influences the severity of lupus in susceptible strains is
the diet (95). An example, especially important for researchers
working with mouse models of lupus, is the acidification of
water that was found to decrease the levels of autoantibodies
and delay the onset of nephritis in lupus-prone mice (96) while
augmenting the presence of Lactobacillus reuteri, belonging to
the phylum of Firmicutes. These results are in agreement with
the lower Firmicutes/Bacteroidetes ratio that was found in SLE
patients, in other inflammatory diseases, and in elderly people

(86, 97–99), suggesting that bacteria belonging to the Firmicutes
phylum, such as Lactobacilli ssp, are important to maintain
immunological tolerance (92, 94).

INFECTIONS AS ENVIRONMENTAL
PATHOGENIC FACTOR

The association between infections and autoimmunity raises the
question of why autoimmune diseases are not more common
in the human population, which normally is exposed to a wide
variety of bacteria and infections. Indeed, humoral autoimmunity
is relatively common in the context of infections. For example,
antinuclear antibodies (ANA) and rheumatoid factor (RF) are
found in acute or chronic infections (100–102); the major
difference is that in these circumstances, the autoantibodies are
transient and do not induce a chronic defined autoimmune
disease. Coupled with conflicting studies showing that the lupus-
prone MRL/lpr strain of mice, which harbors a strong genetic
drive for autoimmunity through the lack of the apoptotic
receptor Fas, can still develop SLE-like disease in germ-free
conditions, these data suggest that genetics do play an important
part in disease manifestation (93). A different strain of lupus-
prone mice showed instead a milder autoimmunity under germ-
free conditions (103). To account for all of these findings,
we envision that, in susceptible humans and mice, a genetic
predisposition for immune dysfunction may increase the host
exposure to nucleic acid material during infections and trigger
a lymphocyte repertoire already prone to autoreactivity in the
presence of specific HLA haplotypes, while in non-autoimmune-
prone humans and mice, infections normally result in less
prolonged exposure of a repertoire more self-tolerant to nucleic
acid material. This is supported by reports of high levels of
circulating endotoxin and more frequent bacteremia in SLE
patients (68, 69, 89, 104).

EXPOSURE TO EXTRACELLULAR
NUCLEAR AUTOAGS IN SLE

Bacterial infections can expose the immune system to nuclear
material—and nucleic acids in particular—through two main
processes: induction of release of host nuclear autoAgs by
triggering cell death directly or as a result of the immune response
against the pathogen, and the release of bacterial DNA due
to bacterial death or active extrusion. The endogenous DNA,
such as mitochondrial DNA (11, 105), can act as DAMP and
be recognized by autoreactive B cells. Similarly, bacterial DNA,
possibly associated with other bacterial molecules, can elicit
autoimmunity by acting as PAMP and stimulating autoreactive
B cells through molecular mimicry.

Because DNA is a major autoAg in SLE, many studies have
attempted to determine whether an excess of circulating DNA
may distinguish SLE patients from healthy subjects. Circulating
extracellular nucleic acids were originally detected in the serum
(40, 106) and then in plasma to avoid the in vitro artifacts
due to release of cellular DNA caused by the procedure of in
vitro coagulation (107). Initially, no differences were noted in
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SLE patients when compared to healthy individuals, except for
SLE patients with vasculitis. SLE patients with vasculitis had
higher levels of circulating DNA, suggesting that tissue damage
affecting endothelia may result in the release of extracellular
DNA at the site of damage (108). This was corroborated with
studies showing very high levels of plasma DNA in patients
who recently underwent major surgery or experienced traumatic
bodily injury and, together, suggests that cell death is the source
of the extracellular DNA (107, 109, 110). This concept was
successfully replicated in mice, when an injection of necrotic cells
induced a rapid increase of plasma DNA levels (110).

Concurrently, testing the pristane-induced model of
murine lupus in mice lacking caspase-activated DNase (CAD),
which results in a lack of nuclear fragmentation during
caspase-dependent apoptosis, resulted in the prevention of the
development of lupus by diminishing the amount of available
extracellular DNA (111). Interestingly, the opposite was true
when the CAD impairment was in spontaneous genetically
driven lupus models, since the absence of CAD resulted in higher
levels of autoAbs in triple congenic B6.Sle1,2,3 spontaneous lupus
mice (112). These results suggest that in induced autoimmunity,
chromatin fragmentation is essential for the presentation of
nuclear autoantigens, while in mice genetically predisposed to
autoimmunity the absence of nuclear modifications occurring
during apoptosis promotes B cell autoreactivity, possibly by
preventing the induction of self-tolerance toward DNA (112).

More recently, microparticles derived from apoptotic cells
and tissue damage have been shown to be a source of these
extracellular host nucleic acids and found to be present in
higher numbers in the blood of SLE patients in many studies,
although without full consensus (113, 114), as often seen in
human studies possibly due to broad patient heterogeneity.
Similar inconsistencies apply to more recent quantifications
of circulating free DNA (cfDNA), which was reported to be
significantly higher in SLE patients compared to controls,
in correlation (115) or not (116) with high SLEDAI scores,
confirming that levels of DNA, either free or bound to
autoAbs or contained in microparticles, are increased in SLE
patients, although the cause and pathogenic role remains to
be understood.

Novel techniques allowing for plasma DNA sequencing have
revealed that most circulating cell-free host DNA molecules
have a size distribution that suggests a nucleosomal origin
(117). These techniques are used in the clinic for non-invasive
prenatal genetic testing (118) or cancer liquid biopsies, which can
detect asymptomatic tumors and cancer-associated mutations
(119, 120). Massive parallel sequencing revealed a spectrum
of abnormalities in plasma DNA from SLE patients, including
hypomethylation and fragment size shortening, abnormalities
that positively correlate with levels of anti-dsDNA autoAbs and
SLEDAI scores; interestingly, the abnormal DNA was bound to
anti-dsDNA IgGs, suggesting that either these short sequences
are specific autoAgs or they are increased because binding to Abs
protected them from degradation (121). The same techniques can
be used to test microbial DNA in the blood during infections
and sepsis, and very recently an analytical and clinical validation
of a next-generation sequencing test, which can identify and

quantify microbial cell-free DNA in the plasma of patients with
and without sepsis, has demonstrated the feasibility to detect
in plasma the circulating free DNA of 1,250 clinically relevant
bacteria, DNA viruses, fungi, and eukaryotic parasites (122). The
abovementioned sequencing of plasma DNA from SLE patients
used libraries of host DNA (121), leaving open the question of
whether sequences of bacterial DNA are present as well, and can
account for the higher levels of cfDNA found in SLE patients
compared to healthy controls (115). It would be important to use
these novel techniques to determine the host vs. microbial nature
of circulating DNA in SLE patients.

INDUCTION OF PYROPTOSIS AND OTHER
TYPES OF CELL DEATH BY BACTERIAL
INFECTIONS CAN RELEASE NUCLEAR
AUTOAGS TO FUEL AUTOIMMUNITY

Cell death is a natural and necessary process, and efficient
recognition and clearance of products is important to avoid
eliciting an immune response. Whether occurring by the
programmed and regulated apoptosis or via inflammatory forms
of necrosis, the accumulation of cell debris from inefficient
clearance of dead bodies was proposed to cause breakdown
of self-tolerance (21, 123–125). Originally, it was hypothesized
that genetic defects in efferocytosis could be an underlying
cause of lupus. Seminal papers reported evidence of defective
phagocytosis (124, 126, 127), but genetic studies have so
far identified only a few polymorphisms in genes regulating
efferocytosis, or phagocytosis in general, that are linked to higher
risk of developing human SLE (128, 129). Therefore, these results
suggest that the defects in phagocytosis are either limited to a
few patients or are not genetically determined but rather may
be secondary to immunosuppressive therapies, infections or a
prolonged inflammatory state.

An exceptionmay be the specific defective clearance of nucleic
acids due to loss of function of DNase 1L3. Indeed, recent
studies have identified families with a high incidence of aggressive
SLE and strong anti-dsDNA reactivity, in which there were
children with homozygosity for a mutation in the DNASE1L3
gene (130–133). DNASE1L3, a homologous to DNASE1, is a
secreted DNase that can digest DNA in chromatin present in
microparticles released from apoptotic cells (134). An SLE-
associated DNASE1L3 polymorphism (R206C) was also shown
to have reduced DNase activity (135, 136). Collectively, these
reports suggest that in a so far limited subset of SLE patients,
the exposure of extracellular nucleic acids has a genetic cause.
It remains to be determined whether the loss of function of
DNASE1L3 also affects host defense. Indeed, genetic defects in
phagocytosis predispose to infections and generate a vicious
circle that increases the exposure to extracellular nucleic acids.
For example, the monogenic lupus due to the complement C1q
deficiency is thought to be in part due to the defective clearance
of immune complexes and defective uptake of dying cells, with
a subsequent presence of excess extracellular host DNA (137).
Nevertheless, C1q can also bind many bacterial species in an
Ab-dependent and—independent manner, and C1q deficiency
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renders patients susceptible to bacterial infections, especially
early in life (138–140). Therefore, we can speculate that an
increased bacterial burden may play a pathogenic role in the
development of SLE in C1q deficient patients, as in other forms
of immune dysfunction, making these patients more susceptible
to lupus.

It is fair to remember that mice with deficiencies in receptors
necessary for efferocytosis develop SLE-like diseases including
splenomegaly and glomerulonephritis and generate high levels of
hallmark antinuclear antibodies (141).Mutations in BAI,MerTK,
MFG-E8, Scavenger Receptor, and TIM-4 receptors involved in
efferocytosis have all resulted in SLE-like disease in mice (127,
142–144). Nevertheless, caution is important when considering
the direct translation of observations in mice to the human
population, which is complicated by the fact that mice used in
immunology are kept in specific-pathogen-free (SPF) conditions,
and therefore are not exposed to the same degree of bacterial
challenges that most humans see. This difference has profound
consequences on the development of the immune system, as
highlighted by a recent study that compared mice housed in SPF
conditions with mice co-housed with pet store mice and found
that the lack of pathogen experience has major effects on the
cellular composition of the innate and adaptive immune systems,
especially failing to elicit effector-differentiated and mucosally
distributed memory T cells (145). Therefore, any conclusion
on the role of genetic defects of apoptosis and efferocytosis on
autoimmune outcomes warrants investigation on how natural
infections may influence these murine models of autoimmunity.

Although apoptosis is most broadly recognized, a pathway of
programmed cell death that is stimulated by microbial infections
is pyroptosis. Pyroptosis is canonically dependent on the protease
caspase 1, making this process inherently inflammatory. When
caspase 1 is activated, gasdermin-D rapidly forms pores in the
plasma membrane, allowing for osmotic lysis and release of
inflammatory cytokines and cell contents, in contrast to the
non-inflammatory apoptosis. When LPS is recognized in the
cytoplasm by caspase 4 or 5 in humans (caspase 11 in mice),
caspase 1-independent pyroptosis is also initiated. Both types of
pyroptosis lead to the release of potent inducers of inflammasome
activation and consequent inflammation. Additionally, both
nuclear and mitochondrial DNA are released by pyroptotic
cells (146–149).

Together with viral infections (150–152), many bacterial
infections have been shown to trigger pyroptosis, and much of
the tissue damage associated with such infections is caused by the
induction of pyroptosis and the consequent released of DAMPs
(153). Many bacterial PAMPs can trigger cytoplasmic PRRs like
AIM2 and NLRPs, which are upstream of the inflammasome
and the downstream caspases, and their activation leads to
secretion of caspase 1-dependent cytokines IL-1b and IL-18
(154). Many bacterial models have been reported to activate the
inflammasome and induce pyroptosis, from Salmonella ssp (155,
156) to Francisella novicida (157), Streptocuccus pneumoniae
(158), and Listeria monocytogenes (159). Moreover, infection by
Uropathogenic E. coli (UPEC) was shown to induce pyroptosis
in bladder urothelial cells and release of IL-1β and IL-18 in the
form of exosomes. As a consequence, mast cells migrate in the

site of infection and worsen the damage to the barrier function of
bladder urothelium (160).

An important inflammatory protein released by pyroptotic
cells is high-mobility group box 1 (HMGB1), a nuclear DNA
binding protein ubiquitously expressed in eukaryotic cells (161,
162). Circulating anti-HMGB1 antibodies are present in SLE
patients and increased extracellular expression of HMGB1
is found in cutaneous lupus lesions (163, 164). In vitro,
HMGB1, when complexed with DNA, can stimulate TLR9 and
subsequent production of type I IFN by dendritic cells (165).
Additionally, these HMGB1-DNA complexes can activate B cells
via the receptor for advanced glycation end-products (RAGE),
supporting the role of HMBG1 in promoting the formation
of autoreactive B cells. Finally, our group has found that
HMBG1 levels in the urine correlate with the SLEDAI and the
occurrence of lupus nephritis. The highest levels were observed
in class V membranous nephritis, in which they correlated with
complement deposition, suggesting that the release of HMGB1
in the urine is not only due to passive excretion secondary to
elevated proteinuria, but is likely linked to a mechanism inherent
to class V disease (166).

Other cytokines released by pyroptosis include the caspase
1-dependent IL-1b and IL-18, both thought to play a role
in promoting autoimmune disease (167–170). Moreover, many
studies are reporting increased cytokines linked to pyroptosis
in both human and murine SLE, contributing to lupus
manifestations including nephritis. Microarray analysis of kidney
tissue from SLE patients revealed an increase of inflammasome-
associated transcripts (171) and low serum levels of IL-1 receptor
antagonist in SLE patients suffering from renal flares suggest a
pathogenic role for IL-1 in lupus nephritis (172). This enhanced
pyroptosis may be due to polymorphisms in the IL-18 gene,
which have been linked to SLE (173, 174) and found to lead
to heightened expression of IL-18 and development of kidney
disease (175, 176). These findings were further supported by
the detection of heightened levels of sera and urine IL-18
in SLE patients, especially those with active lupus nephritis
(177, 178). As mentioned above, bacterial infections are well-
known triggers of pyroptosis (33), and common pathogens in
SLE patients including E. coli and Salmonella are models of
pyroptosis (155, 156, 158, 160, 179), and therefore the increased
levels of this category of cell death may be due to subclinical
infections causing tissue damage without generalized signs of
disease manifestation. Together, these findings strongly suggest
that infectious pyroptosis may play a pathogenic role in releasing
host nuclear autoAgs in SLE.

NETosis is a form of cell death that specifically releases
extracellular nuclear autoAgs and is triggered by bacterial
infections as a weapon of host defense (180). Neutrophils
are the first cells to migrate to the site of infection where
they release chromatin relaxed in extracellular fibers, which
can entrap Gram-positive and Gram-negative bacteria (181).
NETosis is a direct antibacterial mechanism, blocking the
pathogens, and it also stimulates the innate and adaptive
immune response, with increased phagocytosis and production
of I IFNs (125). An excess in NET formation can promote
tissue damage during sepsis and many inflammatory conditions,
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like diabetes (182), atherosclerosis (183), and SLE (184, 185).
SLE patients showed enhanced NETosis and post-translational
modifications of cellular proteins, such as histone acetylation
and citrullination, that can be auto-immunogenic (186, 187).
NETosis also releases oxidized mitochondrial DNA, which is
proinflammatory and interferogenic (11, 185), suggesting a
pivotal role for NETosis in mediating the release of extracellular
nuclear autoAgs in lupus. It remains to be determined whether
clinical or subclinical infections are fueling NETosis, and whether
genetic or environmental factors cause the increased propensity
of NETting in SLE patients.

BIOFILMS

Up to 80% of bacterial infections in humans are associated
with biofilms (188) that bacteria build to protect themselves
from environmental or immune stress (189, 190). Biofilms, a
term coined by Bill Costerton in 1978 to describe a sessile,
attached community of microbial cells embedded in microbe-
produced extracellular matrix, was first described by Anton
Von Leeuwenhoek—the pioneer of the microscope—in the 17th
century (191, 192). Since then, biofilms have been defined as an
aggregation of microbial cells that are firmly attached or enclosed
in an extracellular matrix produced by the microbes themselves
(193). Biofilms have been in the public health spotlight due to
the increased recognition of their role in a number of infectious
disease processes, including common infections such as UTIs,
otitis media, periodontitis, and a broad spectrum of colonization
of indwelling medical devices (194, 195). We are just beginning
to understand the effects of biofilms on the immune system
(196, 197). Very recent evidence supports a role for biofilm-
forming infections in SLE pathogenesis. Indeed, Abs against
periodontogenic bacteria, which produce biofilms in the oral
cavity, were found to correlate with anti-dsDNA Abs and higher
SLE disease activity (198), indicating a correlation between
immune response to biofilm and autoreactivity. SLE patients
were found to have higher prevalence of periodontal disease
at younger age than healthy controls, with severe forms of
periodontitis and changes in the oral microbiota characterized
by decreased species diversity and higher bacterial loads, which
were linked to increasing local production of pro-inflammatory
cytokines (199, 200), highlighting a role for the oral microbiome
in the pathogenesis of lupus.

While the primary matrix material in biofilms is extracellular
polymeric substances (EPS), more than 40% of bacteria produce
amyloids, proteins with a conserved quaternary β-sheet structure,
which are a major structural component of the biofilm and
provide the scaffold to support the biofilm tridimensional
structure (32, 197, 201). The best studied bacterial amyloid
is curli, produced by enteric Gram-negative bacteria that
commonly cause infections in SLE patients, including Escherichia
coli and Salmonella spps (197, 202). Pathological amyloids, which
are generally associated with neurodegenerative disease, such
as Alzheimer’s or Parkinson’s disease, are the result of protein
misfolding and are cytotoxic for the host that produces them. In
contrast, in the context of biofilm formation, bacterial amyloids

such as curli are actively produced by bacteria while generating
the biofilm through a finely regulated process: the main subunit
protein of curli, CsgA, is synthetized by the enteric bacteria and
transported to the bacterial surface, where it is polymerized into
an amyloid fiber through the operons csgBAC and csgDEFG (196).

Interestingly, Robertson and Pisetsky reported in 1992 that
patients with Escherichia coli bacteremia were positive for anti-
DNA Abs and subsequently demonstrated that immunization
with bacterial DNA led to or accelerated lupus-like autoimmunity
in mouse models (101, 203). Our group recently reported that
curli amyloids form a complex with bacterial DNA. Such binding
accelerates the fibrillation of the amyloid and protects the DNA
from degradation by DNases (30). Biofilms contain significant
amounts of extracellular bacterial DNA, either actively extruded
by live bacteria or released by bacteria upon death (204–206),
some of which is bound to curli amyloids.We found that curli can
fibrilize with eukaryotic DNA as well, suggesting that bacterial
amyloids can not only expose the immune system to bacterial
DNA, but also bind and render the host DNA immunogenic (30).

The idea that DNA complexed with a protein antigen can
induce SLE-like disease has been shown by both our group
and others before us (207). Di Domizio et al. showed that
albumin aggregated in vitro into amyloid and in complex
with DNA could trigger autoantibodies in a pDC dependent
manner when injected in mice in presence of Complete Freund’s
adjuvant (208, 209), suggesting that amyloid/DNA complexes can
induce autoimmunity. We discovered that injection of natural
curli/DNA complexes purified from biofilms generated in vitro
by Salmonella Typhimurium accelerates the development of anti-
dsDNA autoAbs and anti-chromatin autoAbs in lupus-prone
NZBxW/F1 mice, with the levels quickly rising by the second
week of injections, without the need of any added adjuvant (30).
This rapid development of autoAbs in response to curli/DNA
complexes is also seen in C57BL/6 wild-type mice, suggesting a
strong stimulation toward autoimmunity during infections.

Additionally, systemic infection with curli-expressing
bacteria, either the commensal E. coli or the virulent S.
Typhimurium, induces the production of high autoantibody
titers in lupus-prone NZBxW/F1 mice. Lupus-prone
mice exposed to mutant S. Typhimurium that cannot
produce curli—and therefore cannot generate biofilms—
still developed autoantibodies (30, 196), albeit at a much
lower level than those infected with Salmonella that could
produce curli. Mice exposed to curli-deficient mutant
E. coli did not produce autoAbs at all, suggesting that
exposure to curli amyloid or infection with bacteria
that can make biofilms containing curli/DNA complexes
stimulate the development of autoantibodies in susceptible
mice (30).

Looking at the response of immune cells to curli/DNA
complexes, we found that these molecules are powerful
stimulators of both the innate and adaptive immune systems,
inducing activation of conventional dendritic cells and
macrophages in vitro and in vivo, increasing activation
markers in T and B cells, and inducing the production of
pro-inflammatory cytokines, like TNFα, IL-12, and IL-6, and
pathogenic type I IFNs (30, 32). The mechanism of how
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curli/DNA elicits an autoimmune response can be explained
by the ability of the amyloid to complex securely with DNA.
The immunogenic curli/DNA complexes stimulate immune
cells by binding to TLR2 with the β-sheet structure of curli,
allowing for internalization, after which the DNA portion
of the complex binds to the endosomal TLR9. Synchrotron
small-angle X-ray scattering (SAXS) showed that curli organizes
DNA into a columnar lattice with an inter-DNA spacing
compatible with the steric size of TLR9 and maximizes
TLR9 binding to DNA, leading to the amplified type I
IFN response observed in vitro and in vivo (32). The role
of DNA in the curli/DNA complex as a PAMP is further
supported by the result that in vitro fibrillization of the curli
monomers CsgAR4-5 polymerized into amyloids in the presence
of bacterial DNA induced in dendritic cells significantly
more IL-6 and IL-12 than CsgAR4-5 alone or DNA alone
(30), suggesting that curli and DNA synergize to activate
innate immunity.

The TLR2/TLR9 stimulation by curli/DNA complexes
results in the production of type I IFNs and subsequent
production of autoAbs. The autoAb production in response
to curli-DNA complexes was attenuated in mice deficient
for TLR2 or TLR9, suggesting that both TLR2 and TLR9
are necessary to shape the autoimmune response (32, 210).
Curli/DNA was also shown to activate the inflammasome
via NLRP3, extending the possible PRRs involved in their
pro-inflammatory effects (210). The findings that an amyloid
component of bacterial biofilms forms complexes with DNA
and can potently activate a type I IFN immune response
further supports the link between bacterial infections and
SLE disease and highlights the important role that biofilms
may play in progressing the generation of autoAbs against
nucleic acids.

Curli amyloid from enteric biofilms are not the only
actively produced bacterial amyloids, as homologs are found in
four other phyla, i.e., Bacteroidetes, Proteobacteria, Firmicutes,
and Thermodesulfobacteria, many of which are found in
the human gut (211). Other bacterial species, including
Mycobacterium tuberculosis, produce amyloids that do not
share sequence homology with curli but bear the same
quaternary structure and ability to strengthen the biofilm
(212). Of particular relevance to autoimmunity, Gram-positive
Staphylococcus aureus produces amyloids called phenol-soluble
modulins (PSMs) (213), which fibrilize with bacterial DNA
to stabilize the biofilm structure. It would be interesting to
investigate the ability of PSMs and Gram-positive Staphylococcus
aureus to stimulate autoimmunity, as we have shown for
curli/DNA complexes from Gram-negative bacteria. All together,
these results suggest that bacterial amyloids can act as
chaperones to expose bacterial DNA to the immune system and
stimulate autoimmunity in genetically predisposed individuals.
Because we found that curli can bind eukaryotic DNA
as well (30), we further speculate that these microbial
PAMPs can also chaperone and add immunogenicity to host
DNA, forming PAMP/DAMP/autoAg complexes, formidable
stimulators of autoimmunity.

INFECTIONS TRIGGER AUTOIMMUNITY
VIA MOLECULAR MIMICRY

Molecular mimicry between molecules of infectious agents and
SLE-related autoAgs has been proposed as a mechanism of how
SLE is triggered in a susceptible genetic background and how
it leads to the breakdown of self-tolerance (214). Notably, the
development of antinuclear antibodies specific for nucleic acids,
arguably the hallmark of SLE, has been linked with bacterial
infections in both humans and mice. We propose that curli
amyloids expose bacterial DNA to autoreactive B cells and
stimulate the production of anti-dsDNA autoAbs through a
process of molecular mimicry. The injection of bacterial DNA
induced anti-dsDNA autoAbs by the samemechanism (215), and
the report that mammalian DNA did not elicit the same result
can be explained by the fact that genomic mammalian DNA is
not as immunogenic as bacterial DNA, especially if the latter is
complexed to a TLR2 ligand like curli or another amyloid (32).
Other examples of molecular mimicry were reported in SLE. Sera
from human SLE patients have shown anti-dsDNA antibodies
with similarity to peptides from burkholderia bacteria, and
the relationship was substantiated when purified anti-dsDNA
antibodies were shown to react with Burkholderia fungorum
bacterial lysates (216). A common anti-dsDNA idiotype in
humans was also found in high amounts in patients infected
with Klebsiella pneumoniae (217). The interaction of anti-dsDNA
antibodies to bacteria was also found in mice, where anti-
dsDNA antibodies produced by lupus-prone mice reacted with
endogenous murine flora (103, 218).

A proof-of-concept study exploring the bacterial RNA
binding protein Ro60 further points to bacteria exposing
homolog of nuclear autoantigens as a trigger for autoantibody
production. The earliest autoantibodies in lupus are directed
toward Ro60 (219, 220), and the presence of Ro60 orthologs
in both lupus patients and healthy controls suggests that
cross-reactivity may occur in susceptible individuals. Anti-
Ro antibodies are pathogenic in lupus and are best known
for leading to cardiac conduction defects and cutaneous
lesions due to their trans-placental spread in neonatal lupus
erythematosus (221, 222). The spontaneous development of anti-
Ro60 antibodies can be induced in germ-free wild-type C57Bl/6
mice when monocolonized by a common gut commensal
that produces a Ro60 ortholog (223). Within 3–5 months of
monocolonization, sera are positive for anti-human Ro60 IgG.
This spontaneous production of antibodies was equivalent to
mice that were monocolonized by the same strain but had
induced barrier inflammation and dysfunction from treatment
with oral 0.1% imiquimod or 1–2% dextran sulfate sodium salt.
Monocolonization with a different gut commensal does not
result in the production of anti-human Ro60 IgG antibodies.
Together, this model suggests that there is selective cross-
reactivity between a Ro60 ortholog from commensal bacteria and
human Ro60, further emphasizing how infection may play a role
in triggering autoimmunity in lupus (223). This supports the
concept that cross-reactivity may occur in susceptible individuals
with colonization by autoantigen ortholog-producing bacteria.

Frontiers in Immunology | www.frontiersin.org 8 November 2019 | Volume 10 | Article 2608

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Qiu et al. Bacterial Infections Expose Lupus Autoantigens

Additionally, candidate antigens for the pathogenic Th cells
that allow for the expansion of autoreactive B cells include those
with sequences that resemble both microbial proteomes and self
proteins (224, 225). The role for Th cells is well-established
in SLE, and autoreactive B cells have been shown to present
variable region-derived idiotype peptides on their MHC class II
molecules to ideotype-specific T helper cells (226–229). Systemic
autoimmune disease can be established in mice by prolonged
idiotype-driven T helper cell and B cell collaboration (224,
230–235). Interestingly, an analysis of the seemingly dissimilar
specificities of the T helper cells from lupus-prone mice showed
a high rate of matches with microbial proteomes. Additionally,
these T helper cells also developed responses toward related
sequences that resembled self histones, suggesting that there is
molecular mimicry between microbial peptides, idiotypes, and
self proteins carrying DNA (224).

CONCLUSIONS

In summary, the review of the recent literature presented here
highlights an unmet need for studying how bacterial infections
contribute to the pathogenesis of lupus and to the extracellular
exposure of nuclear autoantigens in particular. Infections are a
major cause of morbidity and mortality in SLE, and incomplete
evidence suggests that they may accelerate SLE onset in
predisposed individuals and increase disease severity in patients.
Recent studies have discovered a disturbance in the microbiota
profile in SLE patients and associations between pathobionts
and lupus, its severity, and specific end-organ damage. These
altered microbiota and repetitive infections can expose the
immune system to extracellular nuclear autoAgs through host
cell death and to their molecular mimics through bacterial
death and extrusion of bacterial DNA. Robust experimental
data supports the widely accepted working hypothesis of
the complex involvement of TLRs and other PRRs in lupus
pathogenesis, which is thought to promote DNA autoantibody

production through activating innate and adaptive immunity.
Additionally, bacterial DNA and ribonucleoproteins like Ro60
can mimic nuclear self-Ags and stimulate BCRs of autoreactive
B cells in lupus autoimmunity. Furthermore, the fact that
TLRs may recognize bacterial amyloid, and that bacterial
biofilms contain extracellular DNA, which is bound in part
to bacterial amyloid, and that they together can mimic host
DNA, suggests a novel mechanism by which bacterial infections
can trigger autoantibody production. The data presented here
provide concrete support for bacterial infections as candidates
for the extracellular exposure of lupus nuclear autoantigens,
highlighting a role for bacterial biofilms in the generation of
nuclear autoantigens and the stimulation of the autoreactive
immune response.
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