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Epigenetic programs that control posttranslational modifications of histone proteins and

DNA itself tightly regulate transcriptional networks determining the identity and function

of CD8+ T cells. Chromatin-modifying enzymes such as histone acetyltransferases

and deacetylases, represent key molecular determinants of the epigenetic imprinting

of CD8+ T cells. The functions of these enzymes highly depend on the availability of

key products of cellular metabolism pathways such as acetyl-CoA, NAD (Nicotinamide

adenine dinucleotide) and SEM (S-adenosylmethionine), suggesting that there is a close

crosstalk between the metabolic and the epigenetic regulation of CD8+ T cells. In

this review, we will discuss the metabolic regulation of CD8+ T cell epigenetics during

activation and differentiation. We will furthermore summarize how metabolic signals from

the tumor microenvironment (TME) shape the epigenetic landscape of CD8+ T cells

to better understand the mechanism underlying CD8+ T cell exhaustion in anti-tumor

and anti-viral immunity, which might help to overcome limitations of current CD8+ T

cell-based therapies.
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CROSSTALK BETWEEN EPIGENETICS AND METABOLISM

In order to adapt to shifting environments, CD8+ T cells dynamically modulate their
transcriptional programs, which not only influence their differentiation but also alter their
function and metabolic setup (1). Epigenetic changes are heritable and consist of post-translational
modifications of DNA and surrounding histone proteins rather than alterations of primary DNA
sequences. In changing external conditions, external stimuli like growth hormones and cytokines
activate classical pathways such as mitogen activated protein kinase (MAPK) and nuclear factor of
activated T cell (NFAT) signaling resulting in the recruitment, activation or induction of epigenetic
modifying enzymes that promote epigenetic alterations in CD8+ T cells (2). Similarly, nutrient
levels and the metabolic status of CD8+ T cells also interfere with the epigenetic programming
and subsequently with the function of CD8+ T cells (3). Given the fact that epigenetic modifiers
harness intermediates or products of key cellular metabolic processes as their cofactors/substrates,
regulation of epigenetics by cellular metabolism represents a common biological process (Figure 1)
(3), which can disrupt adequate immune responses by CD8+ T cells during anti-viral and
anti-tumor immune responses (3).

While a wide range of epigenetic mechanisms exists that interfere with the accessibility
of the genome by specific transcriptional programs, we will here recapitulate key epigenetic
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FIGURE 1 | Crosstalk between cellular metabolism and epigenetic changes. The function of epigenetic modifier enzymes depends on the intermediates or the

products of cellular metabolism pathways resulting in epigenetic changes and therefore the transcriptional programs of the cells. Acetyl-CoA is the main source for

histone acetylation leading to open and permissive chromatin structure. SAM is used by histone methyltransferases and demethylases. The function of sirtuin

deacetylases depend on the availability of NAD. TCR-induced activation of pathways such as AMPK, mTOR, and AKT also contributes to the metabolic

reprogramming of CD8+ T cells.

mechanisms and their modifiers as well as their dependency on
specific metabolic substrates. Subsequently, we will summarize
recent insights into CD8+ T cell specific aspects of metabolism-
regulated epigenetics in anti-viral and anti-tumor immunity
and discuss possible implications of T cell epigenetics for the
development of better immunotherapies of cancer.

HISTONE MODIFICATIONS

Eukaryotic DNA is packed in the form of chromatin. Thereby,
nucleosomes, the basic unit of the chromatin, consist of 147 bp
of DNA, which wraps around the histone octamer composed
of two H2A and H2B dimers as well as a tetramer of H3
and H4 proteins. N- and C-terminus of histone tails, which
protrude from the nucleosome, represent the main sites for
posttranscriptional modifications (PTMs) including acetylation,
methylation, phosphorylation and ubiquitination (4). PTMs of
histone tails can either directly regulate the chromatin structure,
resulting in altered DNA accessibility (5), or can act as platforms
for the binding or recruitment of non-histone proteins, known
as writers (histone-modifying), readers (histone-modification-
recognizing) or erasers (histone modification-erasing) (6). This
combination of PTMs on histone tails constitutes the “histone
code” that regulates the eukaryotic transcription (5). Histone
chaperons are also critical regulators of DNA accessibility since
the association of histones with specific chaperons regulates
their folding, oligomerization, PTMs or stabilities (5). Therefore,

different histone variants contribute to the regulation of DNA
accessibility and epigenetic memory (7).

Histone Acetylation and Deacetylation
Acetylation and deacetylation of histones are among the best-
studied epigenetic modifications. Acetylation of lysine residues is
catalyzed by histone acetyltransferases (HATs) and reduces their
positive charge, therefore the strength of electrostatic interaction
between negatively charged DNA, resulting in relaxation
of histone-DNA interactions, which leads to an increased
accessibility of the DNA for transcription or transcription factors
(TFs), respectively (8). Deacetylation reverses this permissive
state via condensation of the chromatin structure (9). HATs
are classified according to their localization. Cytoplasmic B-
type HATs for example participate in the transport of newly
synthesized histones from the cytoplasm to the nucleus, while
nuclear A-type HATs take control of acetylation events related
to the transcription (10). HATs can be further grouped
according to their functional motifs consisting of Gcn5-
related N-acetyltransferase (GNAT), Moz, Ybf2/Sas3, Sas2, Tip60
(MYST), Creb-binding protein/P300 (CBP/P300) and Rtt109
HAT families (10, 11).

HATs use acetyl-CoA as their primary source for histone
acetylation. Acetyl-CoA is a central metabolite and the only
source of acetyl groups in the cell (12). Most commonly, acetyl-
CoA is produced in the mitochondrial matrix through glycolysis,
β-oxidation or the catabolism of branched amino acids (12). As a
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central metabolite and important signal transducer, acetyl-CoA
regulates several cellular processes by controlling the balance
between anabolic and catabolic reactions. Therefore, fluctuations
in cellular acetyl-CoA levels can also affect the acetylation
patterns of histones resulting in varying gene expression and
function as well as distinct differentiation programs of cells (12).

Histone deacetylases (HDACs) are responsible for removing
acetyl groups from acetylated histones resulting in chromatin
condensation and a repressive chromatin structure. Depending
on their homology and functions, HDACs are grouped into
four different classes: class-I (HDAC1, HDAC2, HDAC3,
HDAC8), class-IIa (HDAC4, HDAC5, HDAC7, HDAC9), class-
IIb (HDAC6, HDAC10), class-III (Sirt1-Sirt7) as well as class-
IV (HDAC11) (13). Although the diversity of the HDAC
classes challenge the design of HDAC-inhibitors, several HDAC
inhibitors are in clinical use or are under clinical investigation
(14). While Vorinostat (SAHA) and Romidepsin (FK288)
have been approved for the treatment of cutaneous T-cell
lymphoma, Panobinostat (LBH589) and Belinostat (PXD101)
are currently used for treating peripheral T-cell lymphoma and
multiple myeloma, respectively (14). However, these inhibitors
are pan-HDAC inhibitors, therefore studies attempting to design
specific HDAC-inhibitors are active areas of research. According
to clinical and experimental studies, inhibition of HDACs
results in anti-neoplastic effects mostly via cytotoxic and pro-
apoptotic mechanisms (15) [e.g., via stabilization of acetylated
p53 (16)]. There are also accumulating data proving that
inhibition of HDACs in non-oncological settings has important
anti-inflammatory effects depending on the cell, tissue and
context (15, 17, 18). For example, the gut microbiota-derived
short-chain fatty acid butyrate modulates the transcriptional
program of CTLs resulting in increased expression of IFNγ

and granzyme B (19). However, the effects of butyrate are
not mediated by the interaction with its receptors GPR41 and
GPR43, but rather through HDAC inhibition resulting in a
differential gene expression of CTL effector molecules, which
was further validated by pan-HDAC inhibitor treatments (19).
HDAC7, which is a Class-IIa HDAC, plays a pivotal role in
the regulation of positive and negative selection of thymocytes
and immune tolerance as well as their survival (20–22). Serine-
threonine phosphoproteome analysis of CTLs by high resolution
mass spectrometry revealed that HDAC7 is phosphorylated
independently of T-cell receptor (TCR) activation and signaling,
leading to its constitutive cytosolic localization (23). The
exclusion of HDAC7 from the nucleus is critical for maintaining
normal CTL function since the ectopic expression of the nuclear-
trapped mutant phosphorylation-defective HDAC7 resulted in
lower CD25 expression and subsequently reduced proliferation
of CTLs in response to IL-2 (23). However, the role of HDAC7 in
adult CD4+ and CD8+ T cells is still poorly understood. HDAC5,
another class-IIa HDAC, has been described as amodulator of the
inhibitory functions of Foxp3+ regulatory CD4+ T cells (Treg)
(24), but inoculation of Hdac5 knockout mice with congenic
TC61 lung adeno-carcinoma cells did not result in decreased
tumor growth compared to wild type littermates despite a
defective immune suppressive capacity of Hdac5-deficient Treg,
which can be explained by a simultaneous impairment of

IFNγ production in Hdac5-deficient CD8+ T cells (24). The
inhibition of HDAC6 (Class-IIb) with its specific inhibitor (ACY-
1215) results in impaired proliferation and activation as well
as impaired pro-inflammatory cytokine production of CD8+

T cells during mouse models of skin inflammation, suggesting
that HDAC6 represents a key regulator of TCR-signaling and
function, therefore might serve as a new drug target for the
treatment of CD8+ T cell-related skin disorders (25). On the
other hand, the inhibition of HDAC6 in T cells of melanoma
patients results in improved anti-tumor capacities of T cells
(26). HDAC6 also takes role in the dynamics, transport and
secretion of lytic granules to the immune synapse in CD8+ T
cells, further proving its significance for CD8+ T cell function
(27). In addition, HDAC3 (Class-I) is required for the proper
T cell development in the thymus since its lymphocyte specific
deletion resulted in reduced immature CD8 single-positive as
well as CD4/CD8 double positive populations (28). Similarly,
Class-I HDACs, HDAC1, and HDAC2, also participate in the
proper thymic development of T cells (29, 30). Tschismarov
et al. further confirm the critical role of HDAC1 during the
development of T cells in the thymus. Additionally, they prove
that T-cell specific deletion of HDAC1 results in impaired anti-
viral responses upon LCMV infection and impaired expansion of
LCMV-specific CD8+ T cells (31).

Among other HDAC isoforms, Sirtuins (HDAC class-III) were
intensively studied in terms of their metabolic functions. They
participate in different cellular processes including the regulation
of metabolism, DNA repair and mitochondrial function (32).
For their deacetylation functions, sirtuins require NAD+, which
is an essential coenzyme and participating in many redox
reactions as in glycolysis, TCA cycle and fatty acid oxidation.
Thereby, the provision of NAD+ depends on its intracellular
compartmentalization, synthesis as well as on metabolic and
other pathways that use NAD+. For instance, SIRTs were found
to be an indirect target of the compound resveratrol leading
to histone deacetylation due to increased NAD+ availability
suggesting that the level of NAD+ is critical for the regulation
of the epigenome of CD4+ T cells through sirtuins (33, 34).
Interestingly, human CD8+CD28− T cells, which represent a
highly cytotoxic population of terminally differentiated memory
T cells (Tmem), display an increased glycolytic capacity, which
could be linked to a decreased expression of SIRT1 through a
forkhead box protein (FOXO1)-dependent manner suggesting
that the evolutionary conserved FOXO1-SIRT1 axis is critical for
the metabolic reprogramming of human CD8+ Tmem (35).

Histone Methylation
Unlike histone acetylation and deacetylation, which mark the
chromatin for either transcriptional activation or repression,
the effects of histone methylation on transcription are
context dependent. For instance, while tri-methylation of
lysine 4 on histone 3 (H3K4me3) triggers transcription, tri-
methylation of histone 3 on lysine 27 (H3K27me3) is a sign
for condensed chromatin and repressed gene transcription.
Depending on the degree of methylation, different groups of
histone methyltransferases catalyze the methylation of lysine
residues. For example, H3K4 methylation is catalyzed by Set1
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methyltransferases, whereas H3K9 methylation is catalyzed by
KMT1 methyltransferases as well as H3K27 methylation by
enhancer-of-zest homolog-2 (EZH2) (6).

Histone methyltransferases use S-adenosyl-methionine
(SAM) as their source for methyl groups (36). Thereby, SAM
is produced from methionine via one-carbon metabolism. In
immune cells, one-carbon metabolism plays important roles
especially in the regulation of proliferation. For instance, Ma
et al. showed that once CD4+ or CD8+ T cells are activated, the
expression of genes coding for one-carbon metabolism-related
enzymes such as Shtm1 and Shmt2, that are essential regulators
of the entry of serine-dependent carbon into the cytosolic and
mitochondrial tetrahydrofolate cycle, are up-regulated. Serine
that is metabolized through this pathway is required for proper
T cell proliferation both in vitro and in vivo (37).

ATP-Dependent Chromatin Remodeling
Complexes
The formation of higher order chromatin structures is pivotal
for the transcriptional programming by regulating or limiting
the access of TFs to their binding sites. This structure can be
modulated by either PTMs of histone tails or via nucleosome-
and chromatin-remodeling complexes. These complexes are
capable of removing histones, changing the path of DNA around
the nucleosome and hence altering their position. Nucleosome
remodeling complexes use the energy generated from ATP
hydrolysis (38). Since the activity of these complexes is ATP-
dependent, it is expected that fluctuations in cellular ATP levels
affect their function, therefore the remodeling of nucleosomes
and chromatin structure. However, cellular ATP levels are
saturating for their catalytic sites and the activities of chromatin
remodeling complexes are not influenced by changes in ATP in
the cell. Nevertheless, gene expression states can still be regulated
by AMPK signaling which can sense ADP/ATP ratios and induce
transcriptional regulation (39). Previously, Blagih et al. showed
that both CD4+ and CD8+ T cells are metabolically adapting in
response to limited nutrient levels mediated by AMPK regulated
mRNA translation as well as glutamine dependent mitochondrial
metabolism. This is a key mechanism for the maintenance of
T cell bioenergetics and survival. Their data equally indicated
that AMPK signaling is mandatory for primary T cell responses
to both, bacterial and viral infections, thus driving adaptive
immunity (40). Interestingly, T cell specific deletion of AMPK in
mice resulted in increased tumor growth, caused by an impaired
tumor killing of CD8+ T cells. Deletion of AMPK in T cells
resulted in a decreased production of IFNγ and granzyme B
as well as an elevated serine/protein phosphatase activity upon
activation, resulting in decreased survival rates and anti-tumor
functions of CD8+ T cells, which could be reversed by inhibition
of phosphatase activity (41).

METABOLIC REPROGRAMMING OF CD8+

T CELL DIFFERENTIATION AND FUNCTION

In order to adapt to dynamic environments and to meet the
demands of cells for their different functions, cellular metabolism

is tightly controlled. Cells are capable of performing catabolic and
anabolic processes to break down or synthesize macromolecules,
which supply either energy in the form of ATP to meet their
energy demands, or metabolic intermediate products that are
essential for cellular growth (Figure 2A). Via the glycolysis
pathway, two molecules of ATP per glucose molecule and
pyruvate are produced. In oxygen-rich conditions, pyruvate can
enter into tricarboxylic acid (TCA) cycle where it is further
processed to generate 38 ATP (maximal number) molecules
via oxidative phosphorylation (OXPHOS) (42). Catabolism of
pyruvate is not the only mechanism providing substrates for
TCA. While fatty acids are converted into acetyl-CoA through
fatty acid oxidation (FAO), amino acids are catabolized into 3-,
4-, and 5- carbon substrates that are fed into the TCA cycle (42).

Different metabolic requirements for different cell states are
also valid for CD8+ T cells. CD8+ T cells mainly have three
phases as naïve, effector (Teff) and memory T cells. When naïve
T cells encounter their antigens, this results in their activation
leading to rapid proliferation, growth and differentiation (43).
CD8+ T cells mostly differentiate into CTLs, producing cytotoxic
molecules such as granzyme B, perforin, and pro-inflammatory
cytokines including IFNγ and TNFα. Following this effector
phase, the effector cell population contracts and a small
population of memory T cells (Tmem) persists, which will
turn again into CTLs in case of antigen re-challenge and
which can persist in the body for years (43). While naïve
T cells are metabolically quiescent and depend on OXPHOS,
their activation results in a switch into glycolysis pathway to
meet the demand for anabolic intermediates necessary for their
rapid growth, proliferation and effector functions (Figure 2A).
Recently, Store-Operated Calcium Entry (SOCE) signaling,
which is the main calcium influx pathway in T cells in response
to TCR activation and is mediated by stromal interaction
molecule (STIM) 1 and STIM2 as well as ORAI proteins, was
shown to control clonal expansion of both, CD4+ and CD8+

T cells, via controlling glycolysis and OXPHOS through the
transcriptional regulation of glycolysis related gene expression
(44). It was also shown that these effects are mediated by
calcineurin and NFAT, which are the downstream regulators of
SOCE (44). Metabolically, Tmem depend mostly on FAO and
have a higher spare respiratory capacity (SRC) which supplies
the high energy levels needed for their rapid function in case
of antigen re-encounter (45–48). However, during most of these
studies CPT1α, the rate-limiting enzyme of long-chain FAO
was targeted by the drug etomoxir (49, 50). Interestingly, T
cell specific deletion of Cpt1α in vivo proved that CPT1α is
dispensable for Teff or Tmem responses as well as CD4+ Treg
suppressive function, differentiation and hemostasis (50). As
the use of the CPT1α inhibitor etomoxir at a concentration
higher than 3µM causes off-target effects, it appears that other
metabolic pathways than long-chain FAO are involved in Teff
and Tmem differentiation (49, 50).

In conditions of continuous antigen exposure like chronic
infections and tumors, T cells fail to differentiate into functional
memory cells, but enter a state in which they are hypo-responsive
(51). This so-called exhausted cells are incapable of cytokine
secretion, proliferation or lysing target cells, paralleled by a
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FIGURE 2 | Comparison of CD8+ T cell differentiation and metabolism as well as epigenetic landscapes during infection and tumorigenesis. (A) Virus infection results

in the activation of naïve CD8+ T cells triggering the differentiation into effector cells, which induce viral clearance. Subsequently, effector T cells contract and leave

behind a small population of memory CD8+ T cells. During this differentiation process, CD8+ T cell subsets use the indicated cellular metabolism pathways and

acquire different epigenetic landscapes specific to each phase. (B) In tumors, the presence of immunosupressive environments due to metabolic alterations in tumor

cells results in an exhausted phenotype, in which tumor infiltrating T cells are not able to compete with tumor cells for metabolic products and they become

non-functional resulting in increasing tumor growth. Exhausted T cells also acquire an exhaustion-specific epigenetic landscape.

sustained expression of co-inhibitory molecules such as PD-1,
LAG3 and TIM3 (51). There are several studies, which link the
expression of co-inhibitorymolecules in T cells with disturbances
of metabolic pathways including the PI3K/Akt/mTOR pathway.
Thus, Staron et al. recently demonstrated in a mouse model
of chronic lymphocytic choriomeningitis mammarenavirus
(LCMV) infection, that AKT and mTOR activation are impaired
in virus antigen-specific CTLs resulting in a defective anabolic
metabolism and enhanced activity of the TF FOXO1 due to its
defective phosphorylation and subsequent nuclear trapping (52).
Additionally, FOXO1 acts as a direct transcriptional activator
of PD-1 as the nuclear localization of FOXO1 promotes the
differentiation of terminally exhausted PD-1hiEomeshi CTLs. In
contrast, during chronic LCMV infection in mice blockage of
PD-1 improves mTOR activity in antigen-specific CTLs while
anti-PD-1 treatment was ineffective if mTOR was inhibited by
rapamycin (52). Remarkably, the glycolytic metabolism of CD8+

T cells is already affected during the acute phase of viral infection
in LCMV-infected mice and precedes further dysfunction of
antigen-specific T cells suggesting that antigen-specific CD8+ T
cells are unable tomeet themetabolic demands needed for proper
cytotoxic function (53). PD-1 is also an early regulator of genes
related to glycolysis and mitochondrial function and represses
peroxisome proliferator-activated receptor gamma coactivator 1-
alpha (PGC1α), whose overexpression is able to improve the
metabolism of exhausted T cells and hence, partially restoring
their functions (53). These studies suggest that metabolic

impairments, which are regulated by PD-1, are early drivers of
CD8+ T cell exhaustion (53).

The expression of the pro-inflammatory cytokine IFNγ by

activated T cells is regulated through 3
′

-untranslated region
(UTR)-dependent mechanisms (54). Peng et al. showed that
in activated T cells the expression of lactate dehydrogenase A
(LDHA) is induced in order to support high levels of aerobic
glycolysis, but also regulates the expression of IFNγ through 3′-
UTR-independent mechanisms. Interestingly, high LDHA levels
in activated T cells result in the maintenance of increased acetyl-
CoA concentrations leading to increased histone acetylation and
facilitating H3K9Ac accumulation on the IFNγ locus, therefore
resulting in its increased transcription (55).

Upon TCR-activation, S-2-hydroxyglutarate (S-2-HG)
accumulates in murine CD8+ T cells up to millimolar
concentrations under physiological oxygen conditions through
hypoxia inducible factor 1 alpha (HIF-1α) predominating over
R-2-hydrooxyglutarate, which is an oncometabolite, produced
via mutant isocitrate hydrogenase (IDH) (56). The accumulation
of this metabolite results in changes in T cell differentiation,
especially resulting in a central memory (Tcm) like phenotype
that is stable after transfer into wild-type host mice. The
accumulation of S-2-HG also resulted in higher proliferation,
maintenance and anti-tumor functions of CD8+ T cells in vivo
following their adoptive transfer into mice (56). Interestingly,
these effects were mediated by the modulation of histone and
DNA methylation. S-2-HG is an immunometabolite, thus
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further supporting a metabolism-dependent regulation of T cell
epigenetics and functions (56).

EPIGENETIC LANDSCAPES DURING CD8+

T CELL DIFFERENTIATION

Enabled by Assay for Transposase-Accessible Chromatin with
high-throughput sequencing (ATAC-seq), which allows the
identification of accessible regions of chromatin, the dynamic
changes of chromatin as well as accessible TF binding sites were
identified in response to acute and chronic LCMV infection
during naïve, activated, effector, and memory states of polyclonal
or antigen-specific CD8+ T cells (57, 58). In these studies, more
than 70,000 regions were identified as open (accessible) at least
in one of the differentiation state and half of these regions
were shared among all states suggesting a CD8+ T cell-specific
chromatin state. Thus, it was shown that in Tmem cells many
regulatory sites are in the open configuration, demonstrating
that these cells keep a memory-primed gene expression program
that can readily and rapidly be activated in case of a secondary
infection (57, 58).

Several TFs were identified to control the fate of CD8+ T
cells during the differentiation of these cells. For instance, T-
box expressed in T cells (Tbet), inhibitor of DNA-bing 2 (ID2),
interferon regulatory factor 4 (IRF4), B lypmphocyte induced
maturation protein 2 (BLIMP-2), and zinc finger E-box-binding
homeobox 2 (ZEB2) are required for the differentiation of Teff
cells, whereas T-cell factor 1 (TCF1), eomesodermin (EOMES),
inhibitor of DNA-binding protein 3 (ID3), B- cell lymphoma
protein 6 (BCL6), and FOXO1 control for memory formation
in CD8+ T cells (59). However, some of these TFs are not
differentially expressed in Teff and Tmem subsets, suggesting
that additional mechanisms are involved in controlling the fate
decision of T cells. By using a model of bacterial infection
in mice, Yu et al. have recently characterized the epigenetic
landscapes of naïve, effector, memory precursor and memory
CD8+ T cells, followed by the prediction of putative TF-binding
to accessible chromatin regions in each cell subset (59). In
addition, the importance of TFs was ranked in each cell subset
via bioinformatic analysis. With this approach, the authors
identified and experimentally validated two TFs, Yin Yang 1
(YY1) as well as nuclear receptor subfamily3 group C member
1 (NR3C1) as promoters of effector and memory precursor
phenotypes (59).

Other studies applying the ATAC-seq technology
demonstrated that also exhausted T cells possess a unique
chromatin state (60). During acute models of viral infection
in mice, exhausted T cells and effector cells share common
accessible chromatin sites. However, additional sites on
chromatin open or close during the exhaustion of T cells
leading to the expression of PD-1. The treatment of exhausted
T cells with anti-PD-1 antibodies resulted in the rescue of
gene expression associated with effector functions. However,
this treatment failed to fully rescue or reverse the exhaustion-
specific chromatin signature as well as the exhaustion specific
transcriptional program of exhausted T cells (60).

Although it is now known that exhausted CD8+ T cells have a
unique chromatin state compared to effector or memory subsets,
the mechanisms driving their transcriptional and epigenetic
development are poorly understood. Recently, three studies
identified the transcription factor thymocyte selection associated
high mobility box (TOX) as the main factor promoting CD8+

T cell exhaustion by regulating early epigenetic events (61–63).
These include decreased accessibility of genes associated with
effector T cell differentiation as well as increased accessibility
of memory and exhausted phenotype associated genes (62). The
expression of TOX is a robust hallmark of exhausted T cells.
However, it is transiently expressed at low levels during acute
viral infections. In addition, the expression of TOX is essential
and sufficient to induce the exhausted T cell phenotype as defined
by the marker proteins PD-1, TIM3, LAG3, TIGIT as well as
EOMES. Interestingly, initial TOX expression requires NFATc2
and calcineurin signaling, however, the sustained expression of
TOX in exhausted CD8+ T cells is calcineurin-independent
(62). This study suggests that among others, TOX expression-
related mechanisms, can force exhausted cells into an irreversible
exhaustion-specific and developmentally fixed chromatin state,
which cannot be remodeled by anti-PD-1 treatment.

Further studies also provide information on the dynamic
regulation of methylation patterns during virus-induced T
cell differentiation (64, 65). For instance, in naïve CD8+ T
cells, genes associated with effector functions are marked with
H3K4me3 indicating that effector function related genes are
repressed in naïve CD8+ T cells. Upon activation, the same
genes acquire chromatin marks that are related to an active
transcription (64, 65).

In addition to the regulation of chromatin marks of
promoters or enhancers, which are characterized by H3K4me1
and H3K27ac, are also differentially remodeled during T cell
activation and differentiation (59, 66). In studies by Kakaradov
et al., around 50,000 enhancers were identified and about 50%
of them were found to be shared between all stages of T cell
activation and differentiation, whereas the other half of enhancers
was either gained or lost depending on the state of the cells
suggesting that there is a dynamic regulation of enhancers
similar to the other epigenetic modifications of T cells during
differentiation (66). According to single-cell sequencing studies,
in which individual CD8+ T cells were analyzed during an acute
LCMV infection in mice, the differentiation of terminal effector
cells was initiated by an early burst of transcriptional activity
followed by a refinement of epigenetic silencing of transcripts
related to memory lymphocytes through H3K27me3 and Ezh2,
which is the catalytic subunit of polycomb repressive complex 2
(PRC2) (67).

THE EFFECTS OF TUMOR
MICROENVIRONMENT ON T CELL
METABOLISM AND EPIGENETICS

Chronic infections and cancer share common properties in terms
of CD8+ T cell functions. In both cases, antigen specific CD8+ T
cells progress into the so-called exhausted state due to continuous
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antigen exposure resulting in increased expression of exhaustion
markers. Therefore, research on chronic infectionmodels in mice
as well as patient samples contributed to the development of anti-
cancer therapies, which target T cell exhaustion such as anti-PD-1
or adoptive T cell therapies (68). Although the reprogramming
of cellular metabolism and changes of the epigenetic landscape
of CD8+ T cells have been intensively studied during chronic
infections, these mechanisms are still poorly understood in
tumor infiltrating lymphocytes (TILs). Although overlapping
features of exhausted CD8+ T cells can be observed both in
chronic infection and cancer models, the specific metabolic
environment in tumors represents an additional, unique factor
shaping T cell activation and differentiation via the specific
supply provision of metabolites and various secreted signaling
molecules (Figure 2B).

The metabolism of tumor cells is altered compared to
normal cells, which metabolize glucose through OXPHOS.
Instead, highly proliferating tumor cells use glycolysis pathway
to metabolize glucose in order to supply the anabolic products
needed for rapid cell growth and division. This metabolic
alteration of tumor cells was characterized by Otto Warburg
almost a century ago and is now considered as a hallmark
of cancer (69). However, this phenomenon is only a portion
of the unique tumor cell metabolism. In addition to glucose
metabolism, lipid, amino acid, and adenosine metabolism are
also altered in tumor cells to meet their high-energy demands
(70). For instance, HIF1α in tumor cells upregulates the
expression of CD73, which is located on the surface of many
tumor cells and which is responsible for the conversion of
adenosine monophosphate to adenosine resulting in increased
adenosine concentrations in TME (71). Similarly, HIF1α also
regulates genes critical for the lipid metabolism such as COX2
whose overexpression is associated with poor prognosis in several
solid tumor cancers (72). Glutamine metabolism is also altered in
tumor cells, that are known as glutamine traps since they have
higher levels of glutamine uptake (70).

TILs are mostly non-functional or exhausted due to the
highly immunosuppressive TME. The depletion of glucose in
TME by tumor cells represents one “exhausting” mechanism
and results in a decrease of aerobic glycolysis in TILs and
decreased phosphoenolpyruvic acid (PEP) production that is a
crucial metabolite participating in TCR-dependent activation of
calcium pathways like SOCE and NFAT signaling in T cells
(73, 74), which is critical for proper anti-tumor functions (73).
Additionally, due to high lactate production of tumor cells, the
acidity of TME increases, resulting in the inhibition of key T
cell responses such as proliferation after activation and effector
cytokine production by CD8+ T cells (70, 75). Similarly, due to
the hypoxic environment of the tumors, HIF1α upregulates the
expression of PD-1-ligand leading to inhibition of CD8+ T-cell
mediated cytotoxicity (76).

The epigenetic landscapes of tumor infiltrating CD8+ T
cells are not well understood. In a recent study, Philipp et al.
defined the chromatin dynamics of tumor-specific dysfunctional
cells over the course of tumorigenesis (77). They observed

that naïve tumor-specific T cells that encounter their antigen
firstly acquire a plastic, dysfunctional chromatin state that can
be remodeled. Later, the same cells differentiate into a fixed
dysfunctional chromatin state, which cannot be remodeled or
rescued anymore during the progression of large established
tumors. In addition, human dysfunctional tumor specific T cells
with high PD-1 expression share many core elements with these
mouse models (77). Interestingly, tumor-specific memory T cells
also differentiate into the same fixed dysfunctional chromatin
state suggesting that regardless of the initial chromatin states of
the cells, continuous antigen exposure in tumors can overwrite
this fixed dysfunctional chromatin state (77).

CONCLUSION

Since the manipulation of metabolic pathways in vivo is very
challenging, so far mostly in vitro systems served in this field,
to provide mechanistic information to reveal the regulation of T
cell metabolism in a controlled environment. However, the field is
still in need of experimental models that are able to better provide
the physiological context of changing T cell environments such as
nutrient availability, interaction between different cell types and
cytokine milieu to fully investigate the role of metabolism during
T cell activation and differentiation.

The link between epigenetic changes and cellular metabolism
has been intensively studied in cancer cells. However, the role
of metabolism on T cell function and differentiation has only
recently been characterized despite growing knowledge about
the connection of T cell epigenetics during differentiation and
function by using genome-wide mapping of accessible chromatin
sites. However, it still remains elusive how metabolites regulate
the epigenome of T cells in a gene-specific manner.

Although this interplay between tumor cells and the
epigenetic regulation of TILs remains elusive, a better
understanding of the epigenetic regulation of exhaustion
and the metabolic fitness of TILs might hold potential
to improve current cancer therapies such as checkpoint
blockade and adoptive T cell therapies. The relationship
between the unique metabolism in TME and how it
affects the epigenome of TILs might help to find ways to
rescue their exhausted phenotype via epigenome-targeting
pharmacological drugs to boost immune responses against
tumor cells.
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